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1. INTRODUCTION
2. ELLIPTIC HARNACK INEQUALITY

2.1. Original Harnack. In 1887, The German mathematician C.G. Axel von Harnack proved the
following result in [39)].
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Theorem 2.1. Let u be a nonnegative harmonic function in Br(xo) € R%. Then for all x €
Br(l‘o) C BR(JJU) it holds
R—7r R+r

< < .
(o) < u(@) < T u(ao)
The estimate can be generalized to any dimension N > 1, resulting in
R \N?2R—r R \"?R+r
2.1 < <
(2.1) () s <) < () e,

however, the modern version of the Harnack inequality for harmonic functions is the following
special case of the previous one.

Theorem 2.2. Let N > 1. Then there exists a constant C = C(N) > 1, such that if u is a
nonnegative, harmonic function in Ba,(xg), then
(2.2) sup v < C inf w.

B (x0) By(z0)

The proof of this latter form of the %rnack inequality is an easy consequence of the mean value
theorem, while the more precise form (2.1) can be derived through Poisson representation formula.
The Harnack inequality has several deep and powerful consequences. On the local side, Harnack
himself in [39] derived from it a precisely quantified oscillation estimate. Due to the ubiquity of
this argument we recall its elementary proof. Let zg = 0 and

M, (u) = supu, my(u) = igfu, osc,(u) = My (u) — my(u).

r

Both M (2r) —u and u — m(2r) are nonnegative and harmonic in Ba,, so (BQ) holds for them, thus
M2r) —my(u) < C(M(2r) — My(u)), M.(u)—m(2r) < C(m,(u) —m(2r)),
which added together give
(M (2r) —m(2r)) + (M (u) —my(u)) < C((M(2r) = m(2r)) = (My(u) — mr(u))) .

Rearranging, we obtain

+1
which is the claimed quantitive estimate of decrease in oscillation.

Removable singularity results can also be obtained through the Harnack inequality, as well as
two classical convergence criterions for sequences of harmonic functions. At the global level, it
implies Liouville and Picard type theorems. In particular, Liouville’s theorem asserts that any
globally defingd harmonic function bounded from below must be constant, as can be clearly seen
by applying (2.2) to u — infgy u and letting r — +oo.

C
osc(u) < oo oscer (u),

2.2. Modern developements. In his celebrated paper [49], Moser extended the Harnack inequal-
ity to weak solutions of linear elliptic operators

(2.3) L(u) = Z_ Di(aij(x)Dju) =0

with measurable coefficients.

linell
Theorem 2.3. Suppose u > 0 solves (|2.3i i a ball By, (x0) where a;j are measurable functions
satisfying the ellipticity condition
N
ij=1
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Then there exists a constant C > 1 depending only on N and the ellipticity ratio A/\ such that

sup u < C inf wu.
Br($0) BT'(xO)

Moser’s proof is mostly measure-theoretical, stemming from the De Giorgi approach to the
regularity of solutions of elliptic equations. Such a level of generality allowed to apply essentially
the same technique to nonnegative solutions of general quasilinear equations of the form

(2.5) divA(z,u, Du) = 0.

1
Indeed, in [59] [61], the same statement of the Harnack inequality has been proved for (I%—l 1) instead
of the linear equation (E 3), provided A satisfies for some p >1and A > A >0

(2.6)

A sz > Mz
{ (,8,2) - 2 2 Az x € Bor(mg),s € R,z € RV,

Az, 5,2)] < Alz[P~!

The power of the measure-theoretical approach was then fully exploited in [27], where the Harnack
inequality has been deduced without any reference to an elliptic equation, proving that it is a
consequence of very general energy estimates of Caccioppoli type, encoded in what are the nowadays
called De Giorgi classes. For a comprehensive treatment of the latters see [18].

2.3. Weak Harnack inequalities. Moser’s proof consists in showing that a ‘Fﬁ?é]i?[r form of
Harnack inequality holds for the much more larger class of supersolutions to (i‘ZTBr),—l.e. those
functions satisfying —L(u) > 0 (subsolutions being defined through the opposite inequality). In
modern terms the measure theoretic proof of the Harnack inequality is usually splitted in two parts:

(1) = LP — L* bound: linell
Let u be a nonnegative subsolution of (IZI')}S in By,. For any p > 0 it holds

1
p
(2.7) supu < C (][ |ul? dx)
BT B2r

for some constant C' = C'(N, A/, p).

2) — Weak Harnack inequality: i
( ) . q y . linell N .
Let u be a nonnegative supersolution of (2.3) in Ba,. For any p €]0, 5=/ it holds

1
p
][ wPdr| < Cinfu
BQT BT

for some constant C = C(N, A/, p).

The range of exponents in the weak Harnack inequality is optimal , as the fundamental solution
for the Laplacian shows.

Notice that the L>® — L? bound also implies a Liouville theorem for LP(R"™) nonnegative
subsolutions, while the weak Harnack inequality gives a lower asymptotic estimate for positive
LP(RY) super solutions. From the local point of view, the latter is also sufficient for Holder
regularity and for strong comparison principles.

2.4. Harnack inequality on minimal surfaces. After considering the Harnack inequality for
nonlinear operator, a very fruitful framework was to consider its validity for linear elliptic operators
defined on monlinear ambient spaces, such as Riemannian manifolds. One of the first examples
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of this approach was the Bombieri - De Giorgi - Miranda gradient bound [6] for solutions of the
minimal surface equation

. Du
div| ——— | =
( V14 |Du|2>

The approach of [6], later simplified in [63], consisted in showing that w = log /1 + |Du|? is a
subsolution of the Laplace-Beltrami operator naturally defined on the graph of u considered as
a Riemannian manifold. Since a Sobolev-Poincaré inequality can be proved for minimal graphs
(see [?] for a refinement to smooth minimal submanifolds), the Moser iteration yelds an L™ — L!
bound on w which is the core of the proof.

This approach was pushed forward in [7], where a pure Harnack inequality was shown for general
linear operators on minimal graphs, with applications to Bernstein-type theorems. See also [12] for
other applications of the Harnack inequality on minimal graphs.

2.5. Differential Harnack inequality. It is a classical fact that Harmonic functions in B, (x¢)
satisfy the gradient estimate
SUPR, (o) U

[Duzo)| < O(N)—L200—,

therefore Harnack’s inequality implies that

u(@o)

u>01in By(xzg) = |Du(zo)| < C(N) "

This can be rewritten in the following form:

Theorem 2.4 (Differential Harnack inequality). Let u be positive and harmonic in B, (xg) C RV,
Then

CN)

(2.8) | D log u(zg)| < "

The latter inequality can also be jntegrated back along segments, to give the original Harnack
inequality. The differential form (B%S) of the Harnack inequality clearly requires much more
regularity than the Moser’s one, however, it was proved to hold in the Riemannian setting for
the Laplace-Beltrami equation in the ground-breaking works [12,64], under the assumption of
non-negative Ricci curvature for the manifold. To appreciate the result, notice that all proofs of
the Harnack inequality known at the time required a global Sobolev inequality, which is known to
be false in general under the Ric > 0 assumption.

The elliptic Harnack inequality in the Riemannian setting proved in [64] (and, even more
importantly, its parabolic version proved soon after in [46]) again implies the Liouville property
for semi bounded harmonic functions and it was one of the stepping-stones to the rise of modern
geometric analysis. See for example the survey article [45] for recent results on the relationship
between Liouville-type theorems and geometric aspects of the underlying manifold. The book [52]
gives an in-depth exposition of the technique of differential Harnack inequalities in the framework
of Ricci flow, culminating in Perelman differential Harnack inequality.

2.6. Beyond smooth manifolds. Clearly, the differential approach to the Harnack inequality is
restricted to the Laplace-Beltrami operator, due to its smoothness and its close relationship with
Ricci curvature given by the Bochner identity

APl

Au =
u=~0 2

= | D?u|? + Ric(Du, Du).
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It was only after the works [36,56] that a different approach to Moser’s Harnack inequality on
manifolds was found.! Essentially, it was realized that in order to obtain the Harnack inequality, on
a Riemannian manifold (M, g) with corresponding volume m and geodesic distance, two ingredients
suffices:

~Doubling condition: m(Bar(x0)) < Cm(By(x0))

(2.9) 2
—Poincaré inequality: / ‘u —][ udm‘ dm < C |Du|? dm
By (o) Br(z0) By (o)

for any xg € M and r > 0. These two properties hold in any Riemannian manifold with nonnegative
Ricci curvature, thus giving a Moser-theoretic approach to the Harnack inequality in this framework.
What is relevant here is that Doubling&Poincaré are stable with respect to quasi-isometries
(i.e. bilipschitz homeomorphisms) and thus can hold in non-smooth manifolds, manifolds where
Ric > 0 does not hold (since curvature is not preserved through quasi-isometries), and/or for
merely measurable coefficients elliptic operators. It is worth mentioning that Doubling&Poincaré
were also shown in [13] to be sufficient conditions for the solution of Yau’s conjecture on the
finite-dimensionality of the space of harmonic functions of polynomial growth.

It was a long standing problem to give geometric conditions which are actually equivalent to the
validity of the Harnack inequality, and thus to establish the stability of the latter with respect to
quasi (or even rough) isometries. This problem has recently been settled in [4], to which we refer
the interested reader for bibliographic reference and discussion.

