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This lecture is prepared for the Mini-Courses in Mathematical Analysis at the University

of Padua, June 2017. As the reference I recommend the monograph Introduction to the

Mathematical Theory of Inverse Problems by the author of this course (Second Edition,

Springer publisher, 2011), where the course material can be found and many more aspects

are considered.

1 Introduction And Examples

We begin with three examples.

Example 1.1 (Geological prospecting)

In general, this is the problem of determining the location, shape, and/or some parameters

(such as conductivity) of geological anomalies in Earth’s interior from measurements at

its surface. We consider a simple one-dimensional example and describe the following

inverse problem.

Determine changes ρ = ρ(x), 0 ≤ x ≤ 1, of the mass density of an anomalous region at

depth h from measurements of the vertical component fv(x) of the change of force at x.

ρ(z)∆z is the mass of a “volume element” at z and
√

(x− z)2 + h2 is its distance from

the instrument. The change of gravity is described by Newton’s law of gravity f = γm
r2

with gravitational constant γ. For the vertical component, we have

∆fv(x) = γ
ρ(z)∆z

(x− xz)2 + h2
cos θ = γ

h ρ(z)∆z[
(x− xz)2 + h2

]3/2 .
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This yields the following integral equation for the determination of ρ:

fv(x) = γ h

1∫
0

ρ(z)[
(x− z)2 + h2

]3/2 dz for 0 ≤ x ≤ 1 . (1.1)

Example 1.2 (Computer tomography)

The most spectacular application of the Radon transform is in medical imaging. For

example, consider a fixed plane through a human body. Let ρ(x) denote the change of

density at the point x ∈ R2, and let L be any line in the plane. Suppose that we direct

a thin beam of X–rays into the body along L and measure how much the intensity is

attenuated by going through the body.
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Let L be parametrized by (s, δ), where s ∈ R and δ ∈ [0, π). Set θ̂ =
(

cos θ
sin θ

)
and θ̂⊥ =(− sin θ

cos θ

)
. The ray Ls,δ has the coordinates

x = s θ̂ + t θ̂⊥ , t ∈ R .

The attenuation of the intensity I is approximately described by dI = −γρI du with some

constant γ. Integration along the ray yields

ln I(t) = −γ
t∫

t0

ρ
(
s θ̂ + τ θ̂⊥

)
dτ

or, assuming that ρ is of compact support, the relative intensity loss is given by

ln I (∞) = −γ
∞∫

−∞

ρ
(
s θ̂ + τ θ̂⊥

)
dτ .

In principle, from the attenuation factors we can compute all line integrals

(Rρ)(s, δ) :=

∞∫
−∞

ρ
(
s θ̂ + τ θ̂⊥

)
dτ , s ∈ R, δ ∈ [0, π) . (1.2)

Rρ is called the Radon transform of ρ. The direct problem is to compute the Radon

transform Rρ when ρ is given. The inverse problem is to determine the density ρ for a

given Radon transform Rρ (that is, measurements of all line integrals).
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Example 1.3 (Sturm–Liouville eigenvalue problem)

Let a string of length L and mass density ρ = ρ(x) > 0, 0 ≤ x ≤ L, be fixed at the

endpoints x = 0 and x = L. Plucking the string produces tones due to vibrations. Let

v(x, t), 0 ≤ x ≤ L, t > 0, be the displacement at x and time t. It satisfies the wave

equation

ρ(x)
∂2v(x, t)

∂t2
=

∂2v(x, t)

∂x2
, 0 < x < L , t > 0 , (1.3)

subject to boundary conditions v(0, t) = v(L, t) = 0 for t > 0.

A periodic displacement of the form

v(x, t) = w(x)
[
a cosωt + b sinωt

]
with frequency ω > 0 is called a pure tone. This form of v solves the boundary value

problem (1.3) if and only if w and ω satisfy the Sturm–Liouville eigenvalue problem

w′′(x) + ω2ρ(x)w(x) = 0 , 0 < x < L , w(0) = w(L) = 0 . (1.4)

The direct problem is to compute the eigenfrequencies ω and the corresponding eigen-

functions for known function ρ. In the inverse problem, one tries to determine the mass

density ρ from a number of measured frequencies ω.

In all of these examples, we can formulate the direct problem as the evaluation of an

operator K acting on a known “model” x in a model space X and the inverse problem as

the solution of the equation K(x) = y:

Direct problem: given x (and K), evaluate K(x).

Inverse problem: given y (and K), solve K(x) = y for x.

In order to formulate an inverse problem, the definition of the operator K, including

its domain and range, has to be given. The formulation as an operator equation allows

us to distinguish among finite, semifinite, and infinite-dimensional, linear and nonlinear

problems.

In general, the evaluation of K(x) means solving a boundary value problem for a differ-

ential equation or evaluating an integral.

For all of the pairs of problems presented in the last section, there is a fundamental

difference between the direct and the inverse problems. In all cases, the inverse problem

is ill-posed or improperly-posed in the sense of Hadamard, while the direct problem

is well-posed. In his lectures in 1923, Hadamard claims that a mathematical model for

a physical problem (he was thinking in terms of a boundary valueproblem for a partial

differential equation) has to be properly-posed or well-posed in the sense that it has

the following three properties:

1. There exists a solution of the problem (existence).
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2. There is at most one solution of the problem (uniqueness).

3. The solution depends continuously on the data (stability).

Mathematically, the existence of a solution can be enforced by enlarging the solution

space. The concept of distributional solutions of a differential equation is an example. If

a problem has more than one solution, then information about the model is missing. In

this case, additional properties, such as sign conditions, can be built into the model. The

requirement of stability is the most important one. If a problem lacks the property of

stability, then its solution is practically impossible to compute because any measurement

or numerical computation is polluted by unavoidable errors: thus the data of a problem

are always perturbed by noise! If the solution of a problem does not depend continuously

on the data, then in general the computed solution has nothing to do with the true

solution.

Definition 1.4 (well-posedness)

Let X and Y be normed spaces, K : X → Y a (linear or nonlinear) mapping. The

equation Kx = y is called properly-posed or well-posed if the following holds:

1. Existence: For every y ∈ Y there is (at least one) x ∈ X such that Kx = y.

2. Uniqueness: For every y ∈ Y there is at most one x ∈ X with Kx = y.

3. Stability: The solution x depends continuously on y; that is, for every sequence

(xn) ⊂ X with Kxn → Kx (n→∞), it follows that xn → x (n→∞).

Equations for which (at least) one of these properties does not hold are called improperly-

posed or ill-posed.

It is important to specify the full triple (X, Y,K) and their norms. Existence and unique-

ness depend only on the algebraic nature of the spaces and the operator; that is, whether

the operator is onto or one-to-one. Stability, however, depends also on the topologies of

the spaces, i.e., whether the inverse operator K−1 : Y → X is continuous.

These requirements are not independent of each other. For example, due to the open

mapping theorem, the inverse operator K−1 is automatically continuous if K is linear and

continuous and X and Y are Banach spaces.

In the numerical treatment of integral equations, a discretization error cannot be avoided.

For integral equations of the first kind, a “naive” discretization usually leads to disastrous

results as the following simple example shows.
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Example 1.5

We look again at the integral equation (1.1) for γ = 1; that is,

h

1∫
0

ρ(z)[
(x− z)2 + h2

]3/2 dz = f(x) for 0 ≤ x ≤ 1 , (1.5)

where f(x) is given by

f(x) := h

1∫
0

1[
(x− z)2 + h2

]3/2 dz =
2

h

[
1

exp(2t0) + 1
− 1

exp(2t1) + 1

]
with t0 = ln

[
−x/h +

√
1 + x2/h2

]
and t1 = ln

[
(1 − x)/h +

√
1 + (1− x)2/h2

]
. (Hint:

Substitute z = x + h sinh t in the integral.) Then ρ(z) = 1, z ∈ (0, 1), is the (only)

solution of the integral equation (1.5).

