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1. Introduction

2. Elliptic Harnack inequality

2.1. Original Harnack. In 1887, The German mathematician C.G. Axel von Harnack proved the
following result in [39].
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Theorem 2.1. Let u be a nonnegative harmonic function in BR(x0) ⊆ R2. Then for all x ∈
Br(x0) ⊂ BR(x0) it holds

R− r
R+ r

u(x0) ≤ u(x) ≤ R+ r

R− r
u(x0).

The estimate can be generalized to any dimension N ≥ 1, resulting in

OHOH (2.1)
(

R

R+ r

)N−2 R− r
R+ r

u(x0) ≤ u(x) ≤
(

R

R− r

)N−2 R+ r

R− r
u(x0),

however, the modern version of the Harnack inequality for harmonic functions is the following
special case of the previous one.

Theorem 2.2. Let N ≥ 1. Then there exists a constant C = C(N) > 1, such that if u is a
nonnegative, harmonic function in B2r(x0), then

HH (2.2) sup
Br(x0)

u ≤ C inf
Br(x0)

u.

The proof of this latter form of the Harnack inequality is an easy consequence of the mean value
theorem, while the more precise form (

OHOH
2.1) can be derived through Poisson representation formula.

The Harnack inequality has several deep and powerful consequences. On the local side, Harnack
himself in [39] derived from it a precisely quantified oscillation estimate. Due to the ubiquity of
this argument we recall its elementary proof. Let x0 = 0 and

Mr(u) = sup
Br

u, mr(u) = inf
Br
u, oscr(u) = Mr(u)−mr(u).

Both M(2r)− u and u−m(2r) are nonnegative and harmonic in B2r, so (
HH
2.2) holds for them, thus

M(2r)−mr(u) ≤ C(M(2r)−Mr(u)), Mr(u)−m(2r) ≤ C(mr(u)−m(2r)),
which added together give

(M(2r)−m(2r)) + (Mr(u)−mr(u)) ≤ C ((M(2r)−m(2r))− (Mr(u)−mr(u))) .
Rearranging, we obtain

oscr(u) ≤ C − 1
C + 1osc2r(u),

which is the claimed quantitive estimate of decrease in oscillation.
Removable singularity results can also be obtained through the Harnack inequality, as well as

two classical convergence criterions for sequences of harmonic functions. At the global level, it
implies Liouville and Picard type theorems. In particular, Liouville’s theorem asserts that any
globally defined harmonic function bounded from below must be constant, as can be clearly seen
by applying (

HH
2.2) to u− infRN u and letting r → +∞.

2.2. Modern developements. In his celebrated paper [49], Moser extended the Harnack inequal-
ity to weak solutions of linear elliptic operators

linelllinell (2.3) L(u) :=
N∑

i,j=1
Di(aij(x)Dju) = 0

with measurable coefficients.

Theorem 2.3. Suppose u ≥ 0 solves (
linelllinell
2.3) in a ball B2r(x0) where aij are measurable functions

satisfying the ellipticity condition

ECEC (2.4) λ|ξ|2 ≤
N∑

i,j=1
aij(x)ξiξj ≤ Λ|ξ|2, 0 ≤ λ ≤ Λ < +∞.
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Then there exists a constant C > 1 depending only on N and the ellipticity ratio Λ/λ such that

sup
Br(x0)

u ≤ C inf
Br(x0)

u.

Moser’s proof is mostly measure-theoretical, stemming from the De Giorgi approach to the
regularity of solutions of elliptic equations. Such a level of generality allowed to apply essentially
the same technique to nonnegative solutions of general quasilinear equations of the form

qlql (2.5) divA(x, u,Du) = 0.

Indeed, in [59] [61], the same statement of the Harnack inequality has been proved for (
qlql
3.11) instead

of the linear equation (
linelllinell
2.3), provided A satisfies for some p > 1 and Λ ≥ λ > 0

pgrowthpgrowth (2.6)
{
A(x, s, z) · z ≥ λ|z|p

|A(x, s, z)| ≤ Λ|z|p−1 x ∈ B2r(x0), s ∈ R, z ∈ RN .

The power of the measure-theoretical approach was then fully exploited in [27], where the Harnack
inequality has been deduced without any reference to an elliptic equation, proving that it is a
consequence of very general energy estimates of Caccioppoli type, encoded in what are the nowadays
called De Giorgi classes. For a comprehensive treatment of the latters see [18].

2.3. Weak Harnack inequalities. Moser’s proof consists in showing that a weaker form of
Harnack inequality holds for the much more larger class of supersolutions to (

linelllinell
2.3), i.e. those

functions satisfying −L(u) ≥ 0 (subsolutions being defined through the opposite inequality). In
modern terms the measure theoretic proof of the Harnack inequality is usually splitted in two parts:
(1) – Lp − L∞ bound:
Let u be a nonnegative subsolution of (

linelllinell
2.3) in B2r. For any p > 0 it holds

linftylrlinftylr (2.7) sup
Br

u ≤ C
(
−
ˆ
B2r

|u|p dx
) 1
p

for some constant C = C(N,Λ/λ, p).
(2) – Weak Harnack inequality:
Let u be a nonnegative supersolution of (

linelllinell
2.3) in B2r. For any p ∈]0, N

N−2 [ it holds(
−
ˆ
B2r

up dx

) 1
p

≤ C inf
Br
u

for some constant C = C(N,Λ/λ, p).
The range of exponents in the weak Harnack inequality is optimal , as the fundamental solution

for the Laplacian shows.
Notice that the L∞ − Lp bound also implies a Liouville theorem for Lp(RN ) nonnegative

subsolutions, while the weak Harnack inequality gives a lower asymptotic estimate for positive
Lp(RN ) super solutions. From the local point of view, the latter is also sufficient for Hölder
regularity and for strong comparison principles.

2.4. Harnack inequality on minimal surfaces. After considering the Harnack inequality for
nonlinear operator, a very fruitful framework was to consider its validity for linear elliptic operators
defined on nonlinear ambient spaces, such as Riemannian manifolds. One of the first examples
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of this approach was the Bombieri - De Giorgi - Miranda gradient bound [6] for solutions of the
minimal surface equation

div
(

Du√
1 + |Du|2

)
= 0.

The approach of [6], later simplified in [63], consisted in showing that w = log
√

1 + |Du|2 is a
subsolution of the Laplace-Beltrami operator naturally defined on the graph of u considered as
a Riemannian manifold. Since a Sobolev-Poincaré inequality can be proved for minimal graphs
(see [?] for a refinement to smooth minimal submanifolds), the Moser iteration yelds an L∞ − L1

bound on w which is the core of the proof.
This approach was pushed forward in [7], where a pure Harnack inequality was shown for general

linear operators on minimal graphs, with applications to Bernstein-type theorems. See also [12] for
other applications of the Harnack inequality on minimal graphs.

2.5. Differential Harnack inequality. It is a classical fact that Harmonic functions in Br(x0)
satisfy the gradient estimate

|Du(x0)| ≤ C(N)
supBr/2(x0) |u|

r
,

therefore Harnack’s inequality implies that

u ≥ 0 in Br(x0) ⇒ |Du(x0)| ≤ C(N)u(x0)
r

.

This can be rewritten in the following form:

Theorem 2.4 (Differential Harnack inequality). Let u be positive and harmonic in Br(x0) ⊆ RN .
Then

DHDH (2.8) |D log u(x0)| ≤ C(N)
r

.

The latter inequality can also be integrated back along segments, to give the original Harnack
inequality. The differential form (

DHDH
2.8) of the Harnack inequality clearly requires much more

regularity than the Moser’s one, however, it was proved to hold in the Riemannian setting for
the Laplace-Beltrami equation in the ground-breaking works [12, 64], under the assumption of
non-negative Ricci curvature for the manifold. To appreciate the result, notice that all proofs of
the Harnack inequality known at the time required a global Sobolev inequality, which is known to
be false in general under the Ric ≥ 0 assumption.

The elliptic Harnack inequality in the Riemannian setting proved in [64] (and, even more
importantly, its parabolic version proved soon after in [46]) again implies the Liouville property
for semi bounded harmonic functions and it was one of the stepping-stones to the rise of modern
geometric analysis. See for example the survey article [45] for recent results on the relationship
between Liouville-type theorems and geometric aspects of the underlying manifold. The book [52]
gives an in-depth exposition of the technique of differential Harnack inequalities in the framework
of Ricci flow, culminating in Perelman differential Harnack inequality.

2.6. Beyond smooth manifolds. Clearly, the differential approach to the Harnack inequality is
restricted to the Laplace-Beltrami operator, due to its smoothness and its close relationship with
Ricci curvature given by the Bochner identity

∆u = 0 ⇒ ∆ |Du|
2

2 = |D2u|2 + Ric(Du,Du).
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It was only after the works [36, 56] that a different approach to Moser’s Harnack inequality on
manifolds was found.1 Essentially, it was realized that in order to obtain the Harnack inequality, on
a Riemannian manifold (M, g) with corresponding volume m and geodesic distance, two ingredients
suffices:

–Doubling condition: m
(
B2r(x0)

)
≤ Cm

(
Br(x0)

)
–Poincaré inequality:

ˆ
Br(x0)

∣∣∣u−−ˆ
Br(x0)

u dm
∣∣∣2 dm ≤ C ˆ

Br(x0)
|Du|2 dm

dpdp (2.9)

for any x0 ∈M and r > 0. These two properties hold in any Riemannian manifold with nonnegative
Ricci curvature, thus giving a Moser-theoretic approach to the Harnack inequality in this framework.
What is relevant here is that Doubling&Poincaré are stable with respect to quasi-isometries
(i.e. bilipschitz homeomorphisms) and thus can hold in non-smooth manifolds, manifolds where
Ric ≥ 0 does not hold (since curvature is not preserved through quasi-isometries), and/or for
merely measurable coefficients elliptic operators. It is worth mentioning that Doubling&Poincaré
were also shown in [13] to be sufficient conditions for the solution of Yau’s conjecture on the
finite-dimensionality of the space of harmonic functions of polynomial growth.

It was a long standing problem to give geometric conditions which are actually equivalent to the
validity of the Harnack inequality, and thus to establish the stability of the latter with respect to
quasi (or even rough) isometries. This problem has recently been settled in [4], to which we refer
the interested reader for bibliographic reference and discussion.

3. Parabolic Harnack inequality

3.1. Original Parabolic Harnack. Looking at the fundamental solution for the heat equation
ut −∆u = 0,

one finds out that there is no hope to prove a straightforward generalization of the Harnack inequality
(
HH
2.2). In the stationary case, ellipticity is preserved by spatial homotheties and traslations, thus
the corresponding Harnack inequality turns out to be scale and traslation invariant. For the heat
equation, the natural scaling (x, t) 7→ (λx, λ2t) preserves the equation and one expects a parabolic
Harnack inequality to obey this invariance. Actually, an explicit calculation shows that it cannot
hold for fixed times t0 > 0 and corresponding space balls B(x0, R0), even assuming that t0 ≥ 1.
However, a similar argument rules out the possibility of a Harnack inequality in parabolic cylinders
as well. The correct parabolic form of the Harnack inequality was found and proved independently
by Pini and Hadamard in [37,54] and reads as follows.

