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1. Introduction

An archetypal (bilinear) oscillatory integral inequality states that

(1.1)
∣∣∣ ∫∫

Rd×Rd
f(x) g(y) eiλφ(x,y) η(x, y) dx dy

∣∣∣ ≤ C|λ|−γ‖f‖L2‖g‖L2

where λ ∈ R is a large parameter, the real-valued phase function φ is smooth and is
nondegenerate in a natural sense (to be discussed below), f, g are arbitrary L2 functions, η
is a smooth compactly supported cutoff function, and γ > 0 and C <∞ depend on φ but
not on f, g, λ. Its main features are

(1) The decaying factor |λ|−γ ,
(2) The absence of any smoothness hypothesis on the measurable factors f, g,
(3) The interplay between the structure of φ and the product structure of f(x) g(y).
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2 MICHAEL CHRIST

Where φ is nonconstant, eiλφ oscillates rapidly when λ is large, creating cancellation that
potentially results in smallness of the integral.

Implicitly oscillatory integrals, in contrast, involve no overtly oscillatory factor eiλφ.
Instead, the measurable factors fj are themselves assumed to be oscillatory, but in a non-
explicit and unstructured manner. A typical multilinear form of this type takes the form

(1.2)

∫
RD

∏
j∈J

(fj ◦ ϕj)(x) η(x) dx

where J is a finite index set, ϕj : RD → Rd are smooth submersions from RD to a lower-

dimensional space Rd, and the functions fj : Rd → C are merely measurable. The desired
upper bound is expressed in terms of strictly negative order H−σ Sobolev norms of these
functions, rather than L2 or Lp norms. If fk = O(1) in L2 norm, and if fk is rapidly
oscillatory, then ‖fk‖H−σ is small, so such an upper bound would guarantee corresponding
smallness of the integral (1.2). The presence of more factors fj ◦ ϕj than the dimension D
of the ambient space of integration is a second essential feature distinguishing nontrivial
instances of (1.2) from (1.1).

These integrals arise in connection with multilinear maximal functions in harmonic anal-
ysis, with the theory of weak limits, and with Ramsey theory. There are connections with
web geometry and with sublevel set inequalities, which are a key element of their analysis.

These lectures will begin with a discussion of some classical results concerning bilinear
forms with explicit oscillatory factors and associated sublevel set inequalities. Multilinear
(explicitly) oscillatory integrals will then be discussed. Finally, inequalities for implicitly
oscillatory integrals will be introduced. Proofs will be outlined, with some key steps pre-
sented in detail and some key ingredients of the proofs developed. The connections listed
above will be discussed briefly.

The course is based on recent work of the speaker and co-authors, and is an introduction
to more recent (and more technically complicated) work. Familiarity with measure and
integration, basic Fourier analysis, multivariable calculus, and other miscellaneous topics
is assumed.

2. Oscillatory integrals of the first kind

In the terminology of Stein [40], oscillatory integrals of the first kind are integral expres-
sions of the form

(2.1) I(λ) =

∫
Rd
eiλφ(x) η(x) dx

where λ ∈ R is a large parameter, η ∈ C∞0 is a smooth1 compactly supported cutoff
function, and the phase function φ is smooth and real-valued. Note the absence of any
unknown measurable factors f , in contrast to (1.1) and (1.2).

Variants of this formulation arise: η and/or φ might have only some finite degree of
differentiability; the integral might be over an interval in R1 with no cutoff function η; et
cetera. In these lectures, I’m interested in smooth φ and η; φ will often be assumed to be
real analytic, and sometimes a polynomial.

In these lectures, we are concerned primarily with upper bounds asserting that such
expressions are small when |λ| is large. We are less concerned with analysis of the optimal
rate of decay as |λ| → ∞.

1“Smooth” means C∞, unless otberwise indicated.
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Proposition 2.1. If ∇φ vanishes nowhere on the support of η then

(2.2) I(λ) = O(|λ|−N ) ∀N <∞.

The fact that the Fourier coefficients of smooth functions tend rapidly to 0 is a special
case;

f̂(ξ) =

∫
e−ix·ξ f(x) dx

equals I(λ) with λ = |ξ| and φ(x) = x · v where v = ξ/|ξ|.