We approximate the integral by the trapezoidal rule

h

1∫
0

ρ(z)[
(x− z)2 + h2

]3/2 dz ≈ h

n

n∑
j=0

′
ρj[

(x− j/n)2 + h2
]3/2

where
∑n

j=0
′
aj = 1

2
a0 +

∑n−1
j=1 aj + 1

2
an. For x = i/n, we obtain the linear system

h

n

n∑
j=0

′
ρ̃j[

(i/n− j/n)2 + h2
]3/2 = f(i/n) , i = 0, . . . , n . (1.6)

which we write as Aρ̃ = f̃ in Rn+1 where ρ̃ = (ρ̃j)
>
j=0,...,n and f̃ =

(
f(i/n)

)>
i=0,...,n

.

Then ρ̃j should be an approximation to ρ(j/n). The following table (3rd column) lists

the error err2 := maxj=0,...,n |ρ̃j − 1| between the exact solution ρj := ρ(j/n) = 1 and the

approximate solution ρ̃j in the maximum norm for n = 4, . . . , 128. As comparison, the

second column lists the error err1 := maxj=0,...,n |Aρ− f̃ | and in the forth column we list

the error err3 := maxj=0,...,n |ρ̃j − 1| of the solution of the integral equation of the second

kind

ρ(x) + h

1∫
0

ρ(z)[
(x− z)2 + h2

]3/2 dz = f(x) + 1 for 0 ≤ x ≤ 1 ,

with ρ = 1 as solution. We observe that, in contrast to the solution of the first kind

integral equation (1.5) the errors decay of order 2 as expected for the trapezoidal rule.

n err1 err2 err3

4 0.0463232681555 0.1418408834665 0.0183898954803

8 0.0114585130651 0.2530455911927 0.0043111981459

16 0.0028988236549 0.7113811691074 0.0010618436701

32 0.0007244204928 12.7768956652751 0.0002644856746

64 0.0001811609863 489.9135720439897 0.0000660608036

128 0.0000452924859 369.4640129272221 0.0000165218541
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We see that the approximations have nothing to do with the true solution and become

even worse for finer discretization schemes.

The mathematical reason for an equation Kx = y to be improperly posed is - in many

cases - that the operator K is compact; that is, it maps bounded sets in relatively

compact sets. This is the content of the following theorem.

Theorem 1.6

Let X, Y be normed spaces and K : X → Y be a linear compact operator with nullspace

N (K) := {x ∈ X : Kx = 0}. Let the dimension of the factor space X/N (K) be infinite.

Then there exists a sequence (xn) in X such that Kxn → 0 but (xn) does not converge.

We can even choose (xn) such that ‖xn‖ → ∞. In particular, if K is one-to-one, the

inverse K−1 : Y ⊃ R(K)→ X is unbounded. Here, R(K) := {Kx ∈ Y : x ∈ X} denotes

the range of K.

Proof: We set N = N (K) for abbreviation. The factor space X/N is a normed space

with norm ‖[x]‖ := inf
{
‖x+ z‖ : z ∈ N

}
since the nullspace is closed. The induced

operator K̃ : X/N → Y , defined by K̃([x]) := Kx, [x] ∈ X/N , is well-defined, compact,

and one-to-one. The inverse K̃−1 : Y ⊃ R(K)→ X/N is unbounded since otherwise the

identity I = K̃−1K̃ : X/N → X/N would be compact as a composition of a bounded

and a compact operator. This would contradict the assumption that the dimension of

X/N is infinite. Because K̃−1 is unbounded, there exists a sequence ([zn]) in X/N
with Kzn → 0 and ‖[zn]‖ = 1. We choose vn ∈ N such that ‖zn + vn‖ ≥ 1

2
and set

xn := (zn + vn)/
√
‖Kzn‖. Then Kxn → 0 and ‖xn‖ → ∞. �

2 The Tikhonov Regularization

We saw in the previous section that many inverse problems can be formulated as operator

equations of the form

Kx = y ,

where K is a linear compact operator between Hilbert spaces X and Y over the field

K = R or C. For simplicity, we assume throughout this section that the compact

operator K is one-to-one. This is not a serious restriction because we can always

replace the domain X by the orthogonal complement of the kernel of K. We make the

assumption that there exists a solution x ∈ X of the unperturbed equation Kx = y. In

other words, we assume that y ∈ R(K). The injectivity of K implies that this solution is

unique.

In practice, the exact right-hand side y0 ∈ Y is never known exactly but only up to an

error of, say, δ > 0. Therefore, we assume that we know δ > 0 and yδ ∈ Y with∥∥y0 − yδ
∥∥ ≤ δ . (2.7)
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With x0 ∈ X we denote the exact solution; that is, Kx0 = y0. It is our aim to ‘solve” the

perturbed equation

Kxδ = yδ . (2.8)

In general, (2.8) is not solvable because we cannot assume that the measured data yδ are in

the range R(K) of K. Therefore, the best we can hope is to determine an approximation

xδ ∈ X to the exact solution x0.

An additional requirement is that the approximate solution xδ should depend continuously

on the data yδ. In other words, it is our aim to construct a suitable bounded approximation

R : Y → X of the (unbounded) inverse operator K−1 : R(K)→ X.

Definition 2.1

A regularization strategy is a family of linear and bounded operators

Rα : Y −→ X, α > 0 ,

such that

lim
α→0

RαKx = x for all x ∈ X ;

that is, the operators RαK converge pointwise to the identity.

From this definition and the compactness of K, we conclude the following.

Theorem 2.2

Let Rα be a regularization strategy for a compact operator K : X → Y where dimX =∞.

Then we have

(1) The operators Rα are not uniformly bounded; that is, there exists a sequence (αj)

with
∥∥Rαj

∥∥→∞ for j →∞.

(2) The sequence (RαKx) does not converge uniformly on bounded subsets of X; that

is, there is no convergence RαK to the identity I in the operator norm.

Proof: (1) Assume, on the contrary, that there exists c > 0 such that ‖Rα‖ ≤ c for all

α > 0. From Rαy → K−1y (α → 0) for all y ∈ R(K) and ‖Rαy‖ ≤ c ‖y‖ for α > 0 we

conclude that ‖K−1y‖ ≤ c ‖y‖ for every y ∈ R(K); that is, K−1 is bounded. This implies

that I = K−1K : X → X is compact, a contradiction to dimX =∞.

(2) Assume that RαK → I in L(X,X). From the compactness of RαK and the closedness

of the space of compact operators we conclude that I is also compact, which again would

imply that dimX <∞. �

The notion of a regularization strategy is based on unperturbed data; that is, the regu-

larizer Rαy converges to x for the exact right-hand side y = Kx.
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Now let y0 ∈ R(K) be the exact right-hand side and yδ ∈ Y be the measured data with∥∥y0 − yδ
∥∥ ≤ δ. We define

xα,δ := Rαy
δ (2.9)

as an approximation of the solution x0 of Kx0 = y0. Then the error splits into two parts

by the following obvious application of the triangle inequality:∥∥xα,δ − x0
∥∥ ≤ ∥∥Rαy

δ −Rαy
0
∥∥ +

∥∥Rαy
0 − x0

∥∥
≤ ‖Rα‖ δ +

∥∥RαKx
0 − x0

∥∥ . (2.10)

This is our fundamental estimate, which we use often in the following.

We observe that the error between the exact and computed solutions consists of two

parts: The first term on the right-hand side describes the error in the data multiplied

by the “condition number” ‖Rα‖ of the regularized problem. By Theorem 2.2, this term

tends to infinity as α tends to zero. The second term denotes the approximation error∥∥(Rα −K−1
)
y0
∥∥ of the exact right-hand side y0 = Kx0. By the definition of a regu-

larization strategy, this term tends to zero with α. The following figure illustrates the

situation.

error

α∗ α

δ ‖Rα‖

‖RαKx− x‖

-

6

-

6

Figure: Behavior of the total error

We need a strategy to choose α = α(δ) dependent on δ in order to keep the total error as

small as possible. This means that we would like to minimize

δ ‖Rα‖ +
∥∥RαKx

0 − x0
∥∥ .

The procedure is the same in every concrete situation: One has to estimate the quantities

‖Rα‖ and ‖RαKx
0 − x0‖ in terms of α and then minimize this upper bound with respect

to α. Before we carry out these steps for a model example, we introduce the following

notation.