3. PARABOLIC HARNACK INEQUALITY

3.1. Original Parabolic Harnack. Looking at the fundamental solution for the heat equation
ur — Au =0,

e finds out that there is no hope to prove a straightforward generalization of the Harnack inequality
(2.2). In the stationary case, ellipticity is preserved by spatial homotheties and traslations, thus
the corresponding Harnack inequality turns out to be scale and traslation invariant. For the heat
equation, the natural scaling (z,t) — (Az, \%t) preserves the equation and one expects a parabolic
Harnack inequality to obey this invariance. Actually, an explicit calculation shows that it cannot
hold for fized times to > 0 and corresponding space balls B(xzg, Ry), even assuming that to > 1.
However, a similar argument rules out the possibility of a Harnack inequality in parabolic cylinders
as well. The correct parabolic form of the Harnack inequality was found and proved independently
by Pini and Hadamard in [37,54] and reads as follows.

Theorem 3.1. Let u > 0 be a solution of the heat equation in Ba,(zo) X {to — 4p, to +4p*}. Then
there exists a constant v depending only upon the dimension N, such that
(3.1) sup u(-,tg— p?) < C(N) inf (-, to+ p?).

Bp(xO) BP(‘TO)

As expected, this form of Harnack’s inequality respects the scaling of the equations and introduces
the notion of waiting time for a pointwise control to hold. It represents a quantitative bound from
below on how much the positivity of u(xg,tp) (physically, the temperature of a body at a point)
propagates forward in time: in order to have such a bound in a whole ball of radius » we have to
wait a time proportional to 2.

1Actually, to a parabolic version of the Harnack inequality, which readily implies the elliptic one. For further
details see the discussion on the parabolic Harnack inequality below and for a nice historical overview on the subject
see [58], section 5.5.
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t

FIGURE 1. Assuming u > 0 in the boxed region B, (o) x [0,47], the dark grey

area is P;f (o) where u is bounded below by u(zg, 2T), while the light grey is PT (z)
where u is bounded above by u(xg,2T).

Another way of expressing this propagation for a nonnegatiéilsolution on B, g(wo) x [0,4T] is
the following, which, up to numerical factors is equivalent to (B.1),

(3.2) C inf u>wu(x,2T) > C™ sup w,
P (w0) Py (z0)

where ijf (zp) are the part of the forwar geﬁp. backward) space-time paraboloid with vertex
(z0,2T) in B s7:(w0) x [T',3T] (see Figure 2J:

Pi(zo) = {(2,t) : T —tg >t —tg > |z — x0|*}, Pr(z0) = {(z,t) i to—T > tg —t > |z — x>}

A consequence of the parabolic Harnack inequality is the following form of the strong maximum
principle. We sketch a proof here since this argument will play a role in the discussion of the
Harnack inequality for nonlinear equations.

Corollary 3.2 (Parabolic Strong Minimum Principle). Letu > 0 be a solution of the heat equation
in Q x [0,T], where Q is connected, and suppose u(xg,ty) =0. Then u=0 in Q x [0, tg].

Proof. (sketch) Pick P; := (z1,t1) € 2x]0,to[ and join P; and Py = (z¢,ty) with a smooth curve
v : [0,1] — Qx]0,t] such that 4/ has always a positive t-component. By compactness there is
§ > 0 and a small forward parabolic sector P = {¢ >t > |z|?} such that: é%y(o) € v(r)+ P for
all 0 € [r, 74 d] and 2) the parabolic Harnack inequality holds in the form (B.2) for all s € [0, 1], i.e.

u(y(s)) < inf w.
(s)+P:F

These two properties and u(y(1)) = 0 readily imply u(y) = 0. O
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FicUure 2. The regions R, and R_ where the Harnack inequality is stated.

3.2. The linear case with coefficients. In the seminal paper [53] on the Holder regularity of
solutions to elliptic parabolic equations with measurable coefficients, Nash already mentioned the
possibility to obtain a parabolic Harnack inequality through his techniques. However, the first
one to actually prove it was again Moser, who in [50] extended the Harnack inequality to linear
parabolic equations of the form

N
(3.3) ut = Y Di(ay(x,t)Dju).
ji=1
L
Theorem 3.3 (Moser). Let u be a positive weqk, solution of (E‘B) in By x [0,T], where a;j are
measurable and satisfy the ellipticity condition (2.4). For any 0 < t; <t; < tf < t; < T define

R_:= B, x [t1_>t2_]7 R+ = By % [ti‘_?t;]'
Then it holds

(3.4) supu < C(N, A, A\t 2) 1nfu
R_

Using the nagﬁ]ral scaling of the equation, the previous form the parabolic Harnack inequality can
be reduced to (8.1). Later, in [51], Moser himself simplified his proof avoiding the use of a difficult
parabolic versions of the John-Nirenberg BMO estimate. Nash program was later established
in [31].

As in the elliptic case, the paraboljc Harnack inequali &y provides an scﬁllation estimate giving
the Hoélder continuity of solutions to @3 ) subject to 4 Moreover, E@pz) readily yelds a strong
minimum principle for nonnegative solutions of (|

On other hand, Liouville theorems in the parabohc settlng are more subtle and do not follow from
the parabolic version of the Harnack inequality. In fact, the Liouville property is false in general
since, for example, the function u(z,t) = e+ is clearly a nontrivial positive eternal (i.e., defined
on RV x R) solution of the heat equation. A fruitful setting where to state Liouville propertles in
the one of ancient solutions, i.e. those defined on an unbounded interval | — oo, Tp].

Theorem 3.4 (Widder). Let u > 0 solve the heat equation in RN x| — oo, Ty[. Suppose for some
to < Tp it holds
u(x, to) < Ce?ll#D, |z| >> 1.
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Then, u is constant.

The latter has been proved for N =1 in [67], and we sketch the proof in the general case. By
the Widder representation for ancient solutions (see [47]) it holds

(3.5) u(x,t) = /RN e EHHIE dpug

for some nonnegative Borel measure p. Call v = etolél® w1 and observe that the Holder inequality
with respect to the measure v implies that = — log u(x,tp) is convex. The assumption then implies
that logu(x,tp) is constant and thus x — u(z,ty) is constant as well. Differentiating under the
integral sign we obtain

0= PDu(ato)luo = [ PO

for any polinomial P such that P(0) = 0. By a classical Fougjer transform argument, this implies
that v = ¢dg and thus u(z,t) = ¢ due to the representation (3.5).

Compare with [60] where it is proved that under the growth condition 0 < u < Ceellel /1t for
t < 0, there are no ancient non-constant solutions to the heat equation on a complete Riemannian
manifold with Ric > 0.

)

3.3. Heat Kernel estimates. Using MosergiSHarnack inequality, Aronsson proved in [1] a two
sided bound on the fundamental solution of (B.3), which reads

1 _clz=u? 1 lz—yl?

ca—svrt - sThwsy) s o—orme

for some C'= C(N, A, \) and t > s > 0, where the fundamental solution (or heat kernel) is defined
as the solution of

o = Zﬁzl Dy, (aij(z,t) Dy T)  in RN x s, +o0],

[(z,t;-,8) =% 0y, as t | s, in the measure sense.

(3.6)

In [31], the previous kernel estimate was proved through Nash approach, and was shown to be
equivalent to the parabolic Harnack inequality. b L

A global Harnack inequality also follows from (E‘6) if uw > 0 is a solution to (E‘B) on RN x R,
and t > s > 7 > 0, then using the representation

u(z,t) = /RN D(z,t; &, m)u(, 1) dE, t>T,

and the analogous one for (y, s), we get

ut) = [ Tats& Il (g €T (.53l 7) e

1 /s—T 5 le—¢? | 1 ly—¢?
> U(y,s)@ <t—7‘) iIglfe_C =TT er

Now if s/t < 1/(2C?) we choose 7 = 0 and compute

o —&?  ly—¢&P _ Jz—yP 1
— > — A= —.
Ct—T + s—17 — AMt—s) 2C
while if s/t > 1/(20?), we set 7 = s — (t — 5)/(4C?) > 0 obtaining
o —&®  ly—€&P eyl 11
_ > _ Ne = -
¢ =7 | e—r © At —s)’ 2C 403
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while
§—T 1
> —.
b t—7 — 402
Therefore the kernel bounds (%_6) imply a Harnack inequality at large, often called sub-potential lower
bound, for positive solutions u of (3:3) on R x]0,T[: there exists a constant C' = C(N, A, \) > 1
such that

N
1 2 gl
(3.7) u(z,t) > au(y, s) (j) = forall T >t > s> 0.

A similar global estimate, with a non-optimal exponent o = a(IN, A, \) > N/2 was already derived
through the so-called Harnack chain technique by Moser in [50].

3.4. Riemannian manifolds and beyond. Following the differential approach of [?], Li and
Yau proved in [46] their celebrated parabolic differential Harnack inequality.

