Solution to \mathbb{R}-linear conjugation problem with rational coefficients

S.V. ROGOSIN

Belarusian State University, Nezavisimosti ave, 4, BY-220030 Minsk, Belarus, e-mail: rogosin@bsu.by

It is proposed a method of solution to \mathbb{R}-linear conjugation problem (known also as Markushevich boundary value problem) with rational coefficients on the unit circle:

$$
\begin{equation*}
\varphi^{+}(t)=a(t) \varphi^{-}(t)+b(t) \overline{\varphi^{-}(t)}+f(t), \quad t \in \mathcal{L} . \tag{1}
\end{equation*}
$$

It is based on an approach, which is recently proposed by the authors [5], which in turn is related to Chebotarev algorithm of factorization of matrix-functions [2]. This problem is important due to its connection to a number of deep mathematical questions as well as to numerous application (in particular, in the theory of composite materials, see [4]).

Factorizing (see [3]) the main coefficient

$$
a(t)=\chi^{+}(t) t^{æ} \chi^{-}(t), t \in \mathbb{T},
$$

after a series of simple transformations we arrive at the equivalent form of the boundary condition

$$
\begin{equation*}
\psi^{+}(t)=t^{æ} \psi^{-}(t)+p(t) \overline{\psi^{-}(t)}+h(t), \quad t \in \mathbb{T}, \tag{2}
\end{equation*}
$$

where $p(t)$ is a boundary value of the rational function analytic outside of the unit disc.

In the above notation problem (2) can be equivalently reduced to the vectormatrix \mathbb{C}-linear boundary value problem

$$
\Psi^{+}(t)=\left(\begin{array}{cc}
t^{æ} & 0 \tag{3}\\
0 & t^{æ}
\end{array}\right)\left(\begin{array}{cc}
1-p(t) \overline{p(t)} & p(t) \\
-\overline{p(t)} & 1
\end{array}\right) \Psi^{-}(t)+r(t), t \in \mathbb{T}
$$

Solution to this problem is equivalent to the solution of factorization problem of the matrix coefficient (see [6]).

We propose an efficient method of factorization of rational matrix functions which consists of two-fold application of a generalization of Chebotarev's algorithm. First, the matrix coefficient is transformed to the triangular form by using a series of multiplication on the polynomial matrices of the unit determinant. Second, the triangular matrix is factorized by the similar transformation. The algorithm is illustrated by a series of examples. The proposed algorithm is much easy to apply with respect to known algorithm of factorization of rational matrix functions $[1,6]$.
Based on joint work with L.P. Primachuk, M.V. Dubatovskaya.

References

[1] Adukov, V.M.: Wiener-Hopf factorization of meromorphic matrixfunctions, St. Petersburg Math. J., 4 (1), 51-69 (1993).
[2] Chebotarev, G.N.: Partial indices of the Riemann boundary value problem with triangular matrix of the second order, Uspekhi mat. nauk, XI, vyp. 3, 192-202 (1956)
[3] Gakhov, F. D.: Boundary Value problems, 3rd ed., M.: Nauka (1977) (in Russian).
[4] Mityushev, V.V., Rogosin, S.V.: Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions: Theory and Applications (Monographs and surveys in pure and applied mathematics, Vol. 108), Chapman \& Hall / CRC PRESS: Boca Raton - London - New York - Washington, (1999)
[5] Primachuk, L., Rogosin, S., Dubatovskaya, M.: On R-linear conjugation problem on the unit circle, Eurasian Mathematical Journal, Vol. 11 (3), P. 79-88 (2020)
[6] Rogosin, S., Mishuris, G.: Constructive methods for factorization of matrixfunctions. IMA J. Appl. Math. Vol. 81 (2), P. 365-391 (2016)