Definition 2.3

A regularization strategy α = α(δ) is called admissible if α(δ)→ 0 and

sup
{∥∥Rα(δ)y

δ − x
∥∥ : yδ ∈ Y,

∥∥Kx− yδ∥∥ ≤ δ
}
→ 0 , δ → 0 ,

for every x ∈ X.
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Now we introduce the most prominent example of an admissible regularization strategy:

Given the linear, bounded operator K : X → Y and y ∈ Y , determine xα ∈ X that

minimizes the Tikhonov functional

Jα(x) := ‖Kx− y‖2 + α ‖x‖2 for x ∈ X . (2.11)

We prove the following theorem.

Theorem 2.4

Let K : X → Y be a linear and bounded operator between Hilbert spaces and α > 0. Then

the Tikhonov functional Jα has a unique minimum xα ∈ X. This minimum xα is the

unique solution of the normal equation

αxα + K∗Kxα = K∗y . (2.12)

Proof: Let (xn) in X be a minimizing sequence; that is, Jα(xn)→ I := infx∈X Jα(x) as

n tends to infinity. We show that (xn) is a Cauchy sequence. Application of the binomial

formula yields that

Jα(xn) + Jα(xm) = 2 Jα

(
1

2

(
xn + xm

))
+

1

2
‖K(xn − xm)‖2 +

α

2
‖xn − xm‖2

≥ 2 I +
α

2
‖xn − xm‖2 .

The left-hand side converges to 2I as n,m tend to infinity. This shows that (xn) is a

Cauchy sequence in X and thus convergent. Let xα = limn→∞ xn, noting that xα ∈ X.

From the continuity of Jα, we conclude that Jα(xn)→ Jα(xα); that is, Jα(xα) = I. This

proves the existence of a minimum of Jα.

Now we use the following formula:

Jα(x) − Jα(xα) = 2
(
Kxα − y , K(x− xα)

)
+ 2α

(
xα, x− xα

)
+ ‖K(x− xα)‖2 + α ‖x− xα‖2

= 2
(
K∗(Kxα − y) + αxα , x− xα

)
+ ‖K(x− xα)‖2 + α ‖x− xα‖2 (2.13)

for all x ∈ X. From this, we see the equivalence of the normal equation with the

minimization problem for Jα. Indeed, if xα satisfies (2.12), then Jα(x) − Jα(xα) =

‖K(x− xα)‖2 + α ‖x− xα‖2 ≥ 0; that is, xα minimizes Jα. If, on the other hand, xα

minimizes Jα, then we substitute x = xα + tz for any t > 0 and z ∈ X and arrive at

0 ≤ 2t
(
K∗(Kxα − y) + αxα, z

)
+ t2 ‖Kz‖2 + t2α ‖z‖2 .
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Division by t > 0 and t → 0 yields
(
K∗(Kxα − y) + αxα, z

)
≥ 0 for all z ∈ X; that is,

K∗(Kxα − y) + αxα = 0, and xα solves (2.12).

Finally, we show that α I + K∗K is one-to-one for every α > 0. Let αx + K∗Kx = 0.

Multiplication by x yields α(x, x) + (Kx,Kx) = 0; that is, x = 0. �

The solution xα of equation (2.12) can be written in the form xα = Rαy with

Rα := (αI +K∗K)−1K∗ : Y −→ X . (2.14)

We show that this family of operators Rα is an admissible regularization strategy.

Theorem 2.5

Let K : X → Y be a linear, compact, and injective operator and α > 0. The operator

αI + K∗K is boundedly invertible. The operators Rα : Y → X from (2.14) form a

regularization strategy with ‖Rα‖ ≤ 1/
(
2
√
α
)
. It is called the Tikhonov regularization

method. Rαy
δ is determined as the unique solution xα,δ ∈ X of the equation of the second

kind

αxα,δ + K∗Kxα,δ = K∗yδ . (2.15)

Every choice α(δ)→ 0 (δ → 0) with δ2/α(δ)→ 0 (δ → 0) is admissible.

Proof: First we show ‖Rα‖ ≤ 1/
(
2
√
α
)
. Let y ∈ Y and x = Rαy. Then (αI +K∗K)x =

K∗y. We multiply this equation by x and use the property of the adjoint of K. This

yields

α‖x‖2 + ‖Kx‖2 = (K∗y, x) = (y,Kx) ≤ ‖y‖‖Kx‖ .

Completing the squares yields

α‖x‖2 ≤ α‖x‖2 +

[
‖Kx‖ − 1

2
‖y‖
]2

≤ 1

4
‖y‖2

which implies
√
α ‖x‖ ≤ ‖y‖/2; that is, ‖Rαy‖ ≤ ‖y‖/

(
2
√
α
)
.

Next we show that RαKx→ x for every x ∈ X as α tends to zero. Let again xα := RαKx.

Then (αI +K∗K)xα = K∗Kx; that is,

(αI +K∗K)(xα − x) = −αx . (2.16)

Multiplication with xα − x yields as before

α‖xα − x‖2 + ‖K(xα − x)‖2 = −α (x, xα − x) .

Now we use the fact that the range R(K∗) of K∗ is dense in X. This follows from the

injectivity of K. Therefore, for given ε > 0 there exists z ∈ Y with ‖x−K∗z‖ ≤ ε. Now

we continue with (2.17) in the form

α‖xα − x‖2 + ‖K(xα − x)‖2 = −α (x−K∗z, xα − x) − α
(
z,K(xα − x)

)
≤ α ε ‖xα − x‖ + α‖z‖‖K(xα − x)‖ .
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Completing the squares yields

α
[
‖xα − x‖ − ε

2

]2

≤ α
[
‖xα − x‖ − ε

2

]2

+

[
‖K(xα − x)‖ − α‖z‖

2

]2

≤ α
ε2

4
+
α2‖z‖2

4
,

and thus ∣∣∣‖xα − x‖ − ε

2

∣∣∣ ≤ 1

2

√
ε2 + α‖z‖2 ;

that is,

‖xα − x‖ ≤ ε

2
+

1

2

√
ε2 + α‖z‖2 . (2.17)

Now we choose α = α(ε) so small such that α‖z‖2 ≤ 3ε2. For this α we have ‖xα − x‖ ≤
ε/2 + ε = 3ε/2. Since ε > 0 was arbitrary the convergence xα → x follows. Now we use

the fundamental estimate (2.10) to obtain∥∥xα(δ),δ − x
∥∥ ≤ δ

2
√
α(δ)

+
∥∥Rα(δ)Kx− x

∥∥ (2.18)

which yields the assertion. �

Estimate (2.18) yields only convergence of xα(δ),δ to x as δ tends to zero but no order of

convergence. If we make stronger assumptions on the true solution on x0 we obtain the

orders
√
δ and δ2/3:

Theorem 2.6

(a) Let in addition to the assumptions of the previous theorem x0 = K∗z ∈ R(K∗) for

some z ∈ Y . We choose α(δ) = c δ for some c > 0. Then the following estimate holds:∥∥xα(δ),δ − x0
∥∥ ≤ 1

2

√
δ
[
1/
√
c+
√
c ‖z‖

]
. (2.19a)

(b) Let x0 = K∗Kz ∈ R(K∗K) for some z ∈ X. The choice α(δ) = c δ2/3 for some c > 0

leads to the error estimate∥∥xα(δ),δ − x0
∥∥ ≤ δ2/3

[
1/(2
√
c) + 2c ‖z‖

]
. (2.19b)

Proof: (a) In the second part of the previous proof (for x = x0) we used the fact that

x0 can be approximated arbitrarily well by elements in R(K∗). By our assumption that

x0 = K∗z for some z ∈ Y we can now copy the proof with ε = 0 and have by (2.17) that

‖RαKx
0 − x0‖ ≤ 1

2

√
α‖z‖. The fundamental estimate (2.10) yields

∥∥xα,δ − x0
∥∥ ≤ δ

2
√
α

+
1

2

√
α ‖z‖ .