Theorem 3.5. Let M be a complete Riemannian manifold of dimension N > 2 and Ric > 0, and
let uw > 0 solve the heat equation on M x Ri. Then it holds

N
(3.8) |Dlogul? — d;(logu) < %

In the same paper many variants of the previous inequality are considered, including one for
local solutions in Bg(zo)X |to — to [ much in the spirit of [12] and several consequences are also
derived. Integrating inequality (B.8) along geodesics provides, for any positive solution of the heat
equation of M x Ry

N 2
s\ 2 _di(zy)
(3.9) u(z, t) > u(y, s) (t) e A=s) t>s>0,

where d(z,y) is the geodesic distance between two points x,y € M. This, in turn, gives the heat
kernel estimate (see [58, Ch 5])

1 _cd@w) C _ 1@y
- ¢ = <I(z,t;y,8) < —————€ T i-s |
CV(z,\t—s) <T@ty s) < V(z, v/t —s)
where V(x,r) is the Riemannian volume of a geodesic ball B(z,r). Notice that, in a general
Riemannian manifold of dimension N > 2,

(3.10)

V(e r) >~ for small r > 0,
but, under the sole assumption Ric > 0, the best one can say is
é <V(x,r) <COrl, for large r > 0.
Therefore, while Li-Yau estimate on the heat kernel coincides with Aronsson’s one locally, it is
genuinely different at the global level.

Other parabolic differential Harnack inequalities were then found by Hamilton in [38] for compact
Riemannian manifolds with Ric > 0, and were later extended in [43,60] to complete, non-compact
manifolds. Actually, far more general differential Harnack inequalities are available under suitable
conditions on the Riemannian manifold, see the book [52] for the history and applications of the
latters. v

Again, the differential Harnack inequality (%_8) requires a good deal of smoothness P{)th on the
operator and on the ambient manifold. Yet, the corresponding pointwise inequality (IB“&) doesn’t
depend on the smoothness of the metric g;; but only on its induced distance and the dimension,
hence one is lead to think that a smoothness-free proof exists. Indeed, the papers [36,56] showed
that the parabolic Harnack inequality (and the corresponding heat kernel estimates) can still be
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obtained through a Moser-type approach based solely on the Doubling & Poincaré condition (EBQ)
In fact, [36,56] independently proved the following equivalence.

Theorem 3.6 (Parabolic Harnack principle). For any Riemannian manifold the following are
equivalent:

H
(1) The parabolic Harnack ineguality ([g_l)
(2) The heat kernel estimate (B.10).
(8) The Doubling € Poincaré condition (EEQ)

Since Doubling & Poincaré are stable with respect to quasi-isometries, the previous theorem
ensures the stability of the parabolic Harnack inequality with respect to the latters, and thus its
validity in a much wider class of Riemannian manifolds than those with Ric > 0. Condition (3) also
ensures that the parabolic Harnack inequality holds for general parabolic equations with elliptic
and merely measurable coefficients, see [57]. Actually, under local regularity conditions, it can be
proved for metric spaces which are roughly isometric to a Riemannian manifold with Ric > 0, such
as suitable graphs or singular limits or Riemannian manifolds.

3.5. The nonlinear setting. A deep analysis of Moser’s proofs reveals that the linearity of the
second order operator is immaterial, and that essentially the same arguments apply as well to
nonnegative weak solu@ipz;ls to a wide family of quasilinear equations. In [2,62], the Harnack
inequality in the form (B.4) was proved to hold for nonnegative solutions of

(3.11) up = divA(x, u, Du)
where the function 4 : Q x R x RY — R¥ is only assumed to be measurable and satisfying

Az, 8,2) - 2 > Nz|%,
|A(z, s,2)| < Alz],

case of general p-growth conditions h p # 2 seemed instead a difficult task. He stated the

for some given positive constants A nlg% ‘A\:h Trudinger noted that the Harnack inequality for the
.0) wit
validity of the Harnack inequality (B ) for positive solutions of the doubly nonlinear equation

(uP~1); = divA(z, t,u, Du)

rowth

where A obeys (B%)_Wfth the same p as the one appearing n the right hand side, thus recovering
a form of homogeneity in the equation which is lacking in (8711). The doubly nonlinear result has
later been proved in [35,41] but it took around forty years to obtain the right form of the Harnack
inequality for solutions of (B.11) under the general p-growth condition (B%W the principal part.
The next chapter will deal with the latter problem.

It is worth noting that another parabolic equation which presented the same kind of difficulties
is the porous medium equation, namely

ur = Au™, m > 0.

In fact, most of the results in the following sections have analogue statements and proofs for
positive solutions of the porous medium equation. T %{eep things as simple as possible, we chose
not to treat this equation, limiting the exposition to (8711). The interested reader may consult the
monographs [25,66] for the corresponding results for porous media.
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4. SINGULAR AND DEGENERATE PARABOLIC EQUATIONS

4.1. The prototype equation. Let us consider the parabolic p-Laplace equation

(4.1) = div(|Du|P?Du), p>1,

which can be seen as a parabolic elliptic equation with |Du|P~2 as (intrinsic) isotropic coefficient.
The coefficient vanishes near a point w, ere Pu = 0 when p > 2, while it blows up near such a point
when p < 2. For this reasons we call (E ) %legenemte when p > 2 and singular if p < 2.

In the fifties, the selmlflal paper by Barenblatt was the starting point Qf the study of the p-
Laplacian equation (E_I')'p—l [3] Barenblatt found explicit solutions to E_U}Lplaymg the role of the
fundamental solution.

Theorem 4.1. For any p > N+1 and M > 0, there exist constants a,b > 0 depending only on N
and p such that the function

_p__p-l
=X [aMi??—f _ b(’”ﬁ‘) p_l] > 2,
tx +
(4.2) Bp v (x,t) := L
_N pp=2 [\ P-T]2
t A[aMMl +b(1) ] if 2 > p,
tx
where
A=N(p-2)+p
solves the problem
ug = div(|Du[P~2Du) in RN x 0, +-o0],
u(-,t) =* Mdo ast] 0.

The functions B, s are also called fundamental solution of mass M, or simply fundamental
solution when M = 1, in which case one briefly writes B, 1 = B,,. Uniqueness of the fundamental
solution for the prototype equation was proved by Kamin and Vazquez in [40] (the uniqueness for
general monotone operators is still not known). lapl

The Barenblatt solutions show that when (%I ) is degenerate the diffusion is very slow and the
speed of the propagation of the support is finite, while in the singular case the diffusion is very fast
and the solution may become extinct in fini tlme These two phenomena are incompatible with a
parabolic Harnack inequality of the form ( or ( k:) (suitably modified taking account of the
natural scaling) such as

(4.3) C™ sup u(-,tg — pP) < ulwo,to) < C inf u(-,to + pP)
Bp(x0) By(z0)

with a constant C' depending only on N. Indeed, in the degenerate case the Barenblatt solution
F%compact support for ané_iggsitive time, violating the strong minimum principle dictated by
(1:3) (the proof of Corollary still works). Regarding the singular case this incompatibility is not
immediately apparent from the Barenblatt profile itself and in fact the strong minimum principle
still holds for solutiorllg ?eﬁned in RN x]0, T'[ when p > 1\%751 However, consider the solution of the
Cauchy problem (E—Upl'n a cylindrical domain ©Q x Ry with u(0,z) = ug € C2°(2) and Dirichlet
boundary condition on 9Q x R, with Q bounded. An elementary energetic argument (see [?7, Ch
VII]) gives a suitable extinction time T*(€2, up) such that u(-,t) = 0 for ¢ > T*, again violating the
strong minimum principle.
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Let us remark here that for 1 < p < ]\2,—% =: p, the Barenblatt profile ceases to exists. As it will
be widely discussed in the following, the exponent p, plays a fundamental, and in some aspects
still unclear, role in the whole theory of singular parabolic equations.

4.2. Regularity. Let us consider equations of the type
(4.4) uy = divA(z, u, Du)
with general measurable coefficients obeying

A sz > AP
(4.5) {‘ ff(a:a;’ss,’zz))‘ zg _A|z|p|ﬂ ,
We are concerned with weak solutions in £ x [0, 7], namely those satisfying

to to
/ugo dx —I—/ / [—upr + A(z,u, Du) - | dedt =0
t1 t1 Q

where ¢ is an arbitrary function such that

@ € W20, T; L3(Q)) N LP(0, T; W, P ().

This readily implies that
u € Cloe(0, T LE(Q)) N LY (0, T; WP (9)).

loc loc

In the case p = 2, the local Holder continuity of solutions to (Iﬂ%) has been proved by Ladyzhen-
skaya and Ural’tseva in [?] through a parabolic De Giorgi approach. The case p # 2 was considered a
major open problem in the theory of quasilinear parabolic equation for over two decades. The main
obstacle to its solution was that the energy and logathmic estimates for (H) are non-homogeneous
when p # 2. It was solved by DiBenedetto [?] in the degenerate case and Chen & DiBenedetto
in [?,?] for the singular case through an approach nowadays called method of instrinsic scaling.
Roughly speaking, in order to recover from the lack of homogeneity in the integral estimates one
works in cylinders whose natural scaling is modified by the oscillation of the solution itself. In the
original proof, these rescaled cylinder are then sectioned in smaller sub-cylinders and the so-called
alternative occurs: either there exists a sub-cylinder where u is sizeably (in a measure-theoretic
sense) away from its infimum or in each sub-cylinder it is sizeably away from its supremum. In
both cases a reduction in oscillation can be proved, giving the claimed Holder continléli?.

Stemming from recent techniques built to deal with the Harnack inequality for (4.4), simpler
proofs are nowadays available, avoiding the analysis of said alternative. The main idea is to use a
measure-theoretical Lemma proved in [?] called clustering of positivity coupled with the expansion
of positivity effect. In the last section we will provide such a siﬁéng%liﬁed proof.