Theorem 3.1. Let u ≥ 0 be a solution of the heat equation in B2ρ(x0)×{t0− 4ρ2, t0 + 4ρ2}. Then
there exists a constant γ depending only upon the dimension N , such that

pHpH (3.1) sup
Bρ(x0)

u(·, t0 − ρ2) ≤ C(N) inf
Bρ(x0)

u(·, t0 + ρ2).

As expected, this form of Harnack’s inequality respects the scaling of the equations and introduces
the notion of waiting time for a pointwise control to hold. It represents a quantitative bound from
below on how much the positivity of u(x0, t0) (physically, the temperature of a body at a point)
propagates forward in time: in order to have such a bound in a whole ball of radius r we have to
wait a time proportional to r2.

1Actually, to a parabolic version of the Harnack inequality, which readily implies the elliptic one. For further
details see the discussion on the parabolic Harnack inequality below and for a nice historical overview on the subject
see [58], section 5.5.
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t

x

P+
T (x0)

P−T (x0)

u ≥ 0

Figure 1. Assuming u > 0 in the boxed region B2
√
T (x0)× [0, 4T ], the dark grey

area is P+
T (x0) where u is bounded below by u(x0, 2T ), while the light grey is P T+ (x0)

where u is bounded above by u(x0, 2T ).pHfig1

Another way of expressing this propagation for a nonnegative solution on B2
√
T (x0)× [0, 4T ] is

the following, which, up to numerical factors is equivalent to (
pHpH
3.1),

phpphp (3.2) C inf
P+
T (x0)

u ≥ u(x0, 2T ) ≥ C−1 sup
P−T (x0)

u,

where P±T (x0) are the part of the forward (resp. backward) space-time paraboloid with vertex
(x0, 2T ) in B√T (x0)× [T, 3T ] (see Figure

pHfig1pHfig1
2):

P+
T (x0) = {(x, t) : T − t0 ≥ t− t0 ≥ |x− x0|2}, P−T (x0) = {(x, t) : t0 − T ≥ t0 − t ≥ |x− x0|2}.
A consequence of the parabolic Harnack inequality is the following form of the strong maximum

principle. We sketch a proof here since this argument will play a rôle in the discussion of the
Harnack inequality for nonlinear equations.

minp Corollary 3.2 (Parabolic Strong Minimum Principle). Let u ≥ 0 be a solution of the heat equation
in Ω× [0, T ], where Ω is connected, and suppose u(x0, t0) = 0. Then u ≡ 0 in Ω× [0, t0].

Proof. (sketch) Pick P1 := (x1, t1) ∈ Ω× ]0, t0[ and join P1 and P0 = (x0, t0) with a smooth curve
γ : [0, 1] → Ω× ]0, t0] such that γ′ has always a positive t-component. By compactness there is
δ > 0 and a small forward parabolic sector P+

ε = {ε ≥ t ≥ |x|2} such that: 1) γ(σ) ∈ γ(τ) +P+
ε for

all σ ∈ [τ, τ + δ] and 2) the parabolic Harnack inequality holds in the form (
phpphp
3.2) for all s ∈ [0, 1], i.e.

u(γ(s)) ≤ inf
γ(s)+P+

ε

u.

These two properties and u(γ(1)) = 0 readily imply u(γ) ≡ 0. �
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t

x

R−

R+

u ≥ 0

Figure 2. The regions R+ and R− where the Harnack inequality is stated.pHfig1

3.2. The linear case with coefficients. In the seminal paper [53] on the Hölder regularity of
solutions to elliptic parabolic equations with measurable coefficients, Nash already mentioned the
possibility to obtain a parabolic Harnack inequality through his techniques. However, the first
one to actually prove it was again Moser, who in [50] extended the Harnack inequality to linear
parabolic equations of the form

PLPL (3.3) ut =
N∑

j,i=1
Di(aij(x, t)Dju).

Theorem 3.3 (Moser). Let u be a positive weak solution of (
PLPL
3.3) in B2r × [0, T ], where aij are

measurable and satisfy the ellipticity condition (
ECEC
2.4). For any 0 < t−1 < t−2 < t+1 < t+2 < T define

R− := Br × [t−1 , t
−
2 ], R+ := Br × [t+1 , t

+
2 ].

Then it holds
mphmph (3.4) sup

R−

u ≤ C(N,Λ, λ, t±1,2) inf
R−

u.

Using the natural scaling of the equation, the previous form the parabolic Harnack inequality can
be reduced to (

pHpH
3.1). Later, in [51], Moser himself simplified his proof avoiding the use of a difficult

parabolic versions of the John-Nirenberg BMO estimate. Nash program was later established
in [31].

As in the elliptic case, the parabolic Harnack inequality provides an oscillation estimate giving
the Hölder continuity of solutions to (

PLPL
3.3) subjected to (

ECEC
2.4). Moreover, (

mphmph
3.4) readily yelds a strong

minimum principle for nonnegative solutions of (
PLPL
3.3).

On other hand, Liouville theorems in the parabolic setting are more subtle and do not follow from
the parabolic version of the Harnack inequality. In fact, the Liouville property is false in general
since, for example, the function u(x, t) = ex+t is clearly a nontrivial positive eternal (i.e., defined
on RN × R) solution of the heat equation. A fruitful setting where to state Liouville properties in
the one of ancient solutions, i.e. those defined on an unbounded interval ]−∞, T0[.

widder Theorem 3.4 (Widder). Let u > 0 solve the heat equation in RN× ]−∞, T0[. Suppose for some
t0 < T0 it holds

u(x, t0) ≤ Ceo(|x|), |x| >> 1.



8 G. DUZGUN, S. MOSCONI, AND V. VESPRI

Then, u is constant.

The latter has been proved for N = 1 in [67], and we sketch the proof in the general case. By
the Widder representation for ancient solutions (see [47]) it holds

WW (3.5) u(x, t) =
ˆ
RN

ex·ξ+t|ξ|
2
dµξ

for some nonnegative Borel measure µ. Call ν = et0|ξ|
2
µ and observe that the Hölder inequality

with respect to the measure ν implies that x 7→ log u(x, t0) is convex. The assumption then implies
that log u(x, t0) is constant and thus x 7→ u(x, t0) is constant as well. Differentiating under the
integral sign we obtain

0 = P (Dx)u(x, t0)|x=0 =
ˆ
RN

P (ξ) dν

for any polinomial P such that P (0) = 0. By a classical Fourier transform argument, this implies
that ν = cδ0 and thus u(x, t) ≡ c due to the representation (

WW
3.5).

Compare with [60] where it is proved that under the growth condition 0 ≤ u ≤ Ceo(|x|+
√
|t|) for

t ≤ 0, there are no ancient non-constant solutions to the heat equation on a complete Riemannian
manifold with Ric ≥ 0.

3.3. Heat Kernel estimates. Using Moser’s Harnack inequality, Aronsson proved in [1] a two
sided bound on the fundamental solution of (

PLPL
3.3), which reads

kbkb (3.6) 1
C(t− s)N/2

e−C
|x−y|2
t−s ≤ Γ(t, x; s, y) ≤ C

(t− s)N/2
e−

1
C
|x−y|2
t−s

for some C = C(N,Λ, λ) and t > s > 0, where the fundamental solution (or heat kernel) is defined
as the solution of{

∂tΓ =
∑N
j,i=1Dxi(aij(x, t)DxjΓ) in RN× ]s,+∞[,

Γ(x, t; ·, s) ⇀∗ δx, as t ↓ s, in the measure sense.

In [31], the previous kernel estimate was proved through Nash approach, and was shown to be
equivalent to the parabolic Harnack inequality.

A global Harnack inequality also follows from (
kbkb
3.6): if u ≥ 0 is a solution to (

PLPL
3.3) on RN × R+

and t > s > τ ≥ 0, then using the representation

u(x, t) =
ˆ
RN

Γ(x, t; ξ, τ)u(ξ, τ) dξ, t > τ,

and the analogous one for (y, s), we get

u(x, t) =
ˆ
RN

Γ(x, t; ξ, τ)Γ−1(y, s; ξ, τ)Γ(y, s; ξ, τ)u(ξ, τ) dξ

≥ u(y, s) 1
C2

(
s− τ
t− τ

)N
2

inf
ξ
e−C

|x−ξ|2
t−τ + 1

C
|y−ξ|2
s−τ .

Now if s/t ≤ 1/(2C2) we choose τ = 0 and compute

−C |x− ξ|
2

t− τ
+ |y − ξ|

2

s− τ
≥ − |x− y|

2

λ(t− s) , λ = 1
2C .

while if s/t > 1/(2C2), we set τ = s− (t− s)/(4C2) > 0 obtaining

−C |x− ξ|
2

t− τ
+ |y − ξ|

2

s− τ
≥ − |x− y|

2

λ(t− s) , λ = 1
2C −

1
4C3
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while
s− τ
t− τ

≥ 1
4C2 .

Therefore the kernel bounds (
kbkb
3.6) imply a Harnack inequality at large, often called sub-potential lower

bound, for positive solutions u of (
PLPL
3.3) on RN×]0, T [ : there exists a constant C = C(N,Λ, λ) > 1

such that

subsub (3.7) u(x, t) ≥ 1
C
u(y, s)

(
s

t

)N
2
e−C

|x−y|2
t−s for all T > t > s > 0.

A similar global estimate, with a non-optimal exponent α = α(N,Λ, λ) > N/2 was already derived
through the so-called Harnack chain technique by Moser in [50].

3.4. Riemannian manifolds and beyond. Following the differential approach of [?], Li and
Yau proved in [46] their celebrated parabolic differential Harnack inequality.

Theorem 3.5. Let M be a complete Riemannian manifold of dimension N ≥ 2 and Ric ≥ 0, and
let u > 0 solve the heat equation on M × R+. Then it holds

LYLY (3.8) |D log u|2 − ∂t(log u) ≤ N

2t .

In the same paper, many variants of the previous inequality are considered, including one for
local solutions in BR(x0)× ]t0 − T, t0[ much in the spirit of [12] and several consequences are also
derived. Integrating inequality (

LYLY
3.8) along geodesics provides, for any positive solution of the heat

equation of M × R+

LYpLYp (3.9) u(x, t) ≥ u(y, s)
(
s

t

)N
2
e
− d

2(x,y)
4(t−s) , t > s > 0,

where d(x, y) is the geodesic distance between two points x, y ∈M . This, in turn, gives the heat
kernel estimate (see [58, Ch 5])

hkhk (3.10) 1
CV (x,

√
t− s)

e−C
d2(x,y)
t−s ≤ Γ(x, t; y, s) ≤ C

V (x,
√
t− s)

e−
1
C
d2(x,y)
t−s ,

where V (x, r) is the Riemannian volume of a geodesic ball B(x, r). Notice that, in a general
Riemannian manifold of dimension N ≥ 2,

V (x, r) ' rN for small r > 0,
but, under the sole assumption Ric ≥ 0, the best one can say is

r

C
≤ V (x, r) ≤ CrN , for large r > 0.

Therefore, while Li-Yau estimate on the heat kernel coincides with Aronsson’s one locally, it is
genuinely different at the global level.

Other parabolic differential Harnack inequalities were then found by Hamilton in [38] for compact
Riemannian manifolds with Ric ≥ 0, and were later extended in [43,60] to complete, non-compact
manifolds. Actually, far more general differential Harnack inequalities are available under suitable
conditions on the Riemannian manifold, see the book [52] for the history and applications of the
latters.