The choice α(δ) = c δ yields (2.19a) and ends the proof of part (a).
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(b) We write (2.16) for x = x0 in the form (αI + K∗K)(xα − x0) = −αx0 = −αK∗Kz;

that is, (αI +K∗K)(xα − x0 + αz) = α2z. Multiplication with xα − x0 + αz yields

α‖xα−x0 +αz‖2 + ‖K(xα−x0 +αz)‖2 = α2 (z, xα−x+αz) ≤ α2‖z‖‖xα−x0 +αz‖ ,

and thus ‖xα − x0 + αz‖ ≤ α‖z‖. From this ‖xα − x0‖ ≤ 2α‖z‖ follows. Again, the

fundamental estimate (2.10) yields∥∥xα,δ − x0
∥∥ ≤ δ

2
√
α

+ 2α‖z‖ .

The choice α(δ) = c δ2/3 lead to the estimate (2.19b). �

From Theorem 2.5, we observe that α has to be chosen to depend on δ in such a way that

it converges to zero as δ tends to zero but not as fast as δ2. The additional assumptions

of Theorem 2.6 that x0 belongs to the range of K∗ or K∗K, respectively, turns into a

smoothness assumption when applying this theorem to examples where K - and thus K∗

- is an integral operator. We observe that the smoother the solution x is the slower α has

to tend to zero. On the other hand, the convergence can be arbitrarily slow if no a priori

assumption about the solution x (such as (a) or (b)) is available.

It is surprising to note that the order of convergence of Tikhonov’s regularization method

cannot be improved. Indeed, the following result can be shown.

Theorem 2.7

Let K : X → Y be linear, compact, and one-to-one such that the range R(K) is infinite-

dimensional. Furthermore, let x0 ∈ X, and assume that there exists a continuous function

α : [0,∞)→ [0,∞) with α(0) = 0 such that

lim
δ→0

∥∥xα(δ),δ − x0
∥∥ δ−2/3 = 0

for every yδ ∈ Y with
∥∥yδ −Kx0

∥∥ ≤ δ, where xα(δ),δ ∈ X solves (2.15). Then x0 = 0.

3 The Landweber Iteration

Also for this section we make the assumptions that K is one-to-one with dense range.

Then also K∗ is one-to-one. We can rewrite the equation Kx = y in the form x =

(I − aK∗K)x + aK∗y for some a > 0 and iterating this equation; that is, computing

x0 := 0 and xm = (I − aK∗K)xm−1 + aK∗y (3.20)

for m = 1, 2, . . . . This iteration scheme can be interpreted as the steepest descent

algorithm applied to the quadratic functional x 7→ ‖Kx− y‖2 as the following lemma

shows.
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Lemma 3.1

Let the sequence (xm) be defined by (3.20) and define the functional ψ : X → R by

ψ(x) = 1
2
‖Kx− y‖2, x ∈ X. Then ψ is Fréchet differentiable in every z ∈ X and

ψ′(z)x = (Kz − y,Kx) = Re
(
K∗(Kz − y), x

)
, x ∈ X . (3.21)

The linear functional ψ′(z) can be identified with K∗(Kz− y) ∈ X in the Hilbert space X

over the field R. Therefore, xm = xm−1 − aK∗(Kxm−1 − y) is the steepest descent step

with stepsize a.

Proof: The binomial formula yields

ψ(z + x) − ψ(z) − (Kz − y,Kx) =
1

2
‖Kx‖2

and thus ∣∣ψ(z + x) − ψ(z) − (Kz − y,Kx)
∣∣ ≤ 1

2
‖K‖2 ‖x‖2 ,

which proves that the mapping x 7→ (Kz − y,Kx) is the Fréchet derivative of ψ at z.

�

Equation (3.20) is a linear recursion formula for xm. By induction with respect to m, it

is easily seen that xm has the explicit form xm = Rmy, where the operator Rm : Y → X

is defined by

Rm := a
m−1∑
k=0

(I − aK∗K)kK∗ for m = 1, 2, . . . . (3.22)

Therefore, we note that m plays the role of the regularization parameter α (or, better,

1/m because the regularization parameter should tend to zero).

Theorem 3.2

Again let K : X → Y be a compact operator and let 0 < a < 1/ ‖K‖2. Define the linear

and bounded operators Rm : Y → X by (3.22). These operators Rm define a regularization

strategy with discrete regularization parameter α = 1/m, m ∈ N, and ‖Rm‖ ≤
√
am. The

sequence xδm = Rmy
δ is computed by the iteration (3.20); that is,

xδ0 = 0 and xδm = (I − aK∗K)xδm−1 + aK∗yδ (3.23)

for m = 1, 2, . . . . Every strategy m(δ) → ∞ (δ → 0) with δ2m(δ) → 0 (δ → 0) is

admissible.

Furthermore, ‖KRm − I‖ ≤ 1 for all m and Kxδm → yδ as m→∞.

Before we prove this theorem we recall the notion of a singular system {σj, ψj, φj : j ∈
N} for the operator K: It is σj > 0 for all j and {ψj : l ∈ N} and {φj : l ∈ N} are

orthonormal systems in X and Y , respectively, and Kψj = σjφj and K∗φj = σjψj for
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all j ∈ N. The injectivity of K and K∗ imply that both systems are also complete. In

particular, it holds that x =
∑

j(x, ψj)ψj and y =
∑

j(y, φj)φj for all x ∈ X and y ∈ Y
and ‖x‖2 =

∑
j(x, ψj)

2 and ‖y‖2 =
∑

j(y, φj)
2.

Proof of Theorem 3.2: By the properties of the singular system we have for m = 1, 2, . . .:

Rmφj = a

m−1∑
k=0

(1− aσ2
j )
kσj ψj = a σj

1− (1− aσ2
j )
m

aσ2
j

ψj =
1− (1− aσ2

j )
m

σj
ψj

and thus for y =
∑

j βjφj:

Rmy =
∑
j

βj
1− (1− aσ2

j )
m

σj
ψj .

Therefore, with (1− aσ2
j )
m ≥ 1− amσ2

j (Bernoulli’s inequality),

‖Rmy‖2 =
∑
j

β2
j

[
1− (1− aσ2

j )
m
]2

σ2
j

≤
∑
j

β2
j

1− (1− aσ2
j )
m

σ2
j

≤ am ‖y‖2

which proves that ‖Rm‖ ≤
√
am. By the fundamental estimate it remains to show that

RmKx→ x as m tends to infinity. With x =
∑

j αjψj we compute Kx =
∑

j αjσjφj and

thus

RmKx =
∑
j

αj
[
1− (1− aσ2

j )
m]ψj and thus ‖RmKx− x‖2 =

∑
j

α2
j (1− aσ2

j )
2m .

From
∑

j α
2
j = ‖x‖2 and (1− aσ2

j )
2m → 0, m → ∞, for every j we conclude by a simple

argument (exercise) that ‖RmKx − x‖ → 0 as m → ∞. Analogously, for yδ =
∑

j βjφj
we compute

KRmy
δ =

∑
j

βj
[
1− (1− aσ2

j )
m]φj and thus ‖KRmy

δ − yδ‖2 =
∑
j

β2
j (1− aσ2

j )
2m ,

which shows that ‖KRm − I‖ ≤ 1 for all m and that ‖KRmy
δ − yδ‖ converges to zero as

m→∞. �

The a-priori choice δ2 ·m(δ)→ 0 (δ → 0) is not useful in practise. For iterative methods

it is very natural to use a stopping rule. We suggest the following

Stopping rule: Let r > 1 be a fixed number. Stop the algorithm at the first occurrence

of m ∈ N0 with
∥∥Kxδm − yδ∥∥ ≤ r δ. If

∥∥yδ∥∥ > r δ then m = m(δ) ∈ N is well defined

since
∥∥Kxδm − yδ∥∥→ 0 as m→∞ by the previous theorem. m(δ) is characterized by the

inequalities∥∥Kxδm(δ), − yδ
∥∥ ≤ rδ <

∥∥Kxδm − yδ∥∥ for all m = 0, . . . ,m(δ)− 1 .

The following theorem shows that this choice of m(δ) is possible for Landweber’s method

and leads to an admissible regularization strategy.
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Theorem 3.3

Let, in addition to the assumptions of the previous theorem, x0 = K∗z ∈ R(K∗) for some

z ∈ Y . Then we have the following order of convergence:∥∥xδm(δ) − x0
∥∥ ≤ c

√
‖z‖
√
δ (3.24)

for some c > 0.