Proof of Proposition 2.1. In the one-dimensional case,

I(λ) =

∫
d

dx
eiλφ(x) (iλφ′(x))−1 η(x) dx = iλ−1

∫
eiλφ(x) d

dx
(φ′(x)−1η(x)) dx = O(|λ|−1)

and in the same way, N integrations by parts give a bound O(|λ|−N ). The higher-
dimensional case reduces to d = 1 by a partition of unity and Fubini’s theorem. �

There are variants in which φ is assumed to be real analytic and exponential decay with
respect to λ is shown, using deformation of the contour of integration in Cd.

Zelditch [48] has pointed out that it is unknown, for d ≥ 3, whether the converse holds:
if φ is (say) real analytic, if η does not vanish identically, and if I(λ) = O(|λ|−N ) for every
N , must φ have no critical points in the interior of the support of η?

For φ with critical points, the most basic result concerns the case of nondegenerate critical
points, meaning that the Hessian matrix D2φ is nonsingular at each critical point. In that
situation critical points are isolated. If x̄ is the only critical point of φ in the support of η
then

I(λ) = cdλ−d/2| det(D2φ(x̄))|−1/2eiλφ(x̄)η(x̄) +O(|λ|−(d+2)/2)

as |λ| → ∞ for a certain explicit constant c. There is a full asymptotic expansion in terms

of powers λ−(d+2k)/2.
If φ is a polynomial with finitely many critical points then I(λ) has an asymptotic

expansion, as λ→ +∞, in powers of λ and log(λ). The case d = 1 is elementary; if n ≥ 2,

if φ(k)(x̄) = 0 for all 1 ≤ k < n, and if η is supported in a neighborhood of x̄ in which φ
has no other critical points, then

|I(λ)| = O(|λ|−1/n as |λ| → ∞.

The case d = 2 has been thoroughly analyzed by Varchenko [46], Karpushkin [30], and
others; the formulation of the results is quite a bit more intricate. The theory for higher
dimensions is less satisfactory.

Van der Corput’s lemma provides an important upper bound in the one-dimensional
case.

Proposition 2.2. Let φ be real-valued. Let a ≤ b ∈ R.
Suppose that φ ∈ C1 satisfies |φ′(x)| ≥ r > 0 for every x ∈ [a, b]. Suppose moreover that

φ′ is monotone on [a, b]. Then

(2.3) |
∫ b

a
eiφ(x) dx| ≤ r−1.
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Let k ≥ 2, and let φ ∈ Ck([a, b]). If the k-th derivative of φ satisfies |φ(k)(x)| ≥ r for
every x ∈ [a, b] then

(2.4) |
∫ b

a
eiφ(x) dx| ≤ Ckr−1/k.

These bounds hold with constants Ck independent of a, b.

Proof. Consider first the case k = 1. Assume temporarily that φ ∈ C2. Integrate by parts
to get a constant times ∫ b

a
eiφ(x) φ

′′(x)

φ′(x)2
dx

plus two boundary terms, proportional to φ′(a)−1 and φ′(b)−1, respectively. The boundary
terms are OK. Assuming without no loss of generality that the monotonic function φ′ is
nondecreasing, the main term has absolute value

≤
∫ b

a

∣∣ φ′′(x)

φ′(x)2

∣∣ dx =

∫ b

a

φ′′(x)

φ′(x)2
dx = φ′(a)−1 − φ′(b)−1 ≤ r−1.

The hypothesis that φ ∈ C2 can be easily removed by a approximation argument.
The case of k ≥ 2 is proved by induction on k. Let ρ > 0. We have |(φ(k−1))′| ≥ r,

so the set of x ∈ [a, b] at which |φ(k−1)| ≤ ρ is an interval J of length ≤ r−1ρ. Therefore

|
∫
J e

iφ| ≤ r−1ρ. The set [a, b]\J is a union of two or fewer intervals J̃ . On each, |φ(k−1| ≥ ρ,

so the induction hypothesis gives |
∫
J̃ e

iφ| = O(ρ−1/(k−1)). In all, we find that

|
∫

[a,b]
eiφ| . (ρ/r) + (ρ−1/(k−1)).

Choosing ρ to optimize this bound establishes the lemma.
We leave it to the audience to check that this proof does work for k = 2. �

The following simpler bounds are closely related to van der Corput’s lemma.