Again, the differential Harnack inequality (
LYLY
3.8) requires a good deal of smoothness both on the

operator and on the ambient manifold. Yet, the corresponding pointwise inequality (
LYpLYp
3.9) doesn’t

depend on the smoothness of the metric gij but only on its induced distance and the dimension,
hence one is lead to think that a smoothness-free proof exists. Indeed, the papers [36, 56] showed
that the parabolic Harnack inequality (and the corresponding heat kernel estimates) can still be
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obtained through a Moser-type approach based solely on the Doubling & Poincaré condition (
dpdp
2.9).

In fact, [36, 56] independently proved the following equivalence.

Theorem 3.6 (Parabolic Harnack principle). For any Riemannian manifold the following are
equivalent:

(1) The parabolic Harnack inequality (
pHpH
3.1).

(2) The heat kernel estimate (
hkhk
3.10).

(3) The Doubling & Poincaré condition (
dpdp
2.9).

Since Doubling & Poincaré are stable with respect to quasi-isometries, the previous theorem
ensures the stability of the parabolic Harnack inequality with respect to the latters, and thus its
validity in a much wider class of Riemannian manifolds than those with Ric ≥ 0. Condition (3) also
ensures that the parabolic Harnack inequality holds for general parabolic equations with elliptic
and merely measurable coefficients, see [57]. Actually, under local regularity conditions, it can be
proved for metric spaces which are roughly isometric to a Riemannian manifold with Ric ≥ 0, such
as suitable graphs or singular limits or Riemannian manifolds.

3.5. The nonlinear setting. A deep analysis of Moser’s proofs reveals that the linearity of the
second order operator is immaterial, and that essentially the same arguments apply as well to
nonnegative weak solutions to a wide family of quasilinear equations. In [2, 62], the Harnack
inequality in the form (

mphmph
3.4) was proved to hold for nonnegative solutions of

qlql (3.11) ut = divA(x, u,Du)

where the function A : Ω× R× RN → RN is only assumed to be measurable and satisfying{
A(x, s, z) · z ≥ λ|z|2,
|A(x, s, z)| ≤ Λ|z|,

for some given positive constants λ and Λ. Trudinger noted that the Harnack inequality for the
case of general p-growth conditions (

pgrowthpgrowth
2.6) with p 6= 2 seemed instead a difficult task. He stated the

validity of the Harnack inequality (
mphmph
3.4) for positive solutions of the doubly nonlinear equation

(up−1)t = divA(x, t, u,Du)

where A obeys (
pgrowthpgrowth
2.6) with the same p as the one appearing on the right hand side, thus recovering

a form of homogeneity in the equation which is lacking in (
qlql
3.11). The doubly nonlinear result has

later been proved in [35,41], but it took around forty years to obtain the right form of the Harnack
inequality for solutions of (

qlql
3.11) under the general p-growth condition (

pgrowthpgrowth
2.6) on the principal part.

The next chapter will deal with the latter problem.
It is worth noting that another parabolic equation which presented the same kind of difficulties

is the porous medium equation, namely

ut = ∆um, m > 0.

In fact, most of the results in the following sections have analogue statements and proofs for
positive solutions of the porous medium equation. To keep things as simple as possible, we chose
not to treat this equation, limiting the exposition to (

qlql
3.11). The interested reader may consult the

monographs [25,66] for the corresponding results for porous media.
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4. Singular and degenerate parabolic equations

4.1. The prototype equation. Let us consider the parabolic p-Laplace equation

p_laplp_lapl (4.1) ut = div(|Du|p−2Du), p > 1,

which can be seen as a parabolic elliptic equation with |Du|p−2 as (intrinsic) isotropic coefficient.
The coefficient vanishes near a point where Du = 0 when p > 2, while it blows up near such a point
when p < 2. For this reasons we call (

p_laplp_lapl
4.1) degenerate when p > 2 and singular if p < 2.

In the fifties, the seminal paper by Barenblatt was the starting point of the study of the p-
Laplacian equation (

p_laplp_lapl
4.1). In [3] Barenblatt found explicit solutions to (

p_laplp_lapl
4.1), playing the rôle of the

fundamental solution.

Theorem 4.1. For any p > 2N
N+1 and M > 0, there exist constants a, b > 0 depending only on N

and p such that the function

barenblattbarenblatt (4.2) Bp,M (x, t) :=


t−

N
λ

[
aM

p
λ
p−2
p−1 − b

( |x|
t

1
λ

) p
p−1
] p−1
p−2

+
, if p > 2,

t−
N
λ

[
aM

p
λ
p−2
p−1 + b

( |x|
t

1
λ

) p
p−1
] p−1
p−2

if 2 > p,

where
λ = N(p− 2) + p

solves the problem {
ut = div(|Du|p−2Du) in RN× ]0,+∞[,
u(·, t) ⇀∗ Mδ0 as t ↓ 0.

The functions Bp,M are also called fundamental solution of mass M , or simply fundamental
solution when M = 1, in which case one briefly writes Bp,1 = Bp. Uniqueness of the fundamental
solution for the prototype equation was proved by Kamin and Vázquez in [40] (the uniqueness for
general monotone operators is still not known).

The Barenblatt solutions show that when (
p_laplp_lapl
4.1) is degenerate the diffusion is very slow and the

speed of the propagation of the support is finite, while in the singular case the diffusion is very fast
and the solution may become extinct in finite time. These two phenomena are incompatible with a
parabolic Harnack inequality of the form (

pHpH
3.1) or (

mphmph
3.4), (suitably modified taking account of the

natural scaling) such as

tphtph (4.3) C−1 sup
Bρ(x0)

u(·, t0 − ρp) ≤ u(x0, t0) ≤ C inf
Bρ(x0)

u(·, t0 + ρp)

with a constant C depending only on N . Indeed, in the degenerate case the Barenblatt solution
has compact support for any positive time, violating the strong minimum principle dictated by
(
tphtph
4.3) (the proof of Corollary

minpminp
3.2 still works). Regarding the singular case this incompatibility is not

immediately apparent from the Barenblatt profile itself and in fact the strong minimum principle
still holds for solutions defined in RN×]0, T [ when p > 2N

N+1 . However, consider the solution of the
Cauchy problem (

p_laplp_lapl
4.1) in a cylindrical domain Ω× R+ with u(0, x) = u0 ∈ C∞c (Ω) and Dirichlet

boundary condition on ∂Ω× R+, with Ω bounded. An elementary energetic argument (see [?, Ch
VII]) gives a suitable extinction time T ∗(Ω, u0) such that u(·, t) ≡ 0 for t > T ∗, again violating the
strong minimum principle.
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Let us remark here that for 1 < p ≤ 2N
N+1 =: p∗ the Barenblatt profile ceases to exists. As it will

be widely discussed in the following, the exponent p∗ plays a fundamental, and in some aspects
still unclear, rôle in the whole theory of singular parabolic equations.

4.2. Regularity. Let us consider equations of the type
qlpqlp (4.4) ut = divA(x, u,Du)

with general measurable coefficients obeying

pgrpgr (4.5)
{
A(x, s, z) · z ≥ Λ−1|z|p,
|A(x, s, z)| ≤ Λ|z|p−1.

We are concerned with weak solutions in Ω× [0, T ], namely those satisfyingˆ
uϕdx

∣∣∣∣t2
t1

+
ˆ t2

t1

ˆ
Ω

[−uϕt +A(x, u,Du) · ϕ] dx dt = 0

where ϕ is an arbitrary function such that
ϕ ∈W 1,2

loc (0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω).

This readily implies that
u ∈ Cloc(0, T ;L2

loc(Ω)) ∩ Lploc(0, T ;W 1,p
loc (Ω)).

In the case p = 2, the local Hölder continuity of solutions to (
qlpqlp
4.4) has been proved by Ladyzhen-

skaya and Ural’tseva in [?] through a parabolic De Giorgi approach. The case p 6= 2 was considered a
major open problem in the theory of quasilinear parabolic equation for over two decades. The main
obstacle to its solution was that the energy and logathmic estimates for (

qlpqlp
4.4) are non-homogeneous

when p 6= 2. It was solved by DiBenedetto [?] in the degenerate case and Chen & DiBenedetto
in [?,?] for the singular case through an approach nowadays called method of instrinsic scaling.
Roughly speaking, in order to recover from the lack of homogeneity in the integral estimates one
works in cylinders whose natural scaling is modified by the oscillation of the solution itself. In the
original proof, these rescaled cylinder are then sectioned in smaller sub-cylinders and the so-called
alternative occurs: either there exists a sub-cylinder where u is sizeably (in a measure-theoretic
sense) away from its infimum or in each sub-cylinder it is sizeably away from its supremum. In
both cases a reduction in oscillation can be proved, giving the claimed Hölder continuity.

Stemming from recent techniques built to deal with the Harnack inequality for (
qlpqlp
4.4), simpler

proofs are nowadays available, avoiding the analysis of said alternative. The main idea is to use a
measure-theoretical Lemma proved in [?] called clustering of positivity coupled with the expansion
of positivity effect. In the last section we will provide such a simplified proof.

As it turned out, Hölder continuity of bounded solutions to (
pgrpgr
4.5) (in fact, to much more general

equations) always holds. In the degenerate case p ≥ 2, a-priori boundedness follows from the natural
notion of weak solution given above, but in the singular case there is a precise threshold: local
boundedness is guaranteed only for p > p∗∗ := 2N

N+2 , which is therefore another critical exponent
for the singular equation, smaller than p∗. However, when 1 < p < p∗∗, weak solutions may be
unbounded: for example, a suitable multiple of

v(x, t) =
(T − t)

1
2−p
+

|x|
p

2−p

solves the model equation (
p_laplp_lapl
4.1) in the whole RN × R.

The critical exponents p∗ > p∗∗ arise from the so-called Lr − L∞-estimates for sub-solutions,
which are parabolic analogues of (

linftylrlinftylr
2.7). Namely, when p > p∗, a L1 − L∞ estimate holds true,
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eventually giving the intrinsic parabolic Harnack inequality. If only p > p∗∗ is assumed, one can
still obtain a weaker Lr − L∞ estimate with r > 1 being the optimal exponent in the parabolic
embedding

L∞(0, T ;L2(BR)) ∩ Lp(0, T ;W 1,p(BR)) ↪→ Lr(0, T ;Lr(BR)), r = p
N + 2
N

which is ensured by the notion of weak solution.

4.3. Intrinsic Harnack inequalities. DiBenedetto and DiBenedetto & Kwong in [16] and [26]
found and proved the suitable form of the parabolic Harnack inequality for the prototype equation
(
p_laplp_lapl
4.1). Comparison theorems where essential tools of the proof. A similar statement was later
proved to hold for general parabolic quasilinear equations of p-growth in [], thus avoiding any use
of the comparison principle (which may not hold under the sole assumption (

pgrowthpgrowth
2.6)).

Hdeg Theorem 4.2 (Intrinsic Harnack inequality, degenerate case). Let p ≥ 2 and u be a positive weak
solution of

ut = divA(x, u,Du)
in Ω× [0, T ] where A satisfies (

pgrpgr
4.5). Suppose

θu = u2−p(x0, t0) > 0

for some (x0, t0) ∈ Ω× ]0, T [. Then, there exists C = C(N, p,Λ) > 0 and ε = ε(N, p,Λ) > 0 such
that if

condncondn (4.6) B2ρ(x0)× [t0 − ε θu (2ρ)p, t0 + ε θu (2ρ)p] ⊆ Ω× ]0, T [,

then

pharnackpharnack (4.7) C−1 sup
Bρ(x0)

u(·, t0 − ε θu ρp) ≤ u(x0, t0) ≤ C inf
Bρ(x0)

u(·, t0 + ε θu ρ
p).