Proof: We remind the reader of the fundamental estimate (2.10), which we need in the

following form (see Theorem 3.2):∥∥xδm − x0
∥∥ ≤ δ

√
am +

∥∥RmKx
0 − x0

∥∥ . (3.25)

Writing m = m(δ) for abbreviation we have∥∥KRm−1y
0 − y0

∥∥ ≥ ∥∥KRm−1y
δ − yδ

∥∥ − ∥∥(KRm−1 − I)(y0 − yδ)
∥∥

≥ r δ − ‖KRm−1 − I‖ δ ≥ (r − 1) δ,

and hence for y0 = Kx0 = KK∗z =
∑

j(z, φj)σ
2
j φj:

m2 (r − 1)2 δ2 ≤ m2
∥∥KRm−1y

0 − y0
∥∥2

=
∞∑
j=1

m2
(
1− aσ2

j

)2m−2
σ4
j (z, φj)

2 .

Now we use the elementary estimate

m2σ4
(
1− aσ2

)2m−2 ≤ 1/a2 for all m ≥ 2 and 0 ≤ σ ≤ 1/
√
a

which yields

(r − 1)2 δ2m2 ≤ 1

a2
‖z‖2 ;

that is, we have shown the upper bound

m(δ) ≤ 1

a(r − 1)

‖z‖
δ
.

Now we estimate the second term on the right-hand side of (3.25). From the Cauchy–

Schwarz inequality, we conclude that∥∥(I −RmK)x0
∥∥2

=
∞∑
j=1

σ2
j

(
1− aσ2

j

)2m|(z, φj)|2

=
∞∑
j=1

[
σ2
j

(
1− aσ2

j

)m|(z, φj)|] [(1− aσ2
j

)m|(z, φj)|]

≤

√√√√ ∞∑
j=1

σ4
j

(
1− aσ2

j

)2m|(z, φj)|2

√√√√√ ∞∑
j=1

(
1− aσ2

j

)2m︸ ︷︷ ︸
≤1

|(z, φj)|2

≤
∥∥KRmy

0 − y0
∥∥ ‖z‖ ≤ ‖z‖ [∥∥(I −KRm)(y0 − yδ)

∥∥+
∥∥(I −KRm)yδ

∥∥]
≤ ‖z‖ (1 + r) δ.



16

Therefore, we conclude from (3.25) that∥∥xδm(δ) − x0
∥∥ ≤ δ

√
am(δ) +

∥∥Rm(δ)Kx
0 − x0

∥∥ ≤ c
√
‖z‖ δ ,

which ends the proof. �

We note that the stopping rule is independent of the smoothness of the solution x0. One

can show by very similar arguments that, with the same stopping rule, one has the error

estimate (for any ` ∈ N) ∥∥xδm(δ) − x0
∥∥ = O

(
δ2`/(2`+1)

)
provided x0 ∈ R

(
(A∗A)`

)
. Therefore, in contrast to Tikhonov’s method the Landweber

iteration provides an order of convergence which is arbitrarily close to δ provided the

solution is smooth enough.

4 The Factorization Method for a Problem of

Impedance Tomography

Electrical impedance tomography (EIT) is a medical imaging technique in which an image

of the conductivity (or permittivity) of part of the body is determined from electrical

surface measurements. Typically, conducting electrodes are attached to the skin of the

subject and small alternating currents are applied to some or all of the electrodes. The

resulting electrical potentials are measured, and the process may be repeated for numerous

different configurations of applied currents.

Applications of EIT as an imaging tool can be found in fields such as medicine (mon-

itoring of the lung function or the detection of skin cancer or breast cancer), geophysics

(locating of underground deposits, detection of leaks in underground storage tanks), or

nondestructive testing (determination of cracks in materials).

To derive the EIT model we start from the time-harmonic Maxwell system in the form

curlH + (iωε− σ)E = 0 , curlE − iωµH = 0

in some domain which we take as a cylinder of the form B × R ⊂ R3 with bounded

cross-section B ⊂ R2. Here, ω, ε, σ, and µ denote the frequency, electric permittivity,

conductivity, and magnetic permeability, respectively, which are all assumed to be con-

stant along the axis of the cylinder; that is, depend on x1 and x2 only. We note that the

real parts Re
[
exp(−iωt)E(x)

]
and Re

[
exp(−iωt)H(x)

]
are the physically meaningful

electric and magnetic field, respectively. For low frequencies ω (i.e., for small (ωµσ) · L2

where L is a typical length scale of B), one can show that the Maxwell system is approx-

imated by

curlH − σ E = 0 , curlE = 0 .
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The second equation yields the existence1 of a scalar potential u such that E = −∇u.

Substituting this into the first equation and taking the divergence yields

div
(
σ∇u

)
= 0 in Ω , (4.26)

where Ω ∈ Rn is some connected and bounded domain with Lipschitz boundary. There

are several possibilities for modeling the attachment of the electrodes on the boundary ∂Ω

of Ω. The simplest of these is the continuum model in which the potential u|∂Ω and the

boundary current distribution f = σ∇u · ν = σ ∂u/∂ν are both given on the boundary

∂Ω. Here, ν = ν(x) is the unit normal vector at x ∈ ∂Ω directed into the exterior of Ω.

First, we observe that,2 by the divergence theorem,

0 =

∫
Ω

div
(
σ∇u

)
dx =

∫
∂Ω

σ
∂u

∂ν
ds =

∫
∂Ω

f ds ;

that is, the boundary current distribution f has zero mean; that is, we assume that

f ∈ L2
∗(∂Ω) :=

{
f ∈ L2(∂Ω) :

∫
∂Ω
f ds = 0

}
.

In the inverse problem of EIT the conductivity function σ is unknown and has to be

determined from simultaneous measurements of the boundary voltages u|∂Ω and current

densities f , respectively.

Let σ ∈ L∞(Ω) and f ∈ L2
∗(∂Ω) be given real-valued functions such that σ(x) ≥ σ0 on Ω

for some σ0 > 0. The direct problem is to determine u ∈ H1(Ω) such that

div
(
σ∇u

)
= 0 in Ω , σ

∂u

∂ν
= f on ∂Ω . (4.27)

We note that the solution is only unique up to an additive constant. Therefore, we

normalize the solution u such that it has vanishing mean on the boundary; that is, u ∈
H1
∗ (Ω) where

H1
∗ (Ω) =

{
u ∈ H1(Ω) :

∫
∂Ω

u ds = 0

}
. (4.28)

The formulation (4.27) of the boundary value problem includes that the normal deriva-

tive σ∂u/∂ν is continuous on every interface where σ jumps. The solution u has to be

understood in the variational (or weak) sense; that is, u ∈ H1
∗ (Ω) is a solution of (4.27)

provided that ∫
Ω

σ∇ψ · ∇u dx =

∫
∂Ω

ψ f ds for all ψ ∈ H1
∗ (Ω) . (4.29)

Existence and uniqueness follows from the representation theorem due to Riesz–Fischer

because the left hand side is an inner product of H1
∗ (Ω) which is equivalent to the ordinary

1If the domain is simply connected.
2Provided σ, f , and u are smooth enough.
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one. Therefore, the Neumann-Dirichlet operator Λσ from L2
∗(∂Ω) into itself is well

defined. It maps3 f ∈ L2
∗(∂Ω) into the trace u|∂Ω ∈ L2

∗(∂Ω).

In this lecture we restrict ourselves to the more modest problem to determine only the

shape of the region D where σ differs from the known background medium which we

assume to be homogeneous with conductivity 1.

We sharpen the assumption on σ.

Assumption 4.1 In addition to the above assumtion on σ let there exist finitely many

domains Dj, j = 1, . . . ,m, such that Dj ⊂ Ω and Dj∩Dk = ∅ for j 6= k and such that the

complement Ω \ D of the closure of the union D =
⋃m
j=1Dj is connected. Furthermore,

there exists q0 > 0 such that σ = 1 on Ω \D and σ ≥ 1 + q0 on D. We define the contrast

q by q = σ − 1.

The inverse problem of this section is to determine the shape of D from the Neumann–

Dirichlet operator Λσ.

In the following we use the relative data Λσ−Λ1 where Λ1 : L2
∗(∂Ω)→ L2

∗(∂Ω) corresponds

to the known background medium; that is, to σ = 1. The information that Λσ − Λ1 does

not vanish simply means that the background is perturbed by some contrast q = σ − 1.