Proposition 2.3. Let φ be real-valued. Let a ≤ b ∈ R.
Let φ ∈ C1. If |φ′(x)| ≥ r > 0 for every x ∈ [a, b] Then for every ε > 0,

(2.5) |{x ∈ [a, b] : |φ(x)| ≤ ε}| ≤ εr−1.

Let k ≥ 2, and let φ ∈ Ck([a, b]). If the k-th derivative of φ satisfies |φ(k)(x)| ≥ r for
every x ∈ [a, b] then

(2.6) |{x ∈ [a, b] : |φ(x)| ≤ ε}| ≤ Ckε1/kr−1/k.

The first bound is obvious. The second follows from the same induction argument as
was used in the proof of Proposition 2.2. �

The next result will be used in proofs to follow.

Proposition 2.4. Let φ be real-valued and C∞. Let η be smooth and compactly supported.
Suppose that there exists a multi-index α such that ∂αxφ vanishes nowhere on the support of
η. Then there exist C <∞ and τ > 0 such that for every λ > 0,

(2.7)
∣∣ ∫

Rd
eiλφ η

∣∣ ≤ Cλ−τ .
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Proof. For d = 1 and |α| = 1 this is a far weaker conclusion than that of Proposition 2.1.
For d = 1 and |α| ≥ 2, it is an immediate consequence of Proposition 2.2.

Let d > 1. Let x̄ belong to the support of η. There exists a vector v such that (v ·
∇)|α|φ(x̄) 6= 0. By introducing a partition of unity, we may assume that this holds at every
point of the support of η. Matters are thus reduced to the one-dimensional case. �

Lemma 2.5. Let N, d ≥ 1. There exist τ > 0 and A, σ < ∞ with the following property.
Let Q ⊂ Rd be the closed unit cube. Let f : Q→ C be a CN+1 function, Define

(2.8) δ = min
x∈Q

∑
0≤|α|≤N

∣∣∣∣∂αf∂xα
(x)

∣∣∣∣
and B = 1 +

∑
|α|=N+1 ‖∂αf‖C0(Q). For each ε > 0 let S(f, ε) = {x ∈ Q : |f(x)| ≤ ε}.

Then

(2.9) |S(f, ε)| ≤ Cετδ−σBA.

The complication, in comparison to the van der Corput-type bound, is the need for a
factor BA that takes into account possible large values of partial derivatives of order N +1.
Such a factor is needed, as the next example shows.

Example. Consider the one-parameter family of functions

fε(x) = ε sin(ε−1x)

for x ∈ [0, 1] and ε ∈ (0, 1]. These satisfy
∑2

n=0 |f
(n)
ε (x)| ≥ c > 0, uniformly for all x and

all ε ∈ (0, 1], but despite this uniform lower bound, {x ∈ [0, 1] : |fε(x)| > ε/2} has measure
bounded below by a positive constant, uniformly in ε. �

Proof of Lemma 2.5. For the proof, partition Q into subcubes, each of sidelength r with
r defined by BrN+1 = c0ε. If the constant c0 is chosen to be sufficiently small then on
each subcube, f differs from a Taylor polynomial of degree N by at most ε. Thus matters
reduce to the previously known situation in which f is equal to such a polynomial. One
must sum the resulting bound over the cubes, resulting in a loss of a power of r. �

Lemma 2.6. Let f be real-valued and satisfy the hypotheses of Lemma 2.5, with the sole
change that only derivatives of f of strictly positive orders are taken into account in the
definition of δ:

(2.10) δ = min
x∈Q

∑
1≤|α|≤N

∣∣∣∣∂αf∂xα
(x)

∣∣∣∣ .
Then there exist τ > 0 and A,C, σ <∞ such that for all R 3 λ ≥ 0,

(2.11)
∣∣ ∫

Q
eiλf

∣∣ ≤ C min
(
1, λ−τδ−σBA).

The proof follows the same strategy as that of Lemma 2.5: Decompose into subcubes
of sidelength satisfying BλrN+1 = 1; on each subcube, make an affine change of variables
that converts it to an interval of length 1, and observe that on each, f can then be replaced
by a polynomial of degree N , plus a remainder h such that eiλh is slowly varying. Details
are left to the reader. �

The next result is a well-known theorem of  Lojasiewicz.