Clearly, for p = 2 we recover (
pHpH
3.1). For p > 2, the waiting time is larger the smaller u(x0, t0)

which means that u(x0, t0) bounds from below u on thinner and thinner "p-paraboloids" the smaller
u(x0, t0) is.

hsing Theorem 4.3 (Intrinsic Harnack inequality, singular supercritical case). Let 2 > p > 2N
N+1 and u

be a positive weak solution of
ut = divA(x, u,Du)

in Ω× [0, T ] where A satisfies (
pgrpgr
4.5). Suppose

θu = u2−p(x0, t0) > 0

for some (x0, t0) and let
M = sup

Bρ(x0)×{t0}
u2−p.

Then, there exists C = C(N, p,Λ) > 0 and ε = ε(N, p,Λ) > 0 such that if

condMcondM (4.8) B2ρ × [M (2ρ)p,M (2ρ)p] ⊆ Ω× ]0, T [,

then

fbhfbh (4.9) C−1 sup
Bρ(x0)

u(·, t0 − ε θu ρp) ≤ u(x0, t0) ≤ C inf
Bρ(x0)

u(·, t0 + ε θu ρ
p).
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We thus see that in the singular case, u(x0, t0) bounds from below u in wider and wider
paraboloids the smaller it is. The main issue in the singular supercritical case lies in the qualitative
requirement (

condMcondM
4.8), which prevents a direct application of the Harnack inequality to sub-potential

lower bounds which we’ll discuss later. A form of the Harnack inequality only requiring the natural
condition (

condncondn
4.6) is much desirable, but it is not known under the sole structural conditions (

pgrpgr
4.5). If

a monotonicity assumption holds, one actually has the optimal statement.
IEH Theorem 4.4 (Intrinsic Harnack inequality, singular supercritical monotone case). Suppose A sat-

isfies (
pgrpgr
4.5) and the monotonicty assumption

cmoncmon (4.10) (A(x, s, z)−A(x, s, w)) · (z − w) ≥ 0 ∀z, w ∈ RN .
Then, Theorem

HdegHdeg
4.2 holds for all p > 2N

N+1 .
In the singular supercritical case another, unexpected form of the Harnack inequality holds,

which is essentialy different from (
pharnackpharnack
4.7).

Theorem 4.5 (Elliptic Harnack inequality for singular supercritical parabolic equations). Let the
assumptions of Theorem

hsinghsing
4.3 hold. Then there exists C = C(N, p,Λ) > 0 and ε = ε(N, p,Λ) such

that
EharnackEharnack (4.11) sup

Qρ,θu (x0,t0)
u ≤ C inf

Qρ,θu (x0,t0)
u,

where Qρ,θu(x0, t0) is the forward-backward intrinsic cylinder
Qρ,θu(x0, t0) = Bρ(x0)× {|t− t0| ≤ ε θu ρp}.

Moreover, if (
cmoncmon
4.10) is also assumed, the claim holds under assumption (

condncondn
4.6) instead of (

condMcondM
4.8).

Recall that an elliptic form of the Harnack inequality such as (
EharnackEharnack
4.11) does not hold for the classical

heat equation. This forces the constants appearing in the previous theorem to blow-up as p ↑ 2.
The previous examples also show that they must blow-up also for p ↓ p∗.

In the critical and subcritical case 1 < p ≤ p∗ a pointwise Harnack inequality such as (
pharnackpharnack
4.7)

cannot hold. This is not only due to the boundedness issues described in the previous section when
p < p∗∗, as for example

ex0ex0 (4.12) u(x, t) = (T − t)
N+2

2
+

(
a+ b|x|

2N
N−2

)−N2
is a bounded solution in RN × R of the prototype equation (

p_laplp_lapl
4.1) for any p ∈ ]1, p∗[, N > 2 and

suitably chosen a, b > 0, violating (
pharnackpharnack
4.7). To see this, note that for bounded solutions, the opening

of the paraboloids derived from (
pharnackpharnack
4.7) where u is controlled by u(x0, t0) is bounded from below, thus

the proof of the strong minimum principle Corollary
minpminp
3.2 carries over. Since the previous function

violates the latter, (
p_laplp_lapl
4.1) cannot hold. In passing, this argument also shows that, despite extinction

in finite time always holds for singular equations in bounded domains, it never holds for spatially
entire solutions of (

qlql
3.11). In the critical case

exex (4.13) u(x, t) =
(
ect + |x|

2N
N−1

)−N−1
2

again solves (
p_laplp_lapl
4.1) in RN × R when p = p∗, N ≥ 2 and suitable c > 0 and a direct computation.

It doesn’t violate the stong minimum principle, however notice that (
pharnackpharnack
4.7) implies a weak form of

monotonicity for space-time entire nonnegative solutions, namely u(x, t) ≥ Cu(x, s) for all t ≥ s,
which is violated by (

exex
4.13).

In the subcritical case, different forms of the Harnack inequality have been considered. Here
we mention the one obtained in [?] generalizing to monotone operators a result of Bonforte and
Vazquez [8], [9] on the prototype equation.
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Theorem 4.6 (Subcritical case). Let 1 < p < 2 and u be a locally bounded positive weak solution
of

ut = divA(x, u,Du)
in Ω× [0, T ] where A satisfies the general growth condition (

pgrpgr
4.5) and the monotonicty assumption

(
cmoncmon
4.10). For (x0, t0) ∈ Ω× [0, T ] and for any fixed r ≥ 1 such that λr := N(p− 2) + pr > 0 set

θu =
(
−
ˆ
Bρ(x0)

u(x, t0) dx
)2−p

, Au =

 −́
Bρ(x0) u(x, t0) dx(

−́
Bρ(x0) u

r(x0, t0) dx
) 1
r


pr
λr

.

There exists constants C(N, p,Λ), ε = ε(N, p,Λ) and δ = δ(N, p,Λ) > 0 such that if
B4ρ(x0)× [t0, t0 + ε θ(4ρ)p] ⊆ Ω× ]0, T [ ,

then
gjhgjh (4.14) sup

Q̃ρ,θu (x0,t0)
u ≤ CAδu inf

Q̃ρ,θu (x0,t0)
u

where Q̃ρ,θu(x0, t0) is the space-time cylinder

Q̃ρ,θu(x0, t0) := Bρ/2 × [t0 + ε θuρ
p, t0 + ε θu(2ρ)p].

Notice that in the singular supercritical case one can take r = 1 and thus Au ≡ 1 in the previous
statement to recover Theorem

IEHIEH
4.4. The main point of the (elliptic) harnack inequality (

gjhgjh
4.14) lies

in the dependence of the constant from the solution itself. In general, a constant depending on u
won’t allow to deduce Hölder continuity, but as noted in [?] the peculiar structure of Au permits
such a deduction.

Other weaker forms not requiring the monotonicity assumption (
cmoncmon
4.10) are available, (see [23]

or [?][Theorem 11.1]), however the picture is not completely clear up to now.

4.4. Liouville theorems. As for the classical heat equation, a one sided bound is not sufficient
to ensure triviality of the solutions of the prototype equation (

p_laplp_lapl
4.1). Indeed, a suitable positive

multiple of the function

u(x, t) = (1− x+ ct)
p−1
p−2
+

solves (
p_laplp_lapl
4.1) on R× R whenever c > 0 and p > 2.

Theorem 4.7. Let p > 2 and u be a non-negative solution of
popo (4.15) ut = div(A(x, u,Du)) on RN× ]−∞, T [

under the growth condition (
pgrpgr
4.5). If for some t0 < T , u(·, t0) is bounded above, then u is constant.

An optimal Liouville condition such as the one of Theorem
widderwidder
3.4 is unknown and clearly the previous

example shows that it must involve polynomial growth condition instead of a sub-exponential one.
For the prototype equation, a polynomial growth condition on both x and t more in the spirit
of [60] is considered in [?].

On the complementary side, boundedness for fixed x0 can also be considered, yielding:

Theorem 4.8. Let p > 2 and u be a nonnegative solution in RN × R of (
popo
4.15) under condition

(
pgrpgr
4.5). If

lim sup
t→+∞

u(x0, t) < +∞ for some x0 ∈ RN ,

u is constant.
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In the singular, supercritical case, the elliptic form (
EharnackEharnack
4.11) of the Harnack inequality directly

ensures that, contrary to what happens for classical heat equation, a one-sided bound suffices
to obtain a Liouville theorem. This is no longer true in the critical and subcritical case, as the
functions (

exex
4.13) and (

ex0ex0
4.12) show. However, a two sided bound suffices.

Theorem 4.9. Let 1 < p < 2 and u be a weak solution on RN× ]−∞, T [ of (
popo
4.15) under condition

(
pgrpgr
4.5). If u is bounded below and above, it is constant.
4.5. Harnack estimates at large. By Harnack estimates at large, we mean global results such
as the sub-potential lower bound (

subsub
3.7) or the two-sided Kernel estimate (

kbkb
3.6). For the quasilinear

equation
hjhj (4.16) ut = divA(x, u,Du)

with p-growth assumptions (
pgrpgr
4.5), the natural candidates to state analogous inequalities are the

Barenblatt profiles Bp,M given in (
barenblattbarenblatt
4.2). When A satisfies smoothness and monotonicity assumptions

such as

assass (4.17)
{

(A(x, s, z)−A(x, s, w)) · (z − w) ≥ 0 ∀s ∈ R, x, z, w ∈ RN ,
|A(x, s, z)−A(x, r, z)| ≤ Λ(1 + |z|)p−1|s− r| ∀s, r ∈ R, x, z ∈ RN .

Such set of assumptions imply a comparison principle for weak solutions and guarantee the
existence of the solution of a Cauchy problem with L1 initial datum.

We start by considering the singular supercritical case, since the diffusion is fast and positivity
spreads instantly on the whole RN , giving a behaviour similar to the one of the heat equation.
Theorem 4.10 ( [10]). Let 2N

N+1 < p < 2 and u be a nonnegative solution of (
hjhj
4.16) in RN× ]0,+∞[

under assumptions (
pgrpgr
4.5), (

assass
4.17). There is C = C(N, p,Λ) > 0, δ = δ(N, p,Λ) > 0 such that if

u(x0, t0) > 0, then

splbsplb (4.18) u(x, t) ≥ γu(x0, t0)Bp

u(x0, t0)
p−2
p

(x− x0)

t
1
p

0

,
t

t0

 , (x, t) ∈ RN × [t0(1− δ),+∞[.

As an example, assume x0 = 0, t0 = 1 and u(P0) = 1. Then, the previous sub-potential lower
bound becomes

u(x, t) ≥ γBp(x, t)
for any (x, t) ∈ RN × [1− δ,∞[. Such a result is obviously sharp, because it is sharp for the
Barenblatt solution. As a corollary, for any fundamental solution of (

hjhj
4.16), one obtains the

two-sided kernel bounds (proved in [55] for the first time)
C−1Bp,M1(x, t) ≤ Γ(x, t) ≤ CBp,M2(x, t)

for some C,M1,M2 > 0 depending on the data.
Notice how the elliptic nature of (

hjhj
4.16) for p ∈ ]p∗, 2[, as expressed by the forward-backward

Harnack inequality (
fbhfbh
4.9), allows to obtain the bound (

splbsplb
4.18) also for some t < t0. As shown in [?],

this phenomenon not only happens for past times near t0 but, as long as the spatial diffusion has
had enough room to happen, it also hold for arbitrarily remote past times. More precisely, in [?] it
is proved that (

splbsplb
4.18) holds for all

(x, t) ∈ Pc :=
{
t > 0, |x− x0|pu(x0, t0)2−p > 1− t

t0

}
,

while a weaker, but still optimal, lower bound holds in P.