In the Factorization Method we develop a criterion to decide whether or not a given point

z ∈ Ω belongs to D. The idea is then to take a fine grid in Ω and to check this criterion

for every grid point z. This provides a pixel-based picture of D.

We recall that Λσf = u|∂Ω and Λ1f = u1|∂Ω, where u, u1 ∈ H1
∗ (Ω) solve∫

Ω

(1 + q)∇u · ∇ψ dx = (f, ψ)L2(∂Ω) for all ψ ∈ H1
∗ (Ω) , (4.30)

∫
Ω

∇u1 · ∇ψ dx = (f, ψ)L2(∂Ω) for all ψ ∈ H1
∗ (Ω) . (4.31)

For the difference we have (Λ1 − Λσ)f = (u1 − u)|∂Ω, and u1 − u ∈ H1
∗ (Ω) satisfies the

variational equation∫
Ω

(1 + q)∇(u1 − u) · ∇ψ dx =

∫
D

q∇u1 · ∇ψ dx for all ψ ∈ H1
∗ (Ω) , (4.32)

which is the variational form of

div
(
σ∇(u1 − u)

)
= div(q∇u1) in Ω ,

∂(u1 − u)

∂ν
= 0 on ∂Ω .

3Actually, it maps H
−1/2
∗ (∂Ω) into H

1/2
∗ (∂Ω) but we don’t need these Sobolev spaces of fractional

oders here.
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It is the aim to factorize the operator Λ1 − Λ in the form

Λ1 − Λ = H∗T H ,

where the operators H : L2
∗(∂Ω) → L2(D)n and T : L2(D)n → L2(D)n are defined as

follows:4

• Hf = ∇u1|D, where u1 ∈ H1
∗ (Ω) solves the variational equation (4.31), and

• Th = q(h−∇w|D) where w ∈ H1
∗ (Ω) solves

div(σ∇w) = div(qh) in Ω ,
∂w

∂ν
= 0 on ∂Ω ;

that is, ∫
Ω

(1 + q)∇w · ∇ψ dx =

∫
D

q h · ∇ψ dx for all ψ ∈ H1
∗ (Ω) , (4.33)

in variational form.

We note that the solution w of (4.33) exists and is unique. This is seen again by the

representation theorem of Riesz-Fischer because the right-hand side again defines a linear

and bounded functional F (ψ) =
∫
D
q h · ∇ψ dx on H1

∗ (Ω). The left-hand side of (4.33) is

again the inner product in H1
∗ (Ω).

Theorem 4.2

Let the operators H : L2
∗(∂Ω) → L2(D)n and T : L2(D)n → L2(D)n be defined as above

by (4.31) and (4.33), respectively. Then

Λ1 − Λσ = H∗ T H . (4.34)

Proof: We define the auxiliary operator G : L2(D)n → L2
∗(∂Ω) by Gh = w|∂Ω where

w ∈ H1
∗ (Ω) solves (4.33). Obviously, we conclude from (4.32) that Λ1 − Λσ = GH.

We determine the adjoint H∗ : L2(D)n → L2
∗(∂Ω) of H and prove that H∗h = v|∂Ω where

v ∈ H1
∗ (Ω) solves

∆v = div h in Ω ,
∂v

∂ν
= 0 on ∂Ω ;

that is, ∫
Ω

∇v · ∇ψ dx =

∫
D

h · ∇ψ dx for all ψ ∈ H1
∗ (Ω) (4.35)

4Here, L2(D)n denotes the space of vector-valued functions D → Rn such that all components are in

L2(D).
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in variational form. The solution v exists and is unique by the same arguments as above.

To prove the representation of H∗h we conclude from (4.35) for ψ = u1 and (4.31) that

(Hf, h)L2(D) =

∫
D

∇u1 · h dx =

∫
Ω

∇u1 · ∇v dx = (f, v)L2(∂Ω) ,

and thus v|∂Ω is indeed the value H∗h of the adjoint.

Now it remains to show that G = H∗T . Let h ∈ L2(D)n and w ∈ H1
∗ (Ω) solve (4.33).

Then Gh = w|∂Ω. We rewrite (4.33) as∫
Ω

∇w · ∇ψ dx =

∫
D

q (h−∇w) · ∇ψ dx for all ψ ∈ H1
∗ (Ω) . (4.36)

The comparison with (4.35) yields H∗
(
q(h − ∇w)

)
= w|∂Ω = Gh; that is, H∗T = G.

Substituting this into Λ1 − Λσ = GA yields the assertion. �

Properties of the operators H and T are listed in the following theorem.

Theorem 4.3 (a) The operator H : L2
∗(∂Ω)→ L2(D)n is compact and one-to-one.

(b) The operator T : L2(D)n → L2(D)n is self-adjoint and coercive; that is,

(Th, h)L2(D) ≥ c ‖h‖2
L2(D) for all h ∈ L2(D)n , (4.37)

where c = q0

(
1− q0/(1 + q0)

)
> 0.

Proof: (a) Choose an open set U such that D ⊂ U and U ⊂ Ω and choose a non-negative

function ϕ ∈ C∞(Ω) with ϕ = 1 on D and ϕ = 0 on Ω\U . Let f ∈ L2
∗(∂Ω) and u1 ∈ H1

∗ (Ω)

the corresponding solution of (4.31). Taking ψ = ϕu1 yields
∫
U
∇u1 ·∇(ϕu1) dx = 0; that

is, ∫
U

ϕ |∇u1|2dx = −
∫
U

u1∇ϕ · ∇u1 dx ≤ ‖∇ϕ‖∞ ‖u1‖L2(Ω)‖∇u1‖L2(Ω) . (4.38)

Now we begin with the proof of compactness. Let (fj) be bounded in L2
∗(∂Ω) and uj ∈

H1
∗ (Ω) the corresponding solutions of (4.31). The boundedness of the solution operator

f 7→ u1 yields boundedness of (uj) in H1
∗ (Ω). Since this space is compactly imbedded in

L2(Ω) we can extract a subsequence, also denoted by (uj), which converges in L2(Ω). By

(4.38) for uj − um instead of u1 we have∫
D

|∇(uj − um)|2dx ≤
∫
U

ϕ |∇(uj − um)|2dx ≤ c ‖uj − um‖L2(Ω)

where c is a bound on ‖∇ϕ‖∞ ‖∇(uj − um)‖L2(Ω). This shows that (∇uj|D) is a Cauchy

sequence in L2(D)n and proves compactness of H.
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To show injectivity, let 0 = Hf = ∇u1|D where u1 ∈ H1
∗ (Ω) denotes the weak solution of

∆u1 = 0 in Ω and ∂u1/∂ν = f on ∂Ω. Without proof we use the regularity result that

u1 is analytic in Ω and therefore also its derivatives. The unique continuation property

yields ∇u1 = 0 in all of Ω. Therefore, u1 is constant in Ω and thus f = ∂u1/∂ν = 0.

(b) Let h1, h2 ∈ L2(D)2 with corresponding solutions w1, w2 ∈ H1
∗ (Ω) of (4.33). Then,

with (4.33) for h2, w2 and ψ = w1:

(Th1, h2)L2(D) =

∫
D

q (h1 −∇w1) · h2 dx

=

∫
D

q h1 · h2 dx −
∫
D

q∇w1 · h2 dx

=

∫
D

q h1 · h2 dx −
∫
Ω

(1 + q)∇w1 · ∇w2 dx .

This expression is symmetric with respect to h1 and h2. Therefore, T is self-adjoint.

For h ∈ L2(D)n and corresponding solution w ∈ H1
∗ (Ω) of (4.33) we conclude that

(Th, h)L2(D) =

∫
D

q |h−∇w|2 dx +

∫
D

q (h−∇w) · ∇w dx

=

∫
D

q |h−∇w|2 dx +

∫
Ω

|∇w|2 dx (with the help of (4.36))

≥
∫
D

[
q0 |h|2 − 2 q0 h · ∇w + (1 + q0) |∇w|2

]
dx

=

∫
D

[∣∣∣∣√1 + q0∇w −
q0√

1 + q0

h

∣∣∣∣2 + q0

(
1− q0

1 + q0

)
|h|2
]
dx

≥ q0

(
1− q0

1 + q0

)
‖h‖2

L2(D) .