6 MICHAEL CHRIST

Lemma 2.7. Let Ω ⊂ Rd be a compact convex set and let U ⊃ Ω be an neighborhood of Ω.
Let f : Ω → R be Cω. Let Σ = {x ∈ U : f(x) = 0}. If f does not vanish identically then
there exist C <∞ and τ > 0 such that for every ε > 0,

(2.12)
∣∣{x ∈ Ω : distance(x,Σ) < ε

}∣∣ ≤ Cετ .
This can be proved using the Weierstrass Preparation Theorem. �
The next lemma was introduced into this subject by Bourgain [4].

Lemma 2.8. Let φ = φ(x, y) be real-valued and Cω in a neighborhood of a compact convex

set Ω× Ω′ ⊂ Rd × Rd′. Let ȳ ∈ Ω′. There exists N <∞ such that

(2.13) sup
y∈Ω′

∑
0≤|α|≤N

∣∣∂αy φ(x, y)
∣∣2 ≤ C ∑

0≤|α|≤N

∣∣∂αy φ(x, ȳ)
∣∣2 ∀ (x, y) ∈ Ω× Ω′.

We will not discuss the proof of Lemma 2.8. A good reference for a proof is [42].
The right-hand of (2.13) is a real analytic function of x. This can be useful in deducing

properties of the supremum on the left-hand side. For instance:

Lemma 2.9. Let φ(x, y) be as in the preceding lemma. Suppose that for any x, the function
y 7→ φx(y) = φ(x, y) does not vanish identically. Then there exist C < ∞ and τ > 0 such
that for every x ∈ Ω, ∣∣{y ∈ Ω′ : |φx(y)| < ε

}∣∣ ≤ Cετ ∀ε > 0.

Lemma 2.9 follows from the combination of Lemma 2.5 with Lemma 2.8. The uniformity
of this inequality with respect to the parameter x will be useful below.

3. A connection

Oscillatory bounds directly imply sublevel bounds. Suppose we wish to establish an
upper bound for |{x ∈ B : |φ(x)| < ε}| for a real-valued function φ. Assume that φ is
defined and satisfies an oscillatory inequality

∫
eiλφζ = O(|λ|−γ) for some cutoff function ζ

that is positive in a neighborhood of B.
Choose another auxiliary function h ∈ C∞0 (R) satisfying h ≡ 1 in [−1, 1]. It suffices to

bound
∫
h(φ(x)/ε) ζ(x) dx.

Writing h as the inverse Fourier transform of ĥ gives∫
h(φ(x)/ε) ζ(x) dx = c

∫
R
ĥ(ξ)

∫
eiξλφ(x) ζ(x) dx dξ

with λ = ε−1. By hypothesis, the inner integral is O((1 + λ|ξ|)−γ) and therefore∫
h(φ(x)/ε) ζ(x) dx = O

( ∫
R

(1 + |ξ|)−2 · (1 + λ|ξ|)−γ dξ
)
.

The factor O((1 + λ|ξ|)−γ) yields an improvement unless λ|ξ| is roughly comparable to 1;
the set of all ]ξ satisfying that constraint has Lebesgue measure O(λ−d). An elementary
calculation gives a bound O(ετ ) for the integral on the right-hand side, for some τ =
τ(γ, d) > 0.

Is there a converse? Do sublevel set bounds imply corresponding oscillatory integral
bounds? One hint that such a converse may be less direct lies in the observation that
oscillatory integral bounds imply a stronger type of sublevel set inequality! To see this,
define

‖x‖R/Z = distance(x,Z)
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for x ∈ R. Consider the “mod Z” sublevel set

S(λ, ε) = {x ∈ B : ‖λφ(x)‖R/Z ≤ ε}.
Then assuming the same oscillatory integral inequality for φ as above,

|S(λ, ε)| = O(ε+ λ−τετ )

for some τ(γ, d) > 0.
For the proof, construct a nonnegative auxiliary function hε : R → [0,∞) that is 1-

periodic and satisfies hε(x) = 1 whenever ‖x‖R/Z ≤ ε, whose Fourier coefficients satisfy2

|ĥε(n)| = O(ε · (1 + ε|n|)−2) ∀n ∈ Z.
Apply the same reasoning as above, considering

∫
hε(λφ(x)) ζ(x) dx and expanding hε(λφ(x)) =∑

n ĥε(n) e2πiλφ(x). The term with n = 0 gives rise to a term independent of λ and pro-
portional to ε. The remaining terms gives rise to a remainder that is O(ετλ−τ ) upon
summation over n 6= 0.