As it turned out, Holder continuity of bounded solutions to (4-5) (in fact, to much more general
equations) always holds. In the degenerate case p > 2, a-priori boundedness follows from the natural
notion of weak solution given above, but in the singular case there is a precise threshold: local
boundedness is guaranteed only for p > p.y := ]\2,—]}:2, which is therefore another critical exponent
for the singular equation, smaller than p,. However, when 1 < p < p., weak solutions may be
unbounded: for example, a suitable multiple of

lapl
solves the model equation (El ) in the whole RV x R.
The critical exponents p, > Pux Iis f{lom the so-called L™ — L®-estimates for sub-solutions,
which are parabolic analogues of (E( % Namely, when p > p*, a L' — L> estimate holds true,
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eventually giving the intrinsic parabolic Harnack inequality. If only p > p., is assumed, one can
still obtain a weaker L™ — L*° estimate with r > 1 being the optimal exponent in the parabolic
embedding

N+2

L>(0,T; L?(Bg)) N LP(0, T; WYP(BR)) < L"(0,T; L™ (Bg)), r=p—

which is ensured by the notion of weak solution.

4.3. Intrinsic Harnack inequalities. DiBenedetto and DiBenedetto & Kwong in [16] and [26]
f; uPad fmd proved the suitable form of the parabolic Harnack inequality for the prototype equation
(ET)'ELComparison theorems where essential tools of the proof. A similar statement was later
proved to hold for general parabolic quasilinear equations of p-growth in [], tliusr %I\gc%iding any use
of the comparison principle (which may not hold under the sole assumption (22

Theorem 4.2 (Intrinsic Harnack inequality, degenerate case). Let p > 2 and u be a positive weak
solution of

up = divA(z, u, Du)
I
in Q x [0, T] where A satisfies (ﬁ%) Suppose
0y = u>"P(z0,t0) > 0

for some (xg,t9) € Qx]0,T[. Then, there exists C = C(N,p,A) >0 and e = ¢(N,p,A) > 0 such
that if

(4.6) Bo,(x0) % [to — €604 (2p)P, to + €0, (2p)F] C Q2x]0,T7,

then

(4.7) O™ sup u(-,tg — 0y pP) < ulzo, to) < C inf u(-,to + €6, pP).
Bp(m()) Bﬂ(xo)

H
Clearly, for p = 2 we recover (E_l) For p > 2, the waiting time is larger the smaller u(xq, to)
which means that u(xg, t9) bounds from below w on thinner and thinner "p-paraboloids" the smaller
u(l‘o, to) is.

2N

NI and u

Theorem 4.3 (Intrinsic Harnack inequality, singular supercritical case). Let 2 > p >
be a positive weak solution of

uy = divA(z, u, Du)
I
in Q x [0, T] where A satisfies (ﬁ%) Suppose
0y = u>P(z0,t0) > 0

for some (xo,ty) and let

M= sup u*P
Bp(zo)x{to}
Then, there exists C = C(N,p,A) >0 and ¢ = e(N,p,A) > 0 such that if
(4.8) By x [M(2p)P, M (2p)F] € Qx]0,TT,
then
(4.9) C™t sup u(-,tg — 6y pP) < ulzo, to) < C inf u(-,to + €6, pP).
BP(IO) BP(mO)
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We thus see that in the singular case, u(xg,ty) bounds from below u in wider and wider
paraboloids the smaller it is. The main issue in the singular supercritical case lies in the qualitative
requirement (4.8, which prevents a direct application of the Harnack inequality to sub-potential
lower bounds \éﬁlich we’'ll discuss later. A form of the Harnack inequality only requiring the natural

o . con . . . o . r
condition (IZI.Gi is much desirable, but it is not known under the sole structural conditions (E%) If
a monotonicity assumption holds, one actually has the optimal statement.

IEH Theorerlp 4.4 (Intrinsic Harnack inequality, singular supercritical monotone case). Suppose A sat-
isfies (EgS) and the monotonicty assumption

(4.10) (A(zx,s,2) — Az, s,w)) - (z—w) >0 Vz,we R,
d
Then, Theorem %.Ze holds for all p > ]\%—JL

In the singular supercritical ca; ¢ another, unexpected form of the Harnack inequality holds,
which is essentialy different from (% 7 ;

Theorem 4.5 (Elliptic arnack inequality for singular supercritical parabolic equations). Let the

assumptions of Theorem .5 hold. Then there exists C = C(N,p,A) >0 and ¢ = e(N,p, A) such
that
(4.11) sup wu<C inf wu,
Q .0, (T0,t0) Qp,0., (o,t0)

where Q .0, (0, t0) is the forward-backward intrinsic cylinder

Qp.0. (0, t0) = Bp(wo) x {|t —to| < ey pP}. - o
cmon con cO
Moreover, if (ITTU) is also assumed, the claim holds under assumption (IZI.Gi instead of (IZI§)
arnack
Recall that an elliptic form of the Harnack inequality such as (E [ i does not hold for the classical
heat equation. This forces the constants appearing in the previous theorem to blow-up as p 1 2.
The previous examples also show that they must blow-up also for p | p.. harnack
In the critical and subcritical case 1 < p < p, a pointwise Harnack inequality such as (E(;
cannot hold. This is not only due to the boundedness issues described in the previous section when

D < Dux, as for example
N

(a+blz|=2)

lapl
is a bounded solution in RY x R (ﬁﬁlthgaykrototype equation (Bl ) for any p €]1,p.[, N > 2 and

ox0] (4.12) w(z,t) = (T — 1)

N+2
2
+

suitably chosen a,b > 0, violati L), TO see this, note that for bounded solutions, the opening
of the paraboloids derived from (E% ; where v is corfcraél_%l(_iB by u(xg, tg) is bounded from below, thus
the proof of the str ng minimum principle Corollary B.2 carries over. Since the previous function
violates the latter, (%Tf%annot hold. In passing, this argument also shows that, despite extinction
in finite time alwaygs holds for singular equations in bounded domains, it never holds for spatially
entire solutions of (B.11). In the critical case

N-—1
2N 5
(4.13) u(w,t) = (e +[2|3T)
. lapl _ . . .
again solves (El ) in RY x R when p = p,, N > 2 and suitable ¢ > () %Elllcllla%kduect computation.
It doesn’t violate the stong minimum principle, however notice that (1.7) implies a weak form of

monotonicity for space-time entire nonnegative solutions, namely u(x,t) > Cu(x, s) for all t > s,
which is violated by (|21_13)

In the subcritical case, different forms of the Harnack inequality have been considered. Here
we mention the one obtained in [?] generalizing to monotone operators a result of Bonforte and
Vazquez [8], [9] on the prototype equation.
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Theorem 4.6 (Subcritical case). Let 1 < p < 2 and u be a locally bounded positive weak solution
of
ug = divA(z, u, Du)

in Q) x [0,T] where A satisfies the general growth condition (&%) and the monotonicty assumption

cmon

(IZITU) For (xo,t0) € Q x [0,T] and for any fized r > 1 such that A\, :== N(p — 2) + pr > 0 set

pr
xr
2-p $ to d
0, = <][ u(z, to) dx) , A, = fB (20)

There exists constants C(N,p,A), e = e(N,p,A) and § = (5(N,p,A) > 0 such that if
Byy(xo) x [to, to +€0(4p)P] C Q2x]0,T7,

S ie

then
(4.14) sup  u<CA°

< w _ inf w
Qp,0, (wo,to) Qp.0u (z0:t0)

where Qpﬁu (x0,to) is the space-time cylinder

Q0. (0, t0) := By o % [to +€0up”, to + € 0u(2p)"].

Notice that in the singular s critical case one can take r = 1 and thus A, = 1 in the Levious
statement to recover Theorem ¥.4. The main point of the (elliptic) harnack inequality (1.14) lies
in the dependence of the constant from the solution itself. In general, a constant depending on u
won’t allow to deduce Holder continuity, but as noted in [?] the peculiar structure of A, permits
such a deduction.

.. .. . cmon .
Other weaker forms not requiring the monotonicity assumption (IZFTD) are available, (see [23]
r [?][Theorem 11.1]), however the picture is not completely clear up to now.

4.4. Liouville theorems. As for the classical heat equation, a one sided bound is not sufficient
to ensure triviality of the solutions of the prototype equation (El ). Indeed, a suitable positive
multiple of the function

,_.

p—1

u(e,t) = (1— o+ ct)
lapl
solves (EI ) on R x R whenever ¢ > 0 and p > 2.

Theorem 4.7. Let p > 2 and u be a non-negative solution of
(4.15) up = div(A(z, u, Du)) on RV x| — 00, T
under the growth condition (E%) If for some to < T, u(-,to) is bounded above, then u is constant.

An optimal Liouville condition such as the one of Theorem gﬂ%unknown and clearly the previous
example shows that it must involve polynomial growth condition instead of a sub-exponential one.
For the prototype equation, a polynomial growth condition on both x and ¢ more in the spirit
of [60] is considered in [?].

On the complementary side, boundedness for fized xg can also be considered, yielding:

’]é%lgleorem 4.8. Let p > 2 and u be a nonnegative solution in RN x R of 5_15 under condition
(15). If

lim sup u(zg,t) < +00 for some xy € R,
t—+o00

u s constant.
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harnack
In the singular, supercritical case, the elliptic form (E_l—l'ﬁ‘_oF the Harnack inequality directly
ensures that, contrary to what happens for classical heat equation, a one-sided bound suffices
to obtain a Liouville theorem. This is no longer true in the critical and subcritical case, as the
functions (#.13) and (4.12) show. However, a two sided bound suffices.