�

From this result and the factorization (4.34) we note that Λ1−Λσ is compact, self-adjoint,

and nonnegative.

Now we derive the binary criterion on a point z ∈ Ω to decide whether or not this point

belongs to D. First, for every point z ∈ Ω we define a particular function G(·, z) such that

∆G(·, z) = 0 in Ω \ {z} and ∂G(·, z)/∂ν = 0 on ∂Ω such that G(x, z) becomes singular

as x tends to z. We construct G from the Green’s function N for ∆ in Ω with respect to

the Neumann boundary conditions.

We make an ansatz for N in the form N(x, z) = Φ(x, z) − Ñ(x, z) where Φ(x, z) is the

fundamental solution of the Laplace equation in Rn and determine Ñ(·, z) ∈ H1
∗ (Ω) as
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the unique solution of the Neumann problem

∆Ñ(·, z) = 0 in Ω and
∂Ñ

∂ν
(·, z) =

∂Φ

∂ν
(·, z) +

1

|∂Ω|
on ∂Ω .

We note that the solution exists because
∫
∂Ω

[
∂Φ/∂ν(·, z) + 1/|∂Ω|

]
ds = 0. This is seen

by Green’s first theorem in the region Ω \K(z, ε):∫
∂Ω

∂Φ

∂ν
(·, z) ds =

∫
|x−z|=ε

∂Φ

∂ν
(x, z) ds(x)

= − 1

2π

∫
|x−z|=ε

x− z
|x− z|2

· x− z
|x− z|

ds(x) = −1 .

Then N = Φ − Ñ is the Green’s function in Ω with respect to the Neumann boundary

conditions; that is, N satisfies

∆N(·, z) = 0 in Ω \ {z} and
∂N

∂ν
(·, z) = − 1

|∂Ω|
on ∂Ω .

From the differentiable dependence of the solution Ñ(·, z) on the parameter z ∈ Ω we

conclude that, for any fixed a ∈ Rn with |a| = 1, the function G(·, z) = a · ∇zN(·, z)
satisfies

∆G(·, z) = 0 in Ω \ {z} and
∂G

∂ν
(·, z) = 0 on ∂Ω . (4.39)

The function G(·, z) has the following desired properties.

Lemma 4.4 Let z ∈ Ω, R > 0, θ̂0 ∈ Rn with |θ̂0| = 1, and δ > 0 be kept fixed. For

ε ∈ [0, R) define the set (part of a cone)

Cε =
{
z + rθ̂ : ε < r < R, θ̂ · θ̂0 > δ

}
with vertex in z. Let R be so small such that Cε ⊂ Ω. Then

lim
ε→0
‖G(·, z)‖L2(Cε) = ∞ .

We observe that the functions φz(x) = G(·, z)|∂Ω are traces of harmonic functions in

Ω \ {z} with vanishing normal derivatives on ∂Ω. Comparing this with the classical

formulation of the adjoint H∗ of H it seems to be plausible that the “source region” D

can be determined by moving the source point z in φz. This is confirmed in the following

theorem.
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Theorem 4.5 Let Assumptions 4.1 hold and let a ∈ Rn with |a| = 1 be fixed. For every

z ∈ Ω define φz ∈ L2
∗(∂Ω) by

φz(x) = G(x, z) = a · ∇zN(x, z) , x ∈ ∂Ω , (4.40)

where N denotes the Green’s function with respect to the Neumann boundary condition.

Then

z ∈ D ⇐⇒ φz ∈ R(H∗) , (4.41)

where H∗ : L2(D)n → L2
∗(∂Ω) is the adjoint of H, given by (4.35), and R(H∗) its range.

Proof: First let z ∈ D. Choose a disc K[z, ε] = {x ∈ Rn : |x− z| ≤ ε} with center z and

radius ε > 0 such that K[z, ε] ⊂ D. Furthermore, choose a function ϕ ∈ C∞(Rn) such

that ϕ(x) = 0 for |x− z| ≤ ε/2 and ϕ(x) = 1 for |x− z| ≥ ε and set w(x) = ϕ(x)G(x, z)

for x ∈ Ω. Then w ∈ H1
∗ (Ω) and w = G(·, z) in Ω \D, thus w|∂Ω = φz.

Next we determine u ∈ H1
∗ (D) as a solution of ∆u = ∆w in D, ∂u/∂ν = 0 on ∂D; that

is, in weak form∫
D

∇u · ∇ψ dx =

∫
D

∇w · ∇ψ dx −
∫
∂D

ψ
∂

∂ν
G(·, z) ds , ψ ∈ H1

∗ (D) ,

because ∂w/∂ν = ∂G(·, z)/∂ν on ∂D. Again, the solution exists and is unique. Applica-

tion of Green’s first theorem in Ω \D yields∫
∂D

∂

∂ν
G(·, z) ds =

∫
∂Ω

∂

∂ν
G(·, z) ds = 0 .

Therefore, the previous variational equation holds for all ψ ∈ H1(D). Now let ψ ∈ H1
∗ (Ω)

be a test function on Ω. Then∫
D

∇u · ∇ψ dx =

∫
D

∇w · ∇ψ dx −
∫
∂D

ψ
∂

∂ν
G(·, z) ds

=

∫
D

∇w · ∇ψ dx +

∫
Ω\D

∇G(·, z) · ∇ψ dx =

∫
Ω

∇w · ∇ψ dx .

Therefore, the definition h = ∇u in D yields H∗h = w|∂Ω = φz and thus φz ∈ R(H∗).

Now we prove the opposite direction. Let z /∈ D. We have to show that φz is not contained

in the range of H∗ and assume, on the contrary, that φz = H∗h for some h ∈ L2(D)n. Let

v ∈ H1
∗ (Ω) be the corresponding solution of (4.35). Therefore, the function w = v−G(·, z)

vanishes on ∂Ω and solves the following equations in the weak form

∆w = 0 in Ω \Dε(z) ,
∂w

∂ν
= 0 on ∂Ω ,
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for every ε > 0 such that Dε(z) = D ∪K(z, ε) ⊂ Ω, i.e∫
Ω\Dε(z)

∇w · ∇ψ dx = 0

for all ψ ∈ H1
(
Ω \Dε(z)

)
with ψ = 0 on ∂Dε(z). We extend w by zero into the outside

of Ω. Then w ∈ H1
(
Rn \Dε(z)

)
because w = 0 on ∂Ω and∫

Rn\Dε(z)

∇w · ∇ψ dx = 0

for all ψ ∈ H1
(
Rn \Dε(z)

)
which vanish on ∂Dε(z). Therefore, ∆w = 0 in the exterior

Ω = Rn\
(
D∪{z}

)
of D∪{z}. Now we use without proof that w is analytic in Ω and thus

satisfies the unique continuation principle. Therefore, because it vanishes in the exterior

of Ω it has to vanish in all of the connected5 set Ω; that is, v = G(·, z) in Ω \
(
D ∪ {z}

)
.

The point z can either be on the boundary ∂D or in the exterior of D. In either case there

is a cone C0 of the form C0 =
{
z+rθ̂ : 0 < r < R, θ̂ · θ̂0 > δ

}
with C0 ⊂ Ω\D. It is v|C0 ∈

L2(C0) inasmuch as v ∈ H1
∗ (Ω). However, Lemma 4.4 yields that ‖G(·, z)‖L2(Cε) →∞ for

ε→ 0 where Cε =
{
x ∈ C0 : |x− z| > ε

}
. This is a contradiction because v = G(·, z) in

C0 and ends the proof. �

Therefore, we have shown an explicit characterization of the unknown domain D by the

range of the operator H∗. This operator, however, is also unknown: only Λ1−Λσ is known!