In the degenerate case p > 2, the finite speed of propagation implies that if the initial datum u0
has compact support, then any solution of (

hjhj
4.16) keeps having compact support for any time t > 0.
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The finite speed of propagation has been quantified in [?], under the sôle p-growth assumption
(
pgrpgr
4.5).

Theorem 4.11. Let p > 2 and u be a weak solution of the Cauchy problem{
ut = divA(x, u,Du) in RN× ]0,+∞[,
u(x, 0) = u0

under assumption (
pgrpgr
4.5). If R0 = diam(suppu0) < +∞, then

diam(suppu(·, t)) ≤ 2R0 + Ct1/λ‖u0‖
p−2
λ

L1(RN ),

where λ = N(p− 2) + p and C = C(N, p,Λ).

Such an estimate actually holds for a suitable class of degenerate systems, see [?].

Theorem 4.12. Let p > 2 and u be a nonnegative solution of (
hjhj
4.16) in RN× ]0,+∞[ under

assumptions (
pgrpgr
4.5), (

assass
4.17). There is C = C(N, p,Λ) > 0, ε = δ(N, p,Λ) > 0 such that if u(x0, t0) > 0,

then (
splbsplb
4.18) holds for

t > t0, |x− x0|p ≤ εu(x0, t0)p−2t0 min
{
t− t0
t0

,

(
t− t0
t0

)p/λ)
,

with λ = N(p− 2) + p.

The last condition on the region of validity of (
splbsplb
4.18) is sharp, especially when t ' t0 and the

minimum is the first one (see [?, Remark 1.3] for details).
Again, the sub-potential lower bound implies the two-sided Kernel estimate.

Theorem 4.13. Let p > 2. Under assumption (
pgrpgr
4.5) and (

assass
4.17), equation (

hjhj
4.16) possesses at least a

fundamental solution, and any fundamental solution satisfies (
kernelbkernelb
??) for suitable M1,M2, C depending

only on N, p and Λ.

5. Expansion of positivity approach to regularity

5.1. Elliptic regularity. An alternative and self contained proof of the Hölder continuity of
locally bounded solutions to some elliptic equations, including the equation associated with the
p−Laplacian operator, was given in [30]. By combining the techniques introduced by De Giorgi
and Moser, this method can be seen more geometric and relatively intuitive.

It is known that Poincaré estimates are necessary to obtain the Harnack inequality and regularity
estimates. Since the approach here uses only a 1−dimensional Poincaré inequality, i.e., Poincaré
inequalities direction by direction, it could be useful for anisotropic as well as non-homogeneous
operators, such as Hörmander operators and the subelliptic Laplacians.

Assume that u is a locally bounded weak solution of the following equation:

equationequation (5.1) divAp (x, u,Du) = 0 ,
where Ap is Carathéodory vector field defined in Ω× R× Rn; i.e., Ap (x, s, ξ) is measurable with
respect to x ∈ Ω and continuous in (s, ξ) ∈ R× Rn for almost every x ∈ Ω. We assume that Ap
satisfies the following structural conditions ("natural growth conditions") for an exponent p > 1
and for some positive constants m,M

growth_conditionsgrowth_conditions (5.2)
{
Ap (x, s, ξ) ξ ≥ m |ξ|p

|Ap (x, s, ξ)| ≤M |ξ|p−1 .
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main_theorem Theorem 5.1. Let us assume that the growth conditions (
growth_conditionsgrowth_conditions
5.2) hold. Let u be a locally bounded

weak solution of (
equationequation
5.1). Then u is locally Hölder continuous in Ω and there exist two constants α, c

depending only upon the data, with 0 < α < 1 and c > 0, such that, for every open set Ω′ whose
closure is contained in Ω and for every x1, x2 ∈ Ω′,

Holder_estimateHolder_estimate (5.3) |u (x1)− u (x2)| ≤ c ‖u‖L∞(Ω′)

( |x1 − x2|
dist (Ω′, ∂Ω)

)α
.

Here the constant depends only upon n,m,M, p.

Let R > r > 0 and Br (x0) = {x ∈ Rn : |x− xo| < r} is a ball of center x0 ∈ Ω, and radius r and
BR (x0) is the similar ball of radius R > r. Assume that the closure of BR (x0) is contained in Ω.

Moreover, let µ− = µ− (R) (resp. µ+ = µ+ (R)) the essential infimum (resp. the essential
supremum) of u in BR (x0) and ω = ω (R) := µ+ − µ− the oscillation of u in BR (x0) .

To get the result in Theorem
main_theoremmain_theorem
5.1, here are some auxilry lemmas:

Logarithmic lemma Lemma 5.2 (Logarithmic lemma). Let u be a locally bounded weak solution of equation (
equationequation
5.1) and

assume that the growth conditions (
growth_conditionsgrowth_conditions
5.2) are satisfied. Then there exists a constant c1 (depending

only upon the data) such that

estimate in Lemma 1estimate in Lemma 1 (5.4)
ˆ

Br(x0)

∣∣∣∣D log+
Hω

u− µ− + aωH

∣∣∣∣p dx ≤ c1

ˆ

BR(x0)

|Dϕ|p dx .

Here log+ (·) = [log (·)]+ is the positive part of log (·); moreover r < R and ϕ ∈ C1 is a nonnegative
test function such that ϕ = 1 in Br (x0), ϕ = 0 in Ω−BR (x0) and a,H with 0 < a < 1, 0 < H < 1
are given numbers.

Caccioppoli’s type inequality Lemma 5.3 (Caccioppoli’s type inequality). Let u be a locally bounded weak solution of (
equationequation
5.1) and

assume that the growth conditions (
growth_conditionsgrowth_conditions
5.2) are satisfied. Then there exists a constant c2 (depending

only upon the data) such thatˆ
Ω
ϕp
∣∣∣D (u− k)−

∣∣∣p dx ≤ c2

ˆ
Ω
|Dϕ|p

∣∣∣(u− k)−
∣∣∣p dx

for every constant k and for every test function ϕ ∈ C1
0 (Ω), ϕ ≥ 0. An analogous result holds if we

deal with the positive part (u− k)+.

Algebraic lemma Lemma 5.4 (Algebraic lemma). Let {Yj}, j = 0, 1, 2, . . . , be a sequence of positive numbers
satisfying the recursive inequalities

Yj+1 ≤ c bj Y 1+β
j ,

for some positive constants c and β and some b > 1. If Y0 ≤ c−1/βb−1/β2, then Yj ≤ Y0 b
−j/β.

Thus, in particular, {Yj} converges to zero as j →∞.

Now let introduce some notations which will be used in the next lemma. Let R0, k0 > 0 be given
real numbers and

RjRj (5.5) Rj = R0
2 + R0

2j+1 .

We assume that the closure of the ball BR0 (x0) is contained in Ω. Let us define

kj and Ajkj and Aj (5.6) kj = k0
2 + k0

2j+1 + µ−, Aj = {x ∈ BRj (x0) : u(x) ≤ kj},
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where, as above, µ− is the essential infimum of u in BR0 (x0). We also denote by R∞ = R0
2 and by

A∞ the intersection of the sets Aj ; i.e.,

A∞ = ∩
j
Aj = {x ∈ BR∞ (x0) : u(x) ≤ k0

2 + µ−}.

Next lemma concerns with the sequence {Yj}, j = 0, 1, 2, . . . , of real numbers defined by

YjYj (5.7) Yj = |Aj |∣∣∣BRj (x0)
∣∣∣

where |·| denotes the Lebesgue measure of the corresponding set.

De Giorgi type lemma Lemma 5.5 (De Giorgi type lemma). There is a number ν > 0, depending only upon the data
(and not depending on u, R0, and k0), such that, if Y0 < ν, then the sequence {Yj} in (

YjYj
5.7)

converges to zero as j goes to infinity.

Finally the following lemma has a very important part for the proof of the main theorem. Its
proof can be found in [?]. In [?] the result is proved using the n−dimensional Poincaré inequality. In
the appendix of [28] the same result is proved by induction, using time by time the 1−dimensional
Poincaré inequality to increase the space dimension.

Measure theoretical lemma Lemma 5.6 (Measure theoretical lemma). Let Br be a ball in Rn and let u ∈ W 1,1 (Br) be a
nonnegative function that satisfies

‖u‖W 1,1(Br) ≤ γχ r
n−1, |{x ∈ Br : u (x) ≥ χ}| ≥ α |Br| ,

for some γ, χ > 0 and α ∈ (0, 1). Then for any δ ∈ (0, 1) and 0 < β < 1 there exist x0 ∈ Br and
η = η(α, δ, γ, β, n) ∈ (0, 1) such that

|{x ∈ Bηr (x0) : u (x) ≥ βχ}| ≥ (1− δ) |Bηr| .

Proof of Theorem
main_theoremmain_theorem
5.1Section_3

Let give a simplified proof of this known algebraic lemma, from which the Hölder continuity
estimate (

Holder_estimateHolder_estimate
5.3) will follow.

Criterion for Holder continuity Lemma 5.7 (Criterion for Hölder continuity). For r ≤ R let ω (r) = µ+ (r)− µ− (r) be the oscil-
lation of u (x) in a ball Br (x0) . Assume that BR (x0) ⊂ Ω.

If
Holder_estimate_in_the_lemma _ASSUMPTIONHolder_estimate_in_the_lemma _ASSUMPTION (5.8) ω (ar) ≤ b ω (r) , ∀ r ≤ R,

for some real numbers a, b ∈ (0, 1), then for α := log b
log a we have

Holder_estimate_in_the_lemmaHolder_estimate_in_the_lemma (5.9) ω (r) ≤ ω (R)
b

(
r

R

)α
, ∀ r ≤ R.

Remark Remark 5.8. The Hölder estimate in (
Holder_estimate_in_the_lemmaHolder_estimate_in_the_lemma
5.9) also gives

ω (r) ≤ 2
b
‖u‖L∞(BR(x0))

(
r

R

)α
, ∀ r ≤ R,

which implies (
Holder_estimateHolder_estimate
5.3). Note in particular that α = log b

log a > 0 and that α ∈ (0, 1) if 0 < a < b < 1.
Lemma

Criterion for Holder continuityCriterion for Holder continuity
5.7 will be applied at the end of this section, precisely by choosing a = 1/4 and b = 1− 1

16es ,
s is a positive real parameter to be fixed later.
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Let fix x0 ∈ Ω and R > 0. In order to avoid cumbersome notations below, set r = 4R and
assume that the closure of the ball B4R (x0) is contained in Ω.

Let consider the oscillation ω (4R) := ω of u (x) in the ball B4R (x0):

oscillation in the ball of radius 4Roscillation in the ball of radius 4R (5.10) ω = sup {u (x) : x ∈ B4R (x0)} − inf {u (x) : x ∈ B4R (x0)}

= µ+ (4R)− µ− (4R) := µ+ − µ− .