Theorem 4.9. Let 1 < p < 2 and u be a weak solution on RY x| — oo, T of (%15) under condition
15). If u is bounded below and above, it is constant.

4.5. Harnack estimates at lar gﬁbBy Harnack estimates at large, we mean global results such
as the sub-potential lower bound (B.7) or the two-sided Kernel estimate (B.6). For the quasilinear
equation

(4.16) up = divA(z, u, Du)

I
with p-growth assumptions (EgS) gygn%]l%tt%ral candidates to state analogous inequalities are the
Barenblatt profiles B, ys given in (EZ ). When A satisfies smoothness and monotonicity assumptions

such as
(4.17) (A(x,s,2) — Az, s,w)) - (z —w) >0 Vs €R, z,z,w e RY,
. |A(x,8,2) — A(x,m,2)] < AL+ |2])P 7 s — 7| Vs,r €R, z,2 € RV,

Such set of assumptions imply a comparison principle for weak solutions and guarantee the
existence of the solution of a Cauchy problem with L' initial datum.

We start by considering the singular supercritical case, since the diffusion is fast and positivity
spreads instantly on the whole R, giving a behaviour similar to the one of the heat equation.

Theorem 4.10 ( HUB%Letalg’é-Nl < p < 2 and u be a nonnegative solution of (HJIG) in RN x 10, 4-o00]
under assumptions (175), (ITU) There is C = C(N,p,A) > 0, 6 = 6(N,p,A) > 0 such that if
u(zg, to) > 0, then

(4.18)  w(x,t) > yu(zo, to)Bp (u(aco,to) P, ) , (x,t) € RY x [to(1 — &), +oo].

to

As an example, assume g = 0, to = 1 and u(FPy) = 1. Then, the previous sub-potential lower

bound becomes

u(z,t) = Bp(,t)

for any (z,t) € RY x [1 —§,00[. Such a result is obviously sharp, becanse it is sharp for the

Barenblatt solution. As a corollary, for any fundamental solution of (4.16), one obtains the
two-sided kernel bounds (proved in [55] for the first time)

CipryMl (l’, t) < F(xv t) < CBIHMQ ($’ t)
for some C, My, Ms > 0 depending on_the data.

Notice how the elg%cic nature of (A.16) for p € ]p*,s2 128 expressed by the forward-backward
Harnack inequality (4.9), allows to obtain the bound (4.18) also for some t < ty. As shown in [?],
this phenomenon not only happens for past times near ty but, as long as the spatial diffusion has
had enough roo n fo happen, it also hold for arbitrarily remote past times. More precisely, in [?] it
is proved that (E [¥) holds for all

t
(x,t) € P¢ = {t > 0, |z — zo[Pu(zy, t0)> P > 1 — t} ,
0
while a weaker, but still optimal, lower bound holds in P.

In the degenerate case p > 2, the finite speed of propagation implies that if the initial datum wug
has compact support, then any solution of (A.16) keeps having compact support for any time ¢ > 0.
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Thg finite speed of propagation has been quantified in [?], under the sole p-growth assumption
).
Theorem 4.11. Let p > 2 and u be a weak solution of the Cauchy problem

uy = divA(z,u, Du) in RN x )0, +o0],
u(z,0) = ug

under assumption (E%) If Ry = diam(suppug) < 400, then
p—2
diam(supp u(-, t)) < 2R + Ctl/’\HuoHLi(RN),
where A= N(p —2) +p and C = C(N,p,A).
Such an estimate actually holds for a suitable class of degenerate systems, see [?].

Theorem 4.12. Let p > 2 and u be a nonnegative solution of (5916) in RN x )0, +oo[ under
assumplions (EES), (&1’7) There is C = C(N,p,A) > 0,e = 6(N,p, A) > 0 such that if u(xo, to) > 0,
then (A.I8) holds for

t—ty [t—to\P/*
t > to, ’.T - mo‘p < 8u(x()vtO)pizto mln{ t 07 ( 0) ) ’

0 to
with \ = N(p — 2) + p.

1b
The last condition on the region of validity of (IZSIRI'S) is sharp, especially when ¢ ~ ty and the
minimum is the first one (see [?, Remark 1.3] for details).
Again, the sub-potential lower bound implies the two-sided Kernel estimate.

Theorem 4.13. Let p > 2. Under assumption (ﬁ%) and (E%f? o Sqyqtion (%6) possesses at least a
fundamental solution, and any fundamental solution satisfies (77) for suitable My, My, C depending
only on N,p and A.

5. EXPANSION OF POSITIVITY APPROACH TO REGULARITY

5.1. Elliptic regularity. An alternative and self contained proof of the Holder continuity of
locally bounded solutions to some elliptic equations, including the equation associated with the
p—Laplacian operator, was given in [30]. By combining the techniques introduced by De Giorgi
and Moser, this method can be seen more geometric and relatively intuitive.

It is known that Poincaré estimates are necessary to obtain the Harnack inequality and regularity
estimates. Since the approach here uses only a 1—dimensional Poincaré inequality, i.e., Poincaré
inequalities direction by direction, it could be useful for anisotropic as well as non-homogeneous
operators, such as Hormander operators and the subelliptic Laplacians.

Assume that u is a locally bounded weak solution of the following equation:

(5.1) divA, (z,u, Du) =0,

where A, is Carathéodory vector field defined in Q@ x R x R"; i.e., A, (z, s,§) is measurable with
respect to x € © and continuous in (s,§) € R x R" for almost every x € . We assume that A,
satisfies the following structural conditions ( "'natural growth conditions") for an exponent p > 1
and for some positive constants m, M

— Ap (z,5,6) £ =m [¢]°
_conditions| (5.2) { A, (z,5,6)] < M mp—l
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rowth conditions

Theorem 5.1. Let us. assume that the growth conditions (%.2} hold. Lel u be a locally bounded
weak solution of (15.1). en u is locally Hélder continuous in €2 and there exist two constants o, c
depending only upon the data, with 0 < a < 1 and ¢ > 0, such that, for every open set ' whose
closure is contained in Q and for every xi,xs € ,

Ir]1 — T @
(5.3) u (1) — u(@2)| < cllull poo ) <CM) '

Here the constant depends only upon n,m, M, p.

Let R >r > 0and B, (z9) = {z € R" : |z — z,| < r} is a ball of center xy € 2, and radius r and
Bpg (z0) is the similar ball of radius R > r. Assume that the closure of Bp (z¢) is contained in .

Moreover, let p_ = p_ (R) (resp. p4+ = pg (R)) the essential infimum (resp. the essential
supremum) of u in Bg (z¢) and Eai:n%lggg):ém: t+ — pi— the oscillation of u in B (x¢) .

To get the result in Theorem b.T, here are some auxilry lemmas:

. i i i equation
Lemma 5.2 (Logarithmic lemma). Let u be a locally bounded weak solution of equation (5.1) and
assume that the growth conditions (%.2) are satisfied. Then there exists a constant ¢i (depending
only upon the data) such that

(5.4) / ’Dl He " e < / |Dy|? d
. (o) —_— X C X .
g*‘uf,u,JrawH = v

By (zo) Br(zo)

Herelog, (-) = [log ()] is the positive part of log (-); moreover r < R and ¢ € C' is a nonnegative
test function such that o =1 in B, (xg), ¢ =0 in Q — Br (x0) and a, H with0 <a<1,0< H <1
are given numbers.

. . . . . equation
Lemma 5.3 (Caccioppoli’s type m%%g%g;cyc)dn c{icctl U sbe a locally bounded weak solution of (5.1) and
assume that the growth conditions (15-2) are salisfied. Then there exists a constant cy (depending

only upon the data) such that

[ o= o< | Dol =)

‘p dx

for every constant k and for every test function ¢ € C}(Q), p > 0. An analogous result holds if we

deal with the positive part (u —k)__.

Lemma 5.4 (Algebraic lemma). Let {Y;}, j = 0,1,2,..., be a sequence of positive numbers
satisfying the recursive inequalities

Y1 <cb? YjHﬂ ;
for some positive constants ¢ and 5 and some b > 1. If Yy < c_l/ﬁb_l/fBQ, then Y; < Yy bi/8.
Thus, in particular, {Y;} converges to zero as j — oo.

Now let introduce some notations which will be used in the next lemma. Let Ry, kg > 0 be given
real numbers and

Ry Ry
We assume that the closure of the ball Bg, (o) is contained in Q. Let us define
ko | ko
(5.6) b=t s b, Aj=1{a € Br (@) u(x) < k),



- type lemma

tical lemma

~ continuity
_ASSUMPTION

n_the_lemma

HARNACK ESTIMATES 19

where, as above, p_ is the essential infimum of u in Bg, (zg). We also denote by Ro = % and by

A the intersection of the sets A, ; i.e.,

k
Aso = N4 = {z € B, (w0) : u() < 5 +p-}
Next lemma concerns with the sequence {Y;}, j =0,1,2,..., of real numbers defined by
A
(5.7) y, = Al
’BR $0)‘

where |-| denotes the Lebesgue measure of the corresponding set.

Lemma 5.5 (De Giorgi type lemma). There is a number v > 0, depending only upon the data
(and not depending on u, Ry, and ko), such that, if Yo < v, then the sequence {Y;} in (5.7)
converges to zero as j goes to infinity.