4. Oscillatory integrals of the second kind

In the terminology of Stein [40], oscillatory integrals of the second kind are linear oper-
ators

(4.1) Tλ(f)(x) =

∫
Rd
eiλφ(x,y) f(y) η(x, y) dy.

As before, λ is a large real parameter (which we henceforth assume to be positive; replacing
φ by −φ reduces matters to positive λ), the phase function φ is smooth and real-valued but
now has domain Rd×Rd, and η is smooth with compact support in the product space. The
new element is f , which is Lebesgue measurable. The goal is to obtain upper bounds under
mild restrictions on f , with no assumption of any smoothness or quantitative continuity.3

Most frequently, one regards Tλ is a bounded linear operator between two Lebesgue X = Lp

and Y = Lq, and one seeks a bound of the form ‖Tλf‖X ≤ Cλ−γ‖f‖Y .
The same terminology refers to C-valued bilinear forms

(4.2) Tλ(f, g) =

∫
Rd×Rd

eiλφ(x,y) f(y) g(x) η(x, y) dx dy.

At least two generalizations are quite natural. First, there is the case in which x, y
lie in Euclidean spaces of unequal dimensions. This situation arises in Fourier restriction
inequalities, in the study of dispersive wave equations, and in the analysis of Bochner-Riesz
Fourier multiplier operators. This situation has been quite extensively studied, but is not
the topic of these lectures. Second, one may consider multilinear scalar-valued forms

(4.3) Tλ(f) = Tφ,λ(f) =

∫
(Rd)J

eiλφ(x)
∏
j

fj(xj) η(x) dx

where J is a finite index set, x = (xj ∈ Rd : j ∈ J), and f = (fj : j ∈ J), and η ∈ C∞0 is
a cutoff function whose exact identity is unimportant, on whose support hypotheses are to
be imposed.

The most basic result is due to Hörmander.

2Fix a smooth compactly supported function η that is ≡ 1 in [−1, 1]. Define hε(x) = η(εx) for all
x ∈ [− 1

2
, 1

2
], and extend hε to be periodic with period 1.

3If some smoothness is assumed, then f should be regarded as a factor of the cutoff function η, so that
one is dealing with an oscillatory integral of the first kind with a perhaps less than ideal cutoff function.
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Proposition 4.1. Suppose that the mixed Hessian matrix

D2
x,yφ(x, y) =

( ∂2φ

∂x ∂y

)
is nonsingular at every point in the support of η. Then

(4.4) |Tλ(f, g)| ≤ Cλ−d/2‖f‖L2‖g‖L2

for every f, g ∈ L2(Rd). The constant C depends on d, φ, η but not on f, g, λ.

The most basic example is φ(x, y) = x · y. By choosing η ≡ 1 in some neighborhood of

the origin, substituting x = λ1/2x̃ and y = λ1/2ỹ, then letting λ→∞, one concludes that

|
∫
Rd×Rd

eix·y f(x) g(y) dx dy| ≤ C‖f‖L2‖g‖L2

for all f, g ∈ L2(Rd), for a certain universal constant4 C. Equivalently, by duality, the
Fourier transform is bounded from L2(Rd) to L2(Rd).

Proof of Proposition 4.1. By a partition of unity we may reduce to the case in which η is
supported in a small neighborhood of a point (x̄, ȳ).

Use the so-called TT ∗ argument: Write

‖Tλ(f)‖2L2 = 〈T ∗λTλf, f〉 ≤ ‖T ∗λTλf‖L2‖f‖L2

to reduce matters to controlling the operator norm of the composition T ∗λ ◦ Tλ.
Compute

T ∗λTλ(f)(x) =

∫
Kλ(x, x′)f(x′) dx′

with

Kλ(x, x′) =

∫
Rd
eiλ[φ(x′,y)−φ(x,y)]ζ(x, x′, y) dy

for a certain5 ζ ∈ C∞0 (R3d). This is an oscillatory integral of the first kind, depending on
the parameter (x, x′) ∈ Rd+d. The assumption that the mixed Hessian matrix D2

x,yφ of φ
is nonsingular implies that

|∇y(φ(x, y)− φ(x′, y))| ≥ c|x− x′|

and a moderately careful6 inspection of the proof of Proposition 2.1 yields an upper bound

|Kλ(x, x′)| ≤ CN · (λ|x− x′|)−N ∀N <∞.