The operators H∗ and Λ1−Λσ are connected by the factorization Λ1−Λσ = H∗TH. We

can easily derive a second factorization of Λ1 − Λσ. The operator Λ1 − Λσ is self-adjoint

and compact as an operator from L2
∗(∂Ω) into itself. Therefore, there exists a spectral

decomposition of the form

(Λ1 − Λσ)f =
∞∑
j=1

λj (f, ψj)L2(∂Ω) ψj ,

where λj ∈ R denote the eigenvalues and ψj ∈ L2
∗(∂Ω) the corresponding orthonormal

eigenfunctions of Λ1 −Λσ. Furthermore, from the factorization and the coercivity of T it

follows that
(
(Λ1 − Λσ)f, f

)
L2(∂Ω)

≥ 0 for all f ∈ L2
∗(∂Ω). This implies λj ≥ 0 for all j.

Therefore, we can define the square root

(Λ1 − Λσ)1/2f =
∞∑
n=1

√
λj (f, ψj)L2(∂Ω) ψj ,

and have

(Λ1 − Λσ)1/2(Λ1 − Λσ)1/2 = Λ1 − Λσ = H∗T H . (4.42)

We show that the ranges of (Λ1 − Λσ)1/2 and H∗ coincide. This follows directly from the

following functional analytic result.

5Here we make use of the assumption that Ω \D is connected.
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Lemma 4.6 Let X and Y be Hilbert spaces, B : X → X, A : X → Y , and T : Y → Y

linear and bounded such that B = A∗TA. Furthermore, let T be self-adjoint and coercive;

that is, there exists c > 0 such that (Ty, y)Y ≥ c‖y‖2
Y for all y ∈ Y . Then, for any φ ∈ X,

φ 6= 0,

φ ∈ R(A∗) ⇐⇒ inf
{

(Bx, x)X : x ∈ X , (x, φ)X = 1
}
> 0 .

Proof: (i) First, let φ = A∗y ∈ R(A∗) for some y ∈ Y . Then y 6= 0, and we estimate for

arbitrary x ∈ X with (x, φ)X = 1:

(Bx, x)X = (A∗TAx, x)X = (TAx,Ax)Y ≥ c‖Ax‖2
Y

=
c

‖y‖2
Y

‖Ax‖2
Y ‖y‖2

Y ≥
c

‖y‖2
Y

∣∣(Ax, y)Y
∣∣2

=
c

‖y‖2
Y

∣∣(x,A∗y)X
∣∣2 =

c

‖y‖2
Y

∣∣(x, φ)X
∣∣2 =

c

‖y‖2
Y

.

Therefore, we have found a positive lower bound for the infimum.

(ii) Second, let φ /∈ R(A∗). Define the closed subspace

V =
{
x ∈ X : (φ, x)X = 0

}
= {φ}⊥ .

We show that the image A(V ) is dense in the closure cl(R(A)) of the range of A. Indeed,

let y ∈ cl(R(A)) such that y ⊥ Ax for all x ∈ V ; that is, 0 = (Ax, y)Y = (x,A∗y)

for all x ∈ V ; that is, A∗y ∈ V ⊥ = span{φ}. Because φ /∈ R(A∗) we conclude that

A∗y = 0. Therefore, y ∈ cl(R(A))∩N (A∗). This yields y = 0.6 Therefore, A(V ) is dense

in cl(R(A)). Because Aφ/‖φ‖2
X is in the range of A there exists a sequence x̃n ∈ V such

that Ax̃n → −Aφ/‖φ‖2
X . We define xn := x̃n +φ/‖φ‖2

X . Then (xn, φ)X = 1 and Axn → 0

for n→∞, and we estimate

(Bxn, xn)X = (TAxn, Axn)Y ≤ ‖T‖‖Axn‖2
Y −→ 0 , n→∞ ,

and thus inf
{

(Bx, x)X : x ∈ X , (x, φ)X = 1
}

= 0. �

We apply this result to both of the factorizations of (4.42). In both cases, B = Λ1 − Λσ

and X = L2
∗(∂Ω). First we set Y = L2(D)n and A = H : L2

∗(∂Ω) → L2(D)n and

T : L2(D)n → L2(D)n as in the second factorization of (4.42). Because T is self-adjoint

and coercive we conclude for any φ ∈ L2
∗(∂Ω), φ 6= 0, that

φ ∈ R(H∗) ⇔ inf
{(

(Λ1 − Λ)f, f
)
L2(∂Ω)

: f ∈ L2
∗(∂Ω) , (f, φ)L2(∂Ω) = 1

}
> 0 .

Second, we consider the first factorization of (4.42) with T being the identity. For φ ∈
L2
∗(∂Ω), φ 6= 0, we conclude that

φ ∈ R
(
(Λ1 − Λσ)1/2

)
⇔ inf

{(
(Λ1 − Λσ)f, f

)
L2(∂Ω)

: (f, φ)L2(∂Ω) = 1
}
> 0 .

6Take a sequence (xj) in X such that Axj → y. Then 0 = (A∗y, xj)X = (y,Axj)Y → (y, y)Y ; that is,

y = 0.
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The right-hand sides of the characterizations only depend on Λ1 − Λσ, therefore we con-

clude that

R
(
(Λ1 − Λσ)1/2

)
= R(H∗) . (4.43)

Application of Theorem 4.5 yields the main result of the Factorization Method:

Theorem 4.7 Let Assumptions 4.1 be satisfied. For fixed a ∈ Rn with a 6= 0 and every

z ∈ Ω let φz ∈ L2
∗(∂Ω) be defined by (4.40); that is, φz(x) = a · ∇zN(x, z), x ∈ ∂Ω, where

N denotes the Green’s function for ∆ with respect to the Neumann boundary conditions.

Then

z ∈ D ⇐⇒ φz ∈ R
(
(Λ1 − Λσ)1/2

)
. (4.44)

We now rewrite the right-hand side with Picard’s theorem. First we show injectivity of

the operator Λ1 − Λσ. Indeed, let f ∈ L2
∗(∂Ω) with (Λ1 − Λσ)f = 0. Then

0 =
(
(Λ1 − Λσ)f, f

)
L2(∂Ω)

= (H∗THf, f)L2(∂Ω)

= (THf,Hf)L2(D)n ≥ c‖Hf‖2
L2(D)n

and thus Hf = 0. Injectivity of H yields f = 0. �

Therefore, the operator Λ1 − Λσ is self-adjoint, compact, one-to-one, and all eigenvalues

are positive. Let again {λj, ψj} be an eigensystem of Λ1 − Λσ; that is, λj > 0 are the

eigenvalues of Λ1−Λσ and ψj ∈ L2
∗(∂Ω) are the corresponding orthonormal eigenfunctions.

The set {ψj : j = 1, 2, . . .} is complete by the spectral theorem. Then we have:

Theorem 4.8 Let Assumptions 4.1 be satisfied. For fixed a ∈ Rn with a 6= 0 and for

every z ∈ Ω let φz ∈ L2
∗(∂Ω) be defined by (4.40); that is, φz(x) = a · ∇zN(x, z), x ∈ ∂Ω.

Then

z ∈ D ⇐⇒
∞∑
j=1

(φz, ψj)
2
L2(∂Ω)

λj
< ∞ (4.45)

or, equivalently,

z ∈ D ⇐⇒ W (z) :=

[
∞∑
j=1

(φz, ψj)
2
L2(∂Ω)

λj

]−1

> 0 . (4.46)

Here we agreed on the setting that the inverse of the series is zero in the case of divergence.

Therefore, W vanishes outside of D and is positive in the interior of D. The function

sign W (z) =

{
1, W (z) > 0,

0, W (z) = 0,

is thus the characteristic function of D.

We finish this section with some further remarks.



27

• We leave it to the reader to show that in the case of B = K(0, 1) being the unit disk

in R2 and D = K(0, R) the disk of radius R < 1 the ratios (φz, ψj)
2
L2(∂Ω)/λj behave

as (|z|/R)2j. Therefore, convergence holds if and only if |z| < R which confirms the

assertion of the last theorem.

• The same characterization as in Theorem 4.8 has been justified for different types

of inpenetrable objects D; that is, where u lives only in Ω \ D and satisfies some

hhomogeneous boundary condition on ∂D. In particular, the Factorization Method

provides a proof of uniqueness of D independent of the nature of D; that is, whether

it is finitely conducting, a perfect conductor (Dirichlet boundary conditions on ∂D),

a perfect insulator (Neumann boundary conditions on ∂D), or a boundary condition

of Robin-type.