The aim is to prove that the oscillation of u is reduced by a fixed quantity (a fixed factor) in
the ball BR (x0). To obtain this fact one can observe that there are two possibilities (both being
possible at the same time): either

u >= 1u >= 1 (5.11)
∣∣∣∣{x ∈ BR (x0) : u(x) ≥ µ− + 1

2ω
}∣∣∣∣ ≥ 1

2 |BR (x0)|

or

u <= 1u <= 1 (5.12)
∣∣∣∣{x ∈ BR (x0) : u(x) ≤ µ− + 1

2ω
}∣∣∣∣ ≥ 1

2 |BR (x0)| .

Let assume that the first alternative occurs (the second one can be studied analogously). We know
that u (x) ≥ µ−. The first goal is to find a small ball inside BR (x0) where u (x) ≥ µ− + 1

8ω almost
everywhere in the ball, which is called clustering the positivity.

Clustering the positivity Lemma 5.9 (Clustering the positivity). If (
u >= 1u >= 1
5.11) holds, then there exist a constant ε0 ∈ (0, 1)

(depending only upon the data) and a point x1 ∈ BR (x0) such that u(x) > µ− + 1
8ω for almost

every x ∈ Bε0R (x1).

Proof. In order to apply Lemma
Measure theoretical lemmaMeasure theoretical lemma
5.6 its needed to estimate the W 1,1 norm of u in BR (x0). To this

aim, the Caccioppoli inequality of Lemma
Caccioppoli’s type inequalityCaccioppoli’s type inequality
5.3 with k = µ− is used and let consider a test function

ϕ ∈ C1
0 (B2R (x0)) such that ϕ = 1 in BR (x0) , ϕ ≥ 0, |Dϕ| ≤ 2/R in B2R (x0) , ϕ = 0 outside

B2R (x0) . Then,
ˆ
BR(x0)

|Du| dx ≤
(ˆ

BR(x0)
|Du|p dx

) 1
p

|BR (x0)|
p−1
p

≤ c10

(ˆ
B2R(x0)

|Dϕ|p |(u− µ−)+|p dx
) 1
p

|BR (x0)|
p−1
p .

Since µ− ≤ u ≤ µ− + ω,
ˆ
BR(x0)

|Du| dx ≤ 2c10ω

(ˆ
B2R(x0)

|Dϕ|p dx
) 1
p

|BR (x0)|
p−1
p

≤ 4c10
R

ω |BR (x0)| = c11ωR
n−1.

Thus Lemma
Measure theoretical lemmaMeasure theoretical lemma
5.6 to the function u− µ− with β = 1

2 , χ = 1
2ω and δ ∈ (0, 1) to be chosen can be

applied. Then the existence of x1 ∈ BR (x0) and η ∈ (0, 1) is obtained such that∣∣∣{x ∈ BηR (x1) : u (x) > µ− + 1
4ω
}∣∣∣ ≥ (1− δ) |BηR (x1)| ,

(note the strict inequality u (x) > µ− + 1
4ω , possible by changing β = 1

2 with β = 1
2 + ε) that is

equivalent to ∣∣∣{x ∈ BηR (x1) : u (x) < µ− + 1
4ω
}∣∣∣ < δ |BηR (x1)| .
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Let denote by R0 = ηR and let define Rj = R0
2 + R0

2j+1 as in (
RjRj
5.5) and kj , Aj , Yj as in (

kj and Ajkj and Aj
5.6), (

YjYj
5.7).

Then, if by choosing δ = ν, where ν is the constant defined in Lemma
De Giorgi type lemmaDe Giorgi type lemma
5.5 (note that ν does not

depend on R0 = ηR), it is obtained that

Y0 = |A0|
|BR0 (x1)| =

∣∣∣{x ∈ BηR (x1) : u (x) < µ− + 1
4ω
}∣∣∣

|BηR (x1)| < δ = ν.

Thus, by applying Lemma
De Giorgi type lemmaDe Giorgi type lemma
5.5,

0 = lim
j→+∞

Yj = |A∞|
|BR∞ (x1)| = |∩jAj |

|BR∞ (x1)| =

∣∣∣{x ∈ B ηR
2

(x1) : u (x) ≤ µ− + 1
8ω
}∣∣∣∣∣∣B ηR

2
(x1)

∣∣∣ .

Therefore u (x) > µ− + 1
8ω for almost every x ∈ B ηR

2
(x1), which corresponds to the conclusion

with ε0 = η
2 . �

Let x1 be the point in the statement of Lemma
Clustering the positivityClustering the positivity
5.9 and let use the notation x1 = (x, y) ∈ Rn,

with x ∈ R and y ∈ Rn−1. Let denote by Bn−1,R (y) a ball in Rn−1 of center in y and radius R > 0;
i.e., Bn−1,R (y) =

{
y ∈ Rn−1 : |y − y| < R

}
. Given a radius R > 0 and a real number L > 0 let

define the cylinder CR,L (x1) in Ω ⊂ Rn

cylinder Ccylinder C (5.13) CR,L (x1) =
{

(x, y) ∈ R× Rn−1 : |x− x| < RL, y ∈ Bn−1,R (y)
}

= (x−RL, x+RL)×Bn−1,R (y) .
Note that Cε0R,3 (x1) is contained in the original ball B4R (x0).

Let recall the radius ε0R of the ball Bε0R (x1) ⊂ BR (x0) in the statement of Lemma
Clustering the positivityClustering the positivity
5.9. By

using the half radius ε0R/2, let define a set Dn−1,s ⊂ Rn−1, depending on a positive real parameter
s to be fixed later,

definition of Ddefinition of D (5.14) Dn−1,s = {y ∈ Bn−1,ε0R/2 (y) : ∃ x ∈
[
x− 5

2R, x+ 5
2R
]
, u(x, y) ≤ µ− + 1

8esω} .

Expansion of positivity Lemma 5.10 (Expansion of positivity). For every positive constant ν0 ∈ (0, 1) there exists a
s ∈ R+ such that

|Dn−1,s| ≤ ν0
∣∣∣Bn−1,ε0R/2 (y)

∣∣∣ .
Proof. This result is proved in the cylinder [x, x + 5

2R] × Bn−1,ε0R/2 (y), the case [x − 5
2R, x] ×

Bn−1,ε0R/2 (y) being analogous.
Let y ∈ Dn−1,s. Then, by the definition of D in (

definition of Ddefinition of D
5.14), there exists x ∈ [x, x + 5

2R] such that
u(x, y) ≤ µ− + 1

8esω. By Lemma
Clustering the positivityClustering the positivity
5.9, u(x, y) > µ− + 1

8ω for every y ∈ Bn−1,ε0R/2 (y). Therefore,
for this x value,

u(x, y)− µ− + 1
8esω

u(x, y)− µ− + 1
8esω

≥
1
8ω + 1

8esω

2 1
8esω

= es + 1
2 , if s ≥ log 3.

Thus if s ≥ log 3, the logaritmic function coincides with the log+ (·) function for both sides of the
above inequality. For such s values we obtain

s− 1 ≤ log e
s + 1

2 ≤ log+
u(x, y)− µ− + 1

8esω

u(x, y)− µ− + 1
8esω
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= log+

1
8ω

u(x, y)− µ− + 1
8esω

− log+

1
8ω

u(x, y)− µ− + 1
8esω

=
xˆ

x

d

dt
log+

1
8ω

u(t, y)− µ− + 1
8esω

dt ≤

x+ 5
2Rˆ

x

∣∣∣∣∣ ddt log+

1
8ω

u(t, y)− µ− + 1
8esω

∣∣∣∣∣ dt .
Let integrate the left and the right hand side of the above inequality over the set Dn−1,s and we
obtain

(s− 1) |Dn−1,s| ≤
ˆ

Bn−1,ε0R/2(y)

x+ 5
2Rˆ

x

∣∣∣∣∣D log+

1
8ω

u− µ− + 1
8esω

∣∣∣∣∣ dx .
By the Hölder inequality

(s− 1) |Dn−1,s|

≤


ˆ

Bn−1,ε0R/2(y)

x+ 5
2Rˆ

x

∣∣∣∣∣D log+

1
8ω

u− µ− + 1
8esω

∣∣∣∣∣
p

dx


1
p {5

2R
∣∣∣Bn−1,ε0R/2 (y)

∣∣∣} p−1
p

.

Now consider Lemma
Logarithmic lemmaLogarithmic lemma
5.2 and we apply it when the ballsBr (x0) andBR (x0) are replaced respectively

by two cylinders, one compactly contained in the other. Now recall that the test function ϕ must be
identically equal to one on the smaller cylinder and equal to zero outside of the larger one. Precisely,
consider ϕ = 1 in

[
x, x+ 5

2R
]
×Bn−1,ε0R/2 (y) and ϕ = 0 out of [x, x+ 3R]×Bn−1,ε0R (y). With

Hω = 1
8ω and a = e−s we get

(s− 1) |Dn−1,s| ≤

 c1

ˆ

Bn−1,ε0R(y)

x+3Rˆ

x

|Dϕ|p dx


1
p {5

2R
∣∣∣Bn−1,ε0R/2 (y)

∣∣∣} p−1
p

.

Therefore, if |Dϕ| ≤ 2/ (ε0R),

(s− 1) |Dn−1,s| ≤
2
ε0R
{c1 |Bn−1,ε0R (y)|R}

1
p

{5
2R

∣∣∣Bn−1,ε0R/2 (y)
∣∣∣} p−1

p

≤ c12
ε0

∣∣∣Bn−1,ε0R/2 (y)
∣∣∣ .

The statement follows by choosing s large enough so that
c12

ε0 (s− 1) ≤ ν0 .

�

Small cylinder Lemma 5.11 (Positivity almost everywhere in a small cylinder ). Under the previous notations
and assumptions, in Cε0

R
4 ,2

(x1) we have

positivitysmallcylinderpositivitysmallcylinder (5.15) u ≥ µ− + 1
16esω .
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Proof. The intention is to apply Lemma
De Giorgi type lemmaDe Giorgi type lemma
5.5 to the cylinder Cε0

R
2 ,

5
2

(x1) where

u ≥ µ− + 1
8esω

except a set with small measure. The Lemma
De Giorgi type lemmaDe Giorgi type lemma
5.5 is proved for a ball and here we have to consider

a possible long cylinder. Thus try to adapt the lemma to this case. For this aim Lemma
Expansion of positivityExpansion of positivity
5.10 is

applied by choosing

ni zeroni zero (5.16) ν0 = δ0ν ,

where ν is the constant defined in Lemma
De Giorgi type lemmaDe Giorgi type lemma
5.5 and (here the classical symbol ωn to denote the

measure of the unit ball in Rn)

delta zerodelta zero (5.17) δ0 = |Bn,1|
2 |Bn−1,1|

= ωn
2ωn−1

.

For any z ∈ [x− 2R, x+ 2R] let consider the ball Bε0R/2(z, y) in Rn. Being ε < 1 we have that
Bε0R/2(z, y) is contained in Cε0

R
2 ,

5
2

(x1), so Lemma
Expansion of positivityExpansion of positivity
5.10 can be applied. Recalling that Bn−1,ε0R/2 (y)

is a ball in Rn−1 centered at y and using the following inclusion of sets

Bε0R/2(x, y) ⊂
[
x− ε0

2 R, x+ ε0
2 R
]
×Bn−1,ε0R/2 (y) ,

then ∣∣∣∣{(x, y) ∈ Bε0R/2(z, y) : u (x, y) ≤ µ− + 1
8esω

}∣∣∣∣
≤
∣∣∣∣{(x, y) ∈

[
z − ε0

2 R, z + ε0
2 R
]
×Bn−1,ε0R/2 (y) : u (x, y) ≤ µ− + 1

8esω
}∣∣∣∣ .

By Lemma
Expansion of positivityExpansion of positivity
5.10 there exists a positive number s such that∣∣∣∣{y ∈ Bn−1,ε0R/2 (y) : ∃ x ∈

[
z − ε0

2 R, z + ε0
2 R
]
, u(x, y) ≤ µ− + 1

8esω}
∣∣∣∣

≤ |Dn−1,s| =
∣∣∣∣{y ∈ Bn−1,ε0R/2 (y) : ∃ x ∈

[
x− 5

2R, x+ 5
2R
]
, u(x, y) ≤ µ− + 1

8esω}
∣∣∣∣

≤ ν0
∣∣∣Bn−1,ε0r/2 (y)

∣∣∣ .
By combining the previous inequalities∣∣∣∣{(x, y) ∈ Bε0R/2(z, y) : u (x, y) ≤ µ− + 1

8esω
}∣∣∣∣

≤ ε0R |Dn−1,s| ≤ ν0 ε0R
∣∣∣Bn−1,ε0r/2 (y)

∣∣∣ .
Therefore, by (

ni zeroni zero
5.16) and (

delta zerodelta zero
5.17),∣∣∣∣{(x, y) ∈ Bε0R/2(z, y) : u (x, y) ≤ µ− + 1

8esω
}∣∣∣∣

≤ ν |Bn,1|
|Bn−1,1|

ε0
2 R

∣∣∣Bn−1,ε0R/2

∣∣∣ = ν
∣∣∣Bn,ε0R/2

∣∣∣ .
Hence Lemma

De Giorgi type lemmaDe Giorgi type lemma
5.5 can be applied, as in the proof of Lemma

Clustering the positivityClustering the positivity
5.9, it is obtained that u (x, y) >

µ−+ 1
16esω for every (x, y) ∈ Bε0R/4(z, y). In particular, since z is a generic point in [x− 2R, x+ 2R],

we get u ≥ µ− + 1
16esω in Cε0

R
4 ,2

(x1) . �
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Conclusion of the proof of Theorem
main_theoremmain_theorem
5.1. Let ζ be a versor of Rn and Let make the orthogonal

change of variables ϕ that maps the vector ζ on the first axis. The function v = u(ϕ) is a solution
to an equation of the same type of (

equationequation
5.1)

divÃp (x, u,Du) = 0 ,
satisfying the structure conditions (

growth_conditionsgrowth_conditions
5.2) and defined in B4R(x0). Therefore, reasoning as in lemmaSmall cylinderSmall cylinder

5.11,
v ≥ µ− + 1

16esω

in Cε0
R
4 ,2

(ϕ(x1)) . This means that u ≥ µ− + 1
16esω a.e. in a cylinder centered in x1, with length

2R, with radius ε0
4 R and having direction ζ. Let consider the family of versors of Rn with rational

coordinates ζi , i ∈ N. Repeating the previous argument one can find that u ≥ µ− + 1
16esω a.e. in

all the cylinders centered in x1, with length 2R, with radius ε0
4 R and having direction ζi. Since

this is a countable covering of the unitary ball BR(x0), we have that

oscillation in the ball of radius Roscillation in the ball of radius R (5.18) inf {u (x) : x ∈ BR (x0)} ≥ µ− + 1
16esω .

Now the condition (
Holder_estimate_in_the_lemma _ASSUMPTIONHolder_estimate_in_the_lemma _ASSUMPTION
5.8) follows. In fact, with the notation r = 4R and recalling (

oscillation in the ball of radius 4Roscillation in the ball of radius 4R
5.10), it is

obtained that
ω (r) := ω = sup {u (x) : x ∈ B4R (x0)} − inf {u (x) : x ∈ B4R (x0)} = µ+ − µ−

while, for a = 1
4 , from the estimate (

oscillation in the ball of radius Roscillation in the ball of radius R
5.18) for the infimum the following is obtained:

ω (ar) = ω (R) = sup {u (x) : x ∈ BR (x0)} − inf {u (x) : x ∈ BR (x0)}

≤ µ+ − µ− −
1

16esω =
(

1− 1
16es

)
ω .

Therefore, by Lemma
Criterion for Holder continuityCriterion for Holder continuity
5.7, one can get the conclusion

ω (ar) ≤ b ω (r) , ∀ r,
with a = 1

4 and b = 1− 1
16es . As described in the Remark

RemarkRemark
5.8, this completes the proof of Theoremmain_theoremmain_theorem

5.1. �

5.2. Parabolic regularity: the degenerate case.

ThHold Theorem 5.12. Let u be a locally bounded weak solution of (
Eq1Eq1
??) in ΩT . Then, up to modification

on a set of measure zero, u is locally Hölder continuous in Ω× (0, T ]. The Hölder constants can be
determined a priori only in terms of the data.

Lm:2.1 Lemma 5.13 (A Measure Theory Lemma, [?]). Let v ∈W 1,1(Bρ) satisfy

‖v‖W 1,1(Bρ) ≤ γρN−1, |{v > β}| ≥ α|Bρ|,

for some γ ≥ 0 , β ∈ R and α ∈ (0, 1). Then ∀δ ∈ (0, 1) and λ < β, ∃x0 ∈ Bρ and η =
η(α, β, γ, δ, λ,N) such that

Eq:2.1Eq:2.1 (5.19) |Bρη(x0) ∩ {v ≥ λβ}| ≥ (1− δ)|Bρη(x0)|.

We consider now a solution u(x, t) of (
Eq1Eq1
??). We introduce the set

Qρ,τ (x0, t0) := Bρ(x0)× (t0, t0 + τ),
with Qρ,τ ⊂ Ω× (t > 0) and a piecewise smooth cutoff function ζ, 0 ≤ ζ ≤ 1, such that |∇ζ| < +∞
and ζ(x, t) = 0 if x /∈ Bρ(x0). We recall now the energy estimate with (x0, t0) = (0, 0).

For the proof of the following result we refer the reader to the monograph [?] pag.24.
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Lm:2.2 Lemma 5.14 (Local energy estimates). Let u be a local weak solution of (
Eq1Eq1
??). For all t ∈ (0, τ),

∃C = C(p) > 0 such that for all cylinders Qρ,τ (0, 0) ⊂ Ω× (0, τ) and ∀k ∈ R

sup
(0,τ)

ˆ
Bρ×{t}

(u− k)2
± ζ

pdx+
ˆ τ

0

ˆ
Bρ

|∇(u− k)±|p ζpdxdt

Eq:2.2Eq:2.2 (5.20) ≤
ˆ
Bρ×{0}

(u− k)2
± ζ

pdx+ C

ˆ τ

0

ˆ
Bρ

(u− k)p± |∇ζ|pdxdt+

+p
ˆ τ

0

ˆ
Bρ

(u− k)2
± ζ

p−1 ζt dxdt.

Moreover we will use a variant of a DeGiorgi-like Lemma (see [?]). We have assumed that u0 is
non-negative. For a fixed cylinder

Q2ρ,θ(2ρ)p(x0, t0) := B2ρ(x0)× (t0, t0 + θω2−p(2ρ)p) ⊂ Ω× (t > 0),
with θ > 0, let µ± and ω be non-negative numbers such that

µ+ ≥ sup
Q2ρ,θ(2ρ)p

u, µ− ≤ inf
Q2ρ,θ(2ρ)p

u, ω ≥ µ+ − µ−.

Denote by λ and a fixed numbers in (0,1) and by Qρ(θ) = Bρ × (0, θω2−pρp).

Lm:2.3 Lemma 5.15 ( [?], see also [?] pag. 49). Let u be a local weak solution of (
Eq1Eq1
??) and let 0 < a < 1.

There exists a number ν > 0 depending upon θ, a and the data such that if
|(u ≤ µ− + λω) ∩Q2ρ(θ)| ≤ ν |Q2ρ(θ)|,

then
Eq:2.3Eq:2.3 (5.21) u ≥ µ− + a λ ω, a.e. in Qρ(θ).

We remark that in [?] the result of Lemma
Lm:2.3Lm:2.3
5.15 is stated in a more general form; here we simplify

it, according to our hypotheses.

Assume µ− = 0, then Lemma
Lm:2.3Lm:2.3
5.15 can be formulated in this way:

Lm:2.4 Lemma 5.16 ( [?]). Let u be a local weak solution of (
Eq1Eq1
??) and let λ and β be two positive numbers,

with 0 < λ < 1 such that
u(x, t0) ≥ λ β, a.e. x ∈ B2ρ;

then ∀ a ∈ (0, 1)
Eq:2.4Eq:2.4 (5.22) u(x, t) ≥ a λ β, a.e. in Bρ × (t0, t0 + θω2−p(2ρ)p),

with θ = δ

(λβ)p−2 , and δ ∈ (0, 1) is a quantity that depends only on a, and the data.

Lm:2.5 Lemma 5.17 ( [?], sec.5). Let u be a local weak solution of (
Eq1Eq1
??) and let λ and β be two positive

numbers, with 0 < λ < 1 such that
u(x, 0) ≥ λ β, a.e. x ∈ B2ρ;

then ∀t0 > 0 and ∀t ≥ t0 > 0

Eq:2.5Eq:2.5 (5.23) u(x, t) ≥ γ0
λβρ

p
p−2

(t+ ρpωp−2)
1
p−2

, a.e. x ∈ Bρ,

where γ0 depends upon the data and t0.



26 G. DUZGUN, S. MOSCONI, AND V. VESPRI

Lastly let us state the so-called "shrinking lemma"

Lm:2.5 Lemma 5.18 ( [?]). Let u be a local weak solution of
Eq12Eq12 (5.24) ut = divA(x, t, u,Du)− cu.

where c is a non-negative cylinder. Let Q be a cylinder BR × (0, T ) and let ω be the oscillation of
u and assume T ≥ Rpω2−p .Let η < 1 be a strictly positive number. For any level t ∈ (0, T ) define
A(t) ≡ {x ∈ BR : u(x, t) ≥ µ− + ηω}. If there exists a δ0 > 0 such that for any t ∈ (0, T ) we have
that |A(t)| ≥ δ0R

n and if T ≥ Rp(aω2−p), then in the cylinder Q 1
2
equivBR

2
× (T2 , T ) we have

Eq:2.55Eq:2.55 (5.25) |Ak(x, t) : {(x, t) ∈ Q 1
2

: u(x, t) ≤ µ− + 2−kaω}| ≤ C 1√
k
|Q 1

2
|

where k is any positive integer and C depends upon δ0 and the data but does not depend upon
k, η, ω.

First STEP: Setting the geometry of the problem.

The classical approach of the regularity comes by proving a quantitative reduction of the
oscillation of the solutions: i.e if the oscillation of the solution u in a cylinder is ω, we have to
prove that there is a constant η < 1, depending only upon the data, the oscillation of u in the half
cylinder is ηω.

WLOG, we may consider a cylinder Q ≡ {(x, t) ∈ Rn+1 : |x| < 1,−A ≤ t ≤ 0}, where A
is a natural number to be fixed later. We also assume that the oscillation of u in Q is 1, and
0 ≤ u(x, t) ≤ 1. We have proved the regularity result if we are able that there are positive constants
η, η1 such that the oscilllation of u in Q1 ≡ {(x, t) ∈ Rn+1 : |x| < η1,−η1A ≤ t ≤ 0} is lesser than
η.

Second STEP: Clustering the positivity of the solution at the bottom of the cylinder
Q.

Let
Q0 ≡ {(x, t) ∈ Rn+1 : |x| < 1,−A ≤ t ≤ −A+ 1}

and
Q1 ≡ {(x, t) ∈ Rn+1 : |x| < 1

2 ,−A+ 1
4 ≤ t ≤ −A+ 3

4}.

Let S be a set and define with |S| the Lebesgue measure of the set S.
Let A ≡ {(x, t) ∈ u ≥ 1

2}. WLOG we may assume |A| ≥ |Q1| (otherwise we would consider
v = 1− u).

Apply Lemma
Lm:2.2Lm:2.2
5.14 choosing k = 0 and a cut-off functions ζ such that ζ = 1 in Q1 and ζ = 0

outside Q0 to get ˆ ˆ
Q1

|Du|pdxdt ≤ C.

Let

B ≡ {−A+ 1
4 ≤ τ ≤ −A+ 3

4 :
ˆ
B 1

2

|Du|p(τ)dx ≤ 16C such that the measure of (x, τ)

with x ∈ B 1
2
≥ 1

8 |B 1
2
|}.
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We have that |B| ≥ 1
16 . Choose τ0 ∈ B. By Lemma

Lm:2.1Lm:2.1
5.13, there exists x0 ∈ B 1

2
and ρ > 0 such

that
|Bρ(x0) ∩ {u ≥ 1

4}| ≥ (1− ν

2 )|Bρ(x0)|

where ν is the constant defined in Lemma
Lm:2.3Lm:2.3
5.15 choosing a = 1

2 and θ = 1.

Third STEP: Expansion of positivity in time.

Apply energy estimastes in the cylinder with basis Bρ(x0) at time level τ0 and height τ1. Choose
as cut-off function, a function ζ independent of time t with ζ = 1 on B(1−ε)ρ(x0), ε ∈ (0, 1) to be
chosen later and ζ = 0 outside Bρ(x0) and get

sup
t∈(τ0,τ0+τ1)

ˆ
B(1−ε)ρ(x0)

(u(t)− 1
4)2
−dx

≤
ˆ
Bρ(x0)

(u(τ0)− 1
4)2
−dx+ Cε−p

ˆ ˆ
Bρ(x0)×(τ0,τ0+τ1)

(u(t)− 1
4)p−dxdt

Let ξ ∈ (0, 1
4). Denote with A(t) the set in B(1−ε)ρ(x0) where u(x, t) ≤ ξ.

The previous inequality says that for any t ∈ (τ0, τ0 + τ1)

sup
t∈(τ0,τ0+τ1)

|A(t)|(1
4 − ξ)

2 ≤ ν

2 |Bρ|(
1
4)2 + Cε−pτ1|Bρ|(

1
4)2

Hence

sup
t∈(τ0,τ0+τ1)

|A(t)|
|B(1−ε)ρ|

≤ (1− ε)−n
(1

4)2

(1
4 − ξ)2 (ν2 + Cε−pτ1)

Choose ε and ξ so close to 0 such that (1− ε)−n
(1

4)2

(1
4 − ξ)2 = 4

3 and τ1 = (νε
p

4C ) so that

sup
t∈(τ0,τ0+τ1)

|A(t)|
|B(1−ε)ρ|

≤ ν.

Let ρ1 = (τ1ξ
p−2)

1
p . In the cylinder with basis B(1−ε)ρ(x0) at time level τ0 and height τ1, there is

at least a subcylinder centered in x1, Qx1 , having basis Bρ1(x1) at time level τ0 and height τ1 such
that |(x, t) ∈ Qx1 : u(x, t) ≤ ξ| ≤ ν|Qx1 . By Lemma

Lm:2.3Lm:2.3
5.15, in the half-cylinder we have that u ≥ ξ

2 .
In particular for any x ∈ B ρ1

2
(x1) we have that u(x, τ0 + τ1) ≥ ξ

2 .

Therefore by Lemma
Lm:2.5Lm:2.5
5.18, we have that for any t > 0, for any x ∈ B ρ1

4
(x1)

u(x, t+ τ0 + τ1) ≥ γ ξ

(t+ 1)
1
p−2

where γ is a constant depending on ξ and ρ1.

Fourth STEP: Change of variables.

For sake of semplicity change the origin from (0, 0) to (x1, τ0 + τ1). Reasoning as in [?] introduce
the function

w(t, x) = u(x, t)t
1
p−2 .
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By the change of variable t = eτ The function w(x, τ) is a non negative solution of the equation

Eq:5.2Eq:5.2 (5.26) wτ = div e
τ( p−1
p−2 )A(x, t, u,∇u)− 1

p− 2w,

that is

Eq:5.3Eq:5.3 (5.27) wτ = div Ã(x, τ, w,∇w)− 1
p− 2w,

Note that Ã satisfies the same structure conditions of A.
By the results of the previous step, there are two positive constants r0 and ε0, such that for any

x ∈ Br0 and for any t > 0, w(x, t) ≥ ε0. Choose k0 such that

Fifth STEP: Proof concluded.

Apply the shrinking lemma to w with R = 8, ω = 1, µ− = 0, η = ε0, T = 8pε2−p
0 2k0+1, where

k0 is an integer to be chosen. Let k0 such that C 1√
k
≤ ν where C is the constant appearing in

Eq:2.55Eq:2.55
5.25 and ν is the constant appearing in Lemma

Lm:2.3Lm:2.3
5.15 choosing a = 1

2 . Therefore, by the shrinking
lemma and Lemma

Lm:2.3Lm:2.3
5.15 we have that w ≥ ε0

2k0+1 in the cylinder B2 × (3
4T, T ). recalling that

w(t, x) = u(x, t)t
1
p−2 and t = eτ , we have reduced the oscillation of u choosing, in the First Step,

the length of the cylinder equal to A = e8pε2−p
0 2k0+1 + 1

5.3. Parabolic regularity: the singular case. In this section we want to prove Theorem
ThHoldThHold
5.12

in the singular case 1 < p < 2. We give a proof of the based on a result proved in [?].

Geom Lemma 5.19. Let u be a non-negative, local, weak solution to equation (
Eq1Eq1
??)

Assume that 1 < p < 2 (i.e. we are considering the singular case)
[u(·, t) > M ] ∩Bρ(y) > α|Bρ|

for all times
s− εM2pρp ≤ t ≤ s

for some M > 0, and some α and ε in (0, 1), and assume that B16ρ × [s− εM2pρp, s] is contained
in the domain.

There exist σ ∈ (0, 1) and η ∈ (0, 1
2ε), that can be determined a priori, quantitatively only in

terms of the data, and the numbers α and ε, and independent of M , such that

Eq:sing.3Eq:sing.3 (5.28) u(x, t) ≥ σM ∀x ∈ B2ρ(y)
for all times

s− ηM2pρp < t ≤ s

Thus, this measure-theoretical information on the measure of the "positivity set" in Bρ(y) for all
times in implies that such a positivity set actually "expands" to B2ρ(y) almost for comparable times

The second argument we will use is a L1 form of the Harnack inequality

Thm:2.2 Theorem 5.20 (An L1
loc Form of the Harnack Inequality for all 1 < p < 2, [?] ). Let u be a non–

negative, weak solution to (
Eq1Eq1
??) and let 1 < p < 2. There exists a positive constant C depending

only upon the data, such that for all cylinders Ω2ρ(y)× [s, t]

Eq:2.4Eq:2.4 (5.29) sup
s<τ<t

ˆ
Ωρ(y)

u(x, τ)dx ≤ C inf
s<τ<t

ˆ
Ω2ρ(y)

u(x, τ)dx+ C

(
t− s
ρλ

) 1
2−p
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where λ = N(p− 2) + p. The constant C = C(N, p,Λ)→∞ as either p→ 2 or as p→ 1.

We will prove this result following an alternative argument

Setting the geometry
Up to translations, local parabolic Hölder continuity follows from a decay in oscillation in intrinsic

cylinders of the form
Qρ(ω) := Bρ × [−ε0ω

2−p, 0],
as long as one can find δ, η ∈ ]0, 1[ such that inductively defining the cylinders{

Qn = Qδn(ωn−1)
ωn = osc(u,Qn−1)

for n ≥ 1, it holds the oscillation reduction

ωn ≤ η ωn−1.

Assuming without loss of generality ω0 = 1, at each step, the function

Q1(1) 3 (x, t) 7→ ω−1
n−1u(δnx, ε0ω

2−p
n−1δ

npt)

satisfies the same type of equation as u (as long as ε0 is universally chosen) and osc(u,Q1(1)) ≤ 1.
A further, non intrinsic, change of variable allows to suppose that u solves the equation in
Q2θ = B2θ × [−1, 0] and osc(u,R2θ) ≤ 1, where θ = ε

−1/p
0 is a suitable large constant to be

determined depending only on the data. Translating u we can furthermore suppose 0 ≤ u ≤ 1 in
Q2θ, and we want to prove a quantitative reduction in oscillation in a suitable subcylinder. More
precisely that

osc(u,Bθ × [−η, 0]) < 1− σ
for suitably large θ and small σ, η depending on the data.

Assume without loss of generality that

Eq:firstalternativeEq:firstalternative (5.30)
∣∣∣∣{(x, t) ∈ Qθ : u(x, t) ≥ 1

2

}∣∣∣∣ ≥ 1
2 |Qθ|

(otherwise we can consider 1− u). Then, there exists τ ∈ (−1, 0) such that∣∣∣∣{x ∈ Bθ : u(x, τ) ≥ 1
2

}∣∣∣∣ ≥ 1
2 |Bθ|

and by (
Eq:2.4Eq:2.4
5.29) and Chebyshev’s inequality

Eq:2.4bisEq:2.4bis (5.31)

θN ≤ C
∣∣∣∣{x ∈ Bθ : u(x, τ) ≥ 1

2

}∣∣∣∣ ≤ C ˆ
Bθ

u(x, τ) dx ≤ C inf
−1<s<0

ˆ
B2θ

u(x, s) dx+ C

( 1
θλ

) 1
2−p

Noting that − λ
2−p < N , choose θ so large that

C

( 1
θλ

) 1
2−p
≤ 1

2θ
N

so that (
Eq:2.4bisEq:2.4bis
5.31) gives

θN ≤ C
ˆ
B2θ

u(x, s) dx
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for any s ∈ (−1, 0). Since 0 ≤ u ≤ 1 in Q2θ,ˆ
B2θ

u(x, s) dx ≤ ε|B2θ|+ |{x ∈ B2θ : u(x, s) ≥ ε}|

so that for ε such that
εC|B2θ| ≤

1
2θ

N

it holds
α|Bθ| :=

1
2C θ

N ≤ |{x ∈ Bθ : u(x, s) ≥ ε}| for all s ∈ [−1, 0].
Therefore, by Lemma

GeomGeom
5.19 , we have that there exists σ, η > 0 depending only on the data such that

u(x, s) ≥ σ ∀(x, s) ∈ Bθ × [−η, 0],
which is the claimed reduction in oscillation.
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