Finally the following lemma has a very important part for the proof of the main theorem. Its
proof can be found in [?]. In [?] the result is proved using the n—dimensional Poincaré inequality. In
the appendix of [28] the same result is proved by induction, using time by time the 1—dimensional
Poincaré inequality to increase the space dimension.

Lemma 5.6 (Measure theoretical lemma). Let B, be a ball in R™ and let w € WY (B,) be a
nonnegative function that satisfies

lullwiags,) < vxr"™, Hz € Brru(x) > x}H = a B,

Jor some v.x > 0 and a € (0,1). Then for any 6 € (0,1) and 0 < § < 1 there evist o € By and
n= 77(@757%ﬁ,n) S (O, ].) such that

fo By (wo) s u(w) = Bx}H = (1 —=6) Byl -
ain_theorem
Proof of Theorem %.1

Let gi\/%oal dsgl[nggyiggt groof of this known algebraic lemma, from which the Holder continuity

estimate (5.3) will follow.

Lemma 5.7 (Criterion for Hoélder continuity). For r < R let w (r) = py (1) — u— (r) be the oscil-
lation of u () in a ball B, (xo) . Assume that Br (zo) C Q.

If
(5.8) wlar) <bw(r), Vr<R,
for some real numbers a,b € (0,1), then for a:= 112§Z we have
w(R) [ T\“
. < — < R.
(5.9) w2 (5) . vr<r

Holder_ estimate_in_the_lemma

Remark 5.8. The Hélder estimate in (I5 9) also gives

2 r\%
@ () < 5 [l ey () - VP <R

older estimate log b .
which implies (5. ote in particular that « = 222 > 0 and that o € (0,1) if 0 < a < b < 1.

ICriterion for Holder continuity loga

Lemma 157 will be applied al the end of this section, precisely by choosing a = 1/4 and b =1 —
s 1s a positive real parameter to be fized later.

1665 4
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Let fix xg € Q and R > 0. In order to avoid cumbersome notations below, set r = 4R and
assume that the closure of the ball By (z¢) is contained in €.
Let consider the oscillation w (4R) := w of u (z) in the ball By (z¢):

(5.10) w=sup{u(z):z € Byg(vo)} —inf {u(x): z € Byr (x0)}
+ (4R) — p— (4R) = py — p—.
The aim is to prove that the oscillation of u is reduced by a fixed quantity (a fixed factor) in

the ball Br (xg). To obtain this fact one can observe that there are two possibilities (both being
possible at the same time): either

(5.11) {o€ Bata) @)= u+ | 2§ Br ()
(5.12) {o € Brleo) sule) < o+ 5o} 2 5 1Br e,

Let assume that the first alternative occurs (the second one can be studied analogously). We know
that u (z) > p_. The first goal is to find a small ball inside B (zo) where u (z) > p— + tw almost
everywhere in the ball, which is called clustering the positivity.

Lemma 5.9 (Clustering the positivity). If (%%fholds, then there exist a constant g9 € (0,1)
(depending only upon the data) and a point 1 € Bpr (zo) such that u(z) > p— + sw for almost
every x € Beyr (x1).

Measure theoretlcal lemma 1,1 .
Proof. In order to apply Lemma b.6 its neegled fo es m_tzvpe u}g/;ualnorm of u in Bg (z¢). To this
aim, the Caccioppoli inequality of Lemma b.3 with k = p— is used and let consider a test function
¢ € C (Bag (z0)) such that ¢ = 1 in Bgr (79), ¢ > 0, |Dcp| < 2/R in Bagr (z9), ¢ = 0 outside

BQR (:Eo) . Then,

p—1

1
p
/ \Dul dz < (/ Dul? dx) B (20) 57
Br(zo) Br(zo)

1
P p—1
< 1o (/ [DolP [(u — p—) 4P dﬂf) |Br (z0)| 7
Bar(z0)
Since p— <u < p_ +w,
—1

1
P
/ |Du| dz < 2¢i0w (/ [Del” dx) |Br ()| 7
BR((JC()) B2R(330)

4
< %w |Br (z0)| = c11w R

Measure theoretical lemma 1
Thus Lemma 5.6 to the function w — p— with 8 =5, x = 2w and 6 € (0,1) to be chosen can be

applied. Then the existence of z1 € Br (z¢) and n € (0 1) is obtained such that
{o € Bar (o) sue) > po ot w}] 2 (1= 8) IByr (21)]

(note the strict inequality u () > p— + iw, possible by changing § = % with g = % + ¢) that is
equivalent to

’{x € Byr (z1) s u(z) < p_ + iw}’ < 6|Byr (21)] -
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Let denote by Ry = nR and let define R; = fo 4 o a5 in (%15) and kjp Ag. Y5 as in (E.gani i%})

. . 0 2 2 ; IDe diordi type Yemmd
Then, if by choosing § = v, where v is the constant defined in Lemma 5.5 (nofe that v does not
depend on Ry = nR), it is obtained that

| A ‘{xeBnR(:cl):u(x)<,u_+%w}‘
Yo = = <d=v.
| Br, (1)) | Byr (21)]
X De Giorgi type lemma
Thus, by applying Lemma b.5;
. < 1
Cp el g4 [eeBu@)iu@ <+ i)
jtoo |Bre (1) |BRo (21)] ’Bﬂ (xl)’
2

Therefore u (x) > pu_ + %w for almost every x € Byr (x1), which corresponds to the conclusion
2

with g = 3. g

L. [Clustering the positivity . o
Let z1 be the point in the statement of Lemma b.9 and lef use the notation z; = (7,y) € R,
with € R and 7 € R"!. Let denote by B,,—1 g (¥) a ball in R"~! of center in 7 and radius R > 0;
ie., Bpo1r () = {yeR" 1 |y—7y| < R}. Given a radius R > 0 and a real number L > 0 let

define the cylinder Cg 1, (z1) in Q C R”

(5.13) Crr (1) ={(z,y) ERx R |z~ 7| <RL, y € B, 1,5 ()}
=(Z—RL, T+ RL) X Bp—1.r (7).

Note that C.ypr3 (331) is contained in the original ball Byr (xoi). Clustering the positivi:
Let recall the radius egR of the ball B g (1) C Br (zo) in the statement of Lemma 5.9.” By

using the half radius egR/2, let define a set D,,_; s C R""1, depending on a positive real parameter

s to be fixed later,

1
nition of D| (5.14) Dyp-15s=1y € By1c0r2(7): Iz € [T— %R,T—i— %R} s u(z,y) < p- + Sesw}.

' positivity| Lemma 5.10 (Expansion of positivity). For every positive constant vy € (0,1) there exists a
s € R™ such that

’Dn—l,s’ < 1 ’Bn—l,soR/Q (y)‘ .

Proof. This result is proved in the cylinder [Z,Z + 3R] x B, . r /2 (7), the case [T — °R,7] x

By,_1,c0r/2 (§) being analogous. o
’ L . |definition of D _ _ . 5
Let y € Dy,—1 5. Then, by the definition of D in (b,14), there exists © € [T,T + §R] such that
’ [Clustering the positivity

u(z,y) < p_ + sisw' By Lemma 5.9, u(Z,y) > fi— + gw for every y € B,,_; . r/2 (7). Therefore,

for this x value,

T) - —+ 15(“) lw_|_ 150.) ® 1
u(T,y) — p B 5 ST B _ €L s jog3.
u(z,y) — pi— + gw 255w 2

Thus if s > log 3, the logaritmic function coincides with the log, (-) function for both sides of the
above inequality. For such s values we obtain

S+1 w(x,y) — p— + L
L g, (T, y) —p 5
U(I',y) — M- + 865{")

s—1<log
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= log %w — log %w
* U(%, y) — M- + 8}35 * ( y) H— + 865
z . Z+2R .
—log, dt < / log, dt .
x/ dt u(t,y) — po + g=w J dt u(t,y) = p— + gz

Let integrate the left and the right hand side of the above inequality over the set D,,_1 ; and we
obtain

T+3R
Sw
(s=1) |Dp- / / Dlog, 8+ dz .
B EOR/Q(Q) z - se*
By the Holder inequality
(s =1) [Dn1l

T+3 5R P b1
< / / Dlo " {53‘3 ()\}”

= g+ i + 865 9 n—1l,e0R/2 \Y

Bp-1, EOR/Q

. o) ar1th.m1c lemma .
Now consider Lemma %ﬁ and we apply it when the balls B, (o) and Bpr (zo) are replaced respectively
by two cylinders, one compactly contained in the other. Now recall that the test function ¢ must be
identically equal to one on the smaller cylinder and equal to zero outside of the larger one. Precisely,

consider ¢ =1 in [3: x—i—"’R} X By_1.c0r/2 (J) and ¢ = 0 out of [7,7 + 3R] X By,—1¢,r (). With

Hw—gwanda—e we get

T+3R » - o1
(s —=1) |Dp_1s] < 61/1 /“|D¢V<m: {2R’Bn_umRm(yﬂ}F

anl,aoR(?) z

Therefore, if |Dy| < 2/ (soR),

p—1
p

(s—1) [Dn_

1 (5
n—1l,e0R (§)| R}p {2R ‘Bn—l,aoR/Q (y)‘}

<3E}z‘f3n Leory2 (T )‘-

The statement follows by choosing s large enough so that

C12

€0 (S— 1)

SV().

0

Lemma 5.11 (Positivity almost everywhere in a small cylinder ). Under the previous notations
and assumptions, in C_ r , (x1) we have
4 b

5.15
(5.15) T
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e Giorgi type lemma

D
Proof. The intention is to apply Lemma b.5 to the cylinder C, = s (1) where
2°2

1
uU> U+ —w
=# 8es
. De Giorgi type lemma .
except a set with small measure. The Lemma 5.5 1s proved for a ball and here we have to C(E}l{%lgnesli on of positivit
a possible long cylinder. Thus try to adapt the lemma to this case. For this aim Lemma b.T0 1s

applied by choosing

(5.16) ——

. . De Giorgi, type lemma .
where v is the constant defined in Lemma 5.5 and (heére the classical symbol w, to denote the

measure of the unit ball in R™)

|Bn.1l

Wn
(Gstea zems] (517 5o = _ o
(5.17) 2|Bp-11]  2wp—1

For any z € [T — 2R, T + 2R] let consider the bal&xgéﬁgfgézdg)pggi ". Being € < 1 we have that

1vity
B r/2(2,Y) is contained in C, & 5 (1), so Lemma b.T0 can be applied. Recalling that B, 1 . r/2 (V)
272

is a ball in R~ ! centered at 7 and using the following inclusion of sets
BaoR/Q(xay) C [l’ - %)R,CL' + %]R] X Bn—l,aoR/Q (g) )
then

1
H(w,y) € Beyrpa(2,9) + u(z,y) < p-+ 8esw}‘

1
<@ el R+ GBI X Buranp @5 wloy) <o+ |

[Expansion of positivity .
By Lemma b.T0 there exists a positive number s such that

1
‘{y € By 15r2 @) : JzE [z — LR,z + %OR] s u(zyy) < p- + Sesw}‘

_ _ _ 1
< ‘Dn—l,s‘ = ‘{y € Bn—l,EOR/Q (y) s dze |:.le - ngx + %R:| ) u(:r,y) < H— Sesw}’

< 1 ‘Bn—l,sor/Q (?)‘ :

By combining the previous inequalities

1
’{(%,y) € BEOR/Z(Zay) : U(.f,y) < H— + 8(38w}‘
<eoR|Dp-1s] < v 50R‘Bn—1,€0r/2 @)‘ .

ero [delta zero

ni z
Therefore, by (5.16) and (5.17),

{@) € Banalea): uleg) <+ o

8es
‘Bn 1‘
) €0 _
< Vi]B ] 2R ‘Bn—l,aoR/Z‘ =v ‘Bn,F;oR/2 .
n—1,
De Giorgi type lemma [Clustering the positivity

Hence Lemma b.5 can be applied, as in the proof of Lemma b.9; it is obtained that u (x,y)

>
u,+16%w for every (v, y) € B, r/4(2,7). In particular, since 2 is a generic point in [T — 2R, T + 2R),

we get u > pu_ + wleswin 060%2 (1) . O
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ain_theorem
Conclusion of the proof of Theorem % 1. Let ¢ be a versor of R” and Let make the orthogonal
change of variables ¢ that maps the yector ¢ on the first axis. The function v = u(ep) is a solution

to an equation of the same type of |5 I i
divA, (x,u, Du) =0,

rowth condltlons

Efmalisfyl ng, the structure conditions Ig Z) and defined in Bygr(zo). Therefore, reasoning as in lemma
)

>
v 'u+165

in C, 0B (¢(z1)) . This means that u > pi_ + 25w a.e. in a cylinder centered in z1, with length
2R, Wlth radius ¢ R and having direction ¢. Let consider the family of versors of R" w1th rational

coordinates (; , i € N. Repeating the previous argument one can find that u > u_ + ¢ esw a.e. in
all the cylinders centered in 1, with length 2R, with radius 2 R and having direction (;. Since
this is a countable covering of the unitary ball Br(z¢), we have that

1
of radius R| (5.18) inf {u(z): 2 € Br(xo)} > p_ + Toes”

Holder estimate _in the lemma ASSUMPTION loscillation in the ball of

Now the condition (b.8) follows. In fact, with the nofafion r = 4R and recalling (5.10), it 1s
obtained that

W(T) '=w =sup{u(z):x € Bar (z9)} —inf {u(z): $€B4R($0)} [ — He

loscillation in the ball of radius

while, for a = 7, from the estimate (LE) I8) Tor the infimum the tollowmg is obtained:
w (ar) =w(R) =sup{u(z):x € Bg(x9)} —inf{u(z): x € Br(x0)}
1 1
<py —p— — SW = 1—1665 w.

ICriterion for Holder cont%.nultv
Therefore, by Lemma b.7, one can get the conclusion

w(ar) <bw(r), Vo,
with g = 7 ¢ Landb=1- . As described in the Remark E g, fhls completes the proof of Theorem
E%aln €0 |:|
5.2. Parabolic regularity: the degenerate case.

Theorem 5.12. Let u be a locally bounded weak solution of (F’g’l) in Qp. Then, up to modification
on a set of measure zero, u is locally Holder continuous in Q x (0,T]. The Hélder constants can be
determined a priori only in terms of the data.

Lemma 5.13 (A Measure Theory Lemma, [?]). Let v € WV1(B,) satisfy

lollwras,) <91 Ho > B} = alB,l,

for some v > 0, 8 € R and o € (0,1). Then V6 € (0,1) and A < B, Jxg € B, and n =
n(aaﬁfyvé))\aN) such that

(5.19) [Bpn(0) 01 {0 = ABYH = (1= 8) B (0.
We consider now a solution u(x,t) of (’E,g,l) We introduce the set
Qpﬂ—(xo,t[)) = Bp(x()) X (to,to + 7'),

with Q, - C 2 x (¢t > 0) and a piecewise smooth cutoff function ¢, 0 < ¢ <1, such that |V(| < 400
and ((z,t) = 0if = ¢ B,(x). We recall now the energy estimate with (zo,t) = (0,0).
For the proof of the following result we refer the reader to the monograph [?] pag.24.
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1
Lemma 5.14 (Local energy estimates). Let u be a local weak solution of (E‘Jr) For allt € (0,7),
3C = C(p) > 0 such that for all cylinders Q,-(0,0) C Q x (0,7) and Vk € R

sup/ (u— k)% CPdx + / / k)P (Pdxdt
(0,7) J Bpx{t}

(5.20) < / (u— k)2 CPdz+C / / (u— k). V¢ Pdzdit
B,x{0} B,

+p//Bu 2 ¢ ¢ daat.

Moreover we will use a variant of a DeGiorgi-like Lemma (see [?]). We have assumed that ug is
non-negative. For a fixed cylinder

Qap.0(20)7 (T0, t0) 1= Bap(xo) X (to, to + 6w P(2p)P) C Q2 x (£ > 0),
with 6 > 0, let 1 and w be non-negative numbers such that

H+ Z sup u, H— < lnf u, w Z Uy — [—.
Q@2p.6(2p)P @2p,0(2p)P

Denote by A and a fixed numbers in (0,1) and by Q,(0) = B, x (0, 0w? PpP).

Lemma 5.15 ( [?], see also [?] pag. 49). Let u be a local weak solution of (%gr) and let 0 < a < 1.
There exists a number v > 0 depending upon 0,a and the data such that if

[(u < pe 4+ Aw) N Q2p(0)] < v |Q2,(0)],
then
(5.21) u > p—+adw, ae in Qy0).

Lm:2.3 , S
We remark that in [?] the result of Lemma|5 [5 1S stated in a more general form; here we simplify
it, according to our hypotheses.

Im:2.3 . .
Assume p— = 0, then Lemma 15 [5 can be formulated in this way:

1
Lemma 5.16 ( [?]). Let u be a local weak solution of (%qr) and let X\ and B be two positive numbers,
with 0 < XA <1 such that
u(x,to) > X, a.e. x € By

then Va € (0,1)
(5.22) u(x,t) >a X B, ae in B, x (to,to + 0w P(2p)P),
with 0 = ()\;)202, and 6 € (0,1) is a quantity that depends only on a, and the data.

Lemma 5.17 ( [?], sec.5). Let u be a local weak solution of (F,qr) and let X\ and [ be two positive
numbers, with 0 < A < 1 such that

uw(z,0) > X B, a.e. x € Byy;
then Ytg > 0 and Vt > tg > 0

P
\3pr—2
(5.23) u(z,t) > o bor —, a.e. T € By,

(t + pPwp=2)p=2

where vy depends upon the data and tg.
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Lastly let us state the so-called "shrinking lemma"

Lemma 5.18 ( [?]). Let u be a local weak solution of
(5.24) u = divA(z,t,u, Du) — cu.

where ¢ is a non-negative cylinder. Let QQ be a cylinder Br x (0,T") and let w be the oscillation of
u and assume T > RPw?~P .Let n < 1 be a strictly positive number. For any level t € (0,T) define
A(t) ={x € Br: u(z,t) > u_ +nw}. If there exists a 69 > 0 such that for any t € (0,T) we have

T
that |A(t)| > doR"™ and if T > RP(aw?P), then in the cylinder Q% equivBr X (§,T) we have
2
1
f\/ElQél

where k is any positive integer and C depends upon &g and the data but does not depend upon
k,n,w.

(5.25) Ak, t)  {(2.t) € Q1 s u(w,t) < p— + 2 Faw}| < C

First STEP: Setting the geometry of the problem.

The classical approach of the regularity comes by proving a quantitative reduction of the
oscillation of the solutions: i.e if the oscillation of the solution u in a cylinder is w, we have to
prove that there is a constant n < 1, depending only upon the data, the oscillation of u in the half
cylinder is nw.

WLOG, we may consider a cylinder Q = {(z,t) € R*"! : |2] < 1,—-A <t < 0}, where A
is a natural number to be fixed later. We also assume that the oscillation of v in @ is 1, and
0 <wu(z,t) < 1. We have proved the regularity result if we are able that there are positive constants
n,n1 such that the oscilllation of u in Q1 = {(z,t) € R*™ : || < n1, —m A <t <0} is lesser than

n.

Second STEP: Clustering the positivity of the solution at the bottom of the cylinder
Q.

Let
Qo={(z,t) eR"™ . |z| <1, -A<t<-A+1}

and .
Q1= {(z,t) eR"™ : |z] < 3

Let S be a set and define with |.S| the Lebesgue measure of the set S.

Let A = {(z,t) € u > 4}. WLOG we may assume |A| > |Q1]| (otherwise we would consider
v=1- u) m:2.2

Apply Lemma %_.M_Choosing k = 0 and a cut-off functions ¢ such that ( =1in Q1 and ( =0

outside Qg to get
// | Du|Pdzdt < C.
1
3

1
B={-A+ 1 <7< -A+ 1 / |Du|P(7)dx < 16C such that the measure of (x, )
By

2

1 3
—A+-<t<-A+-}.
+4_ - +4}

Let

with z € B, > |B

I}

M=

1
2
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Im:2.1
We have that |B| > 15. Choose 79 € B. By Lemma|5 [3, there exists xg € 31 and p > 0 such
that

Bylo) 1 {u > 1} > (1= 2)|By(ao)

:2.3
where v is the constant defined in Lemma %.15 choosing a = % and 6 = 1.

Third STEP: Expansion of positivity in time.

Apply energy estimastes in the cylinder with basis B,(zg) at time level 75 and height 7. Choose
as cut-off function, a function ¢ independent of time t with ¢ =1 on B(;_.),(20), € € (0,1) to be
chosen later and ¢ = 0 outside B,(x¢) and get

1
sup / (u(t) — —)2da
t€(70,70+71) Y B(1—c),(w0) 4

g/ﬁ wmy}ﬁm+@ﬂ// (u(t) — 2V dadt
By (o) 4 Bp(x0)x (10,70+71) 4

Let £ € (0, ). Denote with A(t) the set in B1—¢)p(wo) where u(z,t) <&.
The previous inequality says that for any ¢ € (79,79 + 71)

v 1 _ 1
sp AW - 82 < FIBI(})* + Ce Pl BI(;)?
tE(To,T0+7'1)
Hence .
[A®)] (1)° v _
sup —— < (1—¢)™" (z+Ce™Pry)
te€(70,70+71) ‘B 1- E)p‘ (% —§)? 2
Choose € and £ so close to 0 such that (1 —¢)™" (3 1 and (yep) so that
- —_—_— = T1 = | —
L—¢2 3 R
[A®)]

sup <v
te(rosro+m) | B—e)pl

Let p1 = (715P—2)%. In the cylinder with basis B(;_.,(z0) at time level 79 and height 71, there is
at least a subcylinder centered in z;, Qz,, having basis ;?Pg (1) at time level 79 and height 71 such
that |(z,t) € Quy : u(x,t) < €| <v|Qy . By Lemma , in the half-cylinder we have that u > %
In particular for any x € Bey (21) we have that u(x, 7 + 7'1) > 5

Therefore by Lemma %_B_we have that for any ¢ > 0, for any x € Bp o (2 (x1)

£

w(z,t+ 10+ 1) >y
(t+1)r2

where 7 is a constant depending on £ and p;.

Fourth STEP: Change of variables.

For sake of semplicity change the origin from (0,0) to (z1, 70 + 71). Reasoning as in [?] introduce
the function .
w(t,z) = u(z, t)tr-2.
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By the change of variable ¢t = ¢” The function w(z, 7) is a non negative solution of the equation

. op(e=ly 1
(5.26) wy = div e r=2 Az, t,u, Vu) — ﬁw,
that is
- 1
(5.27) wr = div Az, 7, w, Vw) — W
p —_—

Note that A satisfies the same structure conditions of A.
By the results of the previous step, there are two positive constants rg and &g, such that for any
x € By, and for any t > 0, w(x,t) > 9. Choose ko such that

Fifth STEP: Proof concluded.

Apply the shrinking lemma to w with R=8, w=1, u_ =0, n=¢¢, T = 81”6%_”2’“0“, where
ko is an integer to be chosen. Let kg such that C—= < v where C is the constant appearing in
:2.55 . . . m:\éE.B . 1 L.
E.ZS and v is the consgantsappearmg in Lemma % 5 choosing a = 5. Therefore, by the shrinking

2.
lemma and Lemma b5.I5 we have that w > 5% in the cylinder By x (3T,T). recalling that

1
w(t,z) = u(z,t)t?—2 and t = €7, we have reduced the oscillation of u choosing, in the First Step,
2
the length of the cylinder equal to A = €8"%0 2ttt 4 g
. . . . . Eﬂﬂﬁﬁ
5.3. Parabolic regularity: the singular case. In this section we want to prove Theorem b.
in the singular case 1 < p < 2. We give a proof of the based on a result proved in [?].

Lemma 5.19. Let u be a non-negative, local, weak solution to equation (F’q’l)
Assume that 1 < p < 2 (i.e. we are considering the singular case)

[u(-,t) > M]N B,(y) > a|B,|

for all times
s—eM®PpP <t<s
for some M > 0, and some o and ¢ in (0,1), and assume that Big, % [s — eM?*PpP, s] is contained
in the domain.
There exist o € (0,1) and n € (0, %6), that can be determined a priori, quantitatively only in
terms of the data, and the numbers a and €, and independent of M, such that

(5.28) u(x,t) > oM Vr € Boy(y)

for all times
s—nMPpP <t<s

Thus, this measure-theoretical information on the measure of the "positivity set" in B,(y) for all
times in implies that such a positivity set actually "expands" to Ba,(y) almost for comparable times
The second argument we will use is a L' form of the Harnack inequality

Theorem 5.20 (An L} %ﬂ of the Harnack Inequality for all 1 < p < 2, [?] ). Letu be a non—
(

loc
negative, weak solution to (T7) and let 1 < p < 2. There exists a positive constant C depending

only upon the data, such that for all cylinders Qa,(y) x [s, 1]

s<T<t s<T<t P

1
(5.29) sup / u(z,7)dr < C inf / u(z, 7)dz + C (t _/\S) o
Qp(y) Q2p(y)
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where A = N(p — 2) + p. The constant C = C(N,p,\) — oo as either p — 2 or as p — 1.

We will prove this result following an alternative argument

Setting the geometry
Up to translations, local parabolic Holder continuity follows from a decay in oscillation in intrinsic
cylinders of the form

Qp(w) = B, x [—50w27p,0],

as long as one can find §,n €0, 1] such that inductively defining the cylinders

Qn = Qé” (Wn—l)

wp, = osc(u, Qn-1)
for n > 1, it holds the oscillation reduction

wWp < NWp—1.
Assuming without loss of generality wg = 1, at each step, the function
Q1(1) 3 (x,t) = w L u(6"z, eqw> L 6Pt

satisfies the same type of equation as u (as long as £¢ is universally chosen) and osc(u, @1(1)) < 1.
A further, non intrinsic, change of variable allows to suppose that u solves the equation in

Q29 = Bag x [—1,0] and osc(u, Ryg) < 1, where § = 561/[) is a suitable large constant to be
determined depending only on the data. Translating v we can furthermore suppose 0 < u <1 in
(D29, and we want to prove a quantitative reduction in oscillation in a suitable subcylinder. More
precisely that

osc(u, By x [-n,0]) <1—0¢
for suitably large # and small o,n depending on the data.

Assume without loss of generality that

Trermative] (5.30) {0 e Qurutan 2 5} 2 510

(otherwise we can consider 1 — u). Then, there exists 7 € (—1,0) such that

1 1
{a: € By :u(x,7) > 2}‘ > 5]39]

:2.4
and by (E.égi and Chebyshev’s inequality
Eq:2.4bis| (5.31)

oN < C

1

1 1\2z=»
: > - < < i _
{:): € By :u(x,7) > 2}‘ <C . u(z,7)dr < C—llilsf<0/328 u(x, s) d:n—i—C(e/\)

Noting that _27322 < N, choose 6 so large that
1\=5 1
Z TP < 2N
(g5)"" <

oN <C u(zx, s)dx

:2.4bi
so that (E.ESI ) gllees
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for any s € (—1,0). Since 0 < u < 1 in Q9y,
/ uw(z,s)dx < e|Bayg| + |{z € Bag : u(x,s) > e}
Bag

so that for € such that !
£C|Byy| < ieN

it holds )
a| By := %QN < {x € By : u(z,s) > e} for all s € [-1,0].

G:
Therefore, by Lemma 15?01 0 , we have that there exists 0,7 > 0 depending only on the data such that
u(x,s) >0 V(.I‘, S) € By X [_7770]7

which is the claimed reduction in oscillation.
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