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The classical result by Payne and Weinberger states that in convex domains
the first non-trivial eigenvalue of the Neumann-Laplace operator satisfies to the
following inequality:

µ1(Ω) ≥
π2

d(Ω)2
,

where d(Ω) is a diameter of a convex domain Ω.
In [1] we obtained lower estimates of µ1(Ω) in terms of a hyperbolic (conformal)

radius of Ω for domains Ω ⊂ R
2 for a large class of non-convex domains. For space

domains the theory of conformal mappings is not relevant.
We prove discreteness of the spectrum of the Neumann-Laplacian in a large

class of non-convex space domains. The lower estimates of the first non-trivial
eigenvalue are obtained in terms of geometric characteristics of homeomorphisms
that induce composition operators on homogeneous Sobolev spaces. The suggested
method is based on Poincaré-Sobolev inequalities that are obtained with the help
of the geometric theory of composition operators. A corresponding composition
operators are induced by a generalizations of conformal homeomorphisms that are
mappings of bounded 2-dilatation (weak 2-quasiconformal mappings).
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