There is also a trivial upper bound

|Kλ(x, x′)| ≤ C <∞,

uniformly in (x, x′).

4It is possible to obtain the optimal constant by carrying this argument out with a careful choice of cutoff
function, but our focus in these lectures is not directed towards optimal constants.

5The subscript 0 always indicates compact support.
6Here’s the issue: For each pair (x, x′), one wants to find a constant vector v satisfying |v · ∇y(φ(x, y)−

φ(x′, y))| ≥ c|x − x′|. This inequality should hold for all y in a neighborhood of a basepoint y0. Then one
can rotate coordinates so that v · ∇ = ∂

∂y1
and integrate by parts with respect to y1. To get the desired

bound, it’s essential that this neighborhood be independent of (x, x′). This is a delicate point, because no
lower bound is available for |x− x′|.
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We have

〈T ∗λTλf, f〉 =

∫
Kλ(x, x) f(x) f(x′) dx dx′ ≤ C

∫
(1 + λ|x− x′|)−d−1 |f(x)| |f(x′)| dx dx′.

We have reduced matters to an operator defined by integration against a nonnegative kernel
function Kλ, and moreover, a completely explicit one.

I claim that∣∣ ∫
Rd+d

(1 + λ|x− x′|)−d−1 f(x) g(y) dx dy
∣∣ ≤ Cdλ−d‖f‖L2‖g‖L2 ∀ f, g ∈ L2(Rd).

This follows from the general inequality

(4.5)
∣∣ ∫∫ f(x) g(y)K(x, y) dx dy

∣∣ ≤ A‖f‖2‖g‖2
with

(4.6) A = max
(

sup
x

∫
|K(x, y)| dy + sup

y

∫
|K(x, y)| dx

)
.

This inequality is valid for any K. Apply it with K(x, y) = (1 + λ|x − y|)−d−1, for which
the quantity A in (4.6) is A = cλ−d. �

(4.5) follows from

(4.7)
∣∣ ∫∫ f(x) g(y)K(x, y) dx dy

∣∣ ≤ Amin
(
‖f‖1‖g‖∞, ‖f‖∞‖g‖1

)
by the Riesz-Thorin interpolation theorem. (4.7) is immediate from the definition of A. �

If the determinant det(D2
x,yφ) of the mixed Hessian of φ vanishes at some point, but

does not vanish identically, then one may hope for a bound with a lesser power of λ−1 —

analogous to the discussion of van der Corput’s lemma for
∫ b
a e

iφ — of the form

|Tλ(f, g)| ≤ Cλ−γ‖f‖Lp‖g‖Lq ,

obtaining an optimal power of λ, as λ → +∞, in terms of p, q, d and an appropriate
quantitative description of the degree to which the determinant vanishes at a point of
degeneracy. This theory is quite successful for d = 2, and less complete in higher dimensions.
Again, optimal constants, and optimal exponents, are not the focus of these lectures; we
are headed towards terra incognita in which virtually no optimal exponents are known, and
the appropriate goal is to show that inequalities hold with some positive exponents.

There is a kind of symmetry, or gauge invariance, in this theory. If two phase functions
φ, φ̃ are related by

(4.8) φ̃(x, y) = φ(x, y) + ψ1(x) + ψ2(y)

for some functions φj , then the forms Tφ,λ, Tφ̃,λ satisfy exactly the same inequalities in

terms of ‖f‖Lp‖g‖Lq , since

Tφ̃,λ(f, g) = Tφ,λ(f̃ , g̃)

with f̃ = eiλψ1f and g̃ = eiλψ2g; these have the same Lebesgue norms as f, g, respectively.
Thus (4.8) defines an equivalence relation on phase functions, with two phase functions in
the same equivalence class being genuinely equivalent for our purposes. The mixed Hessian
is natural from this perspective, since D2

x,yφ̃ ≡ D2
x,yφ for equivalent phase functions.
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An example that does not satisfy the Hörmander hypothesis is∫∫
R×R

eiλ(x−y)3 f(x) g(y) η(x, y) dx dy.

This form satisfies an upper bound of the form O(λ−1/3‖f‖L2‖g‖L2). The exponent 1
3 is

intermediate between d
2 = 1

2 and the trivial exponent 0. The Hessian, D2
x,yφ = −6(x− y),

vanishes on the diagonal but does not vanish identically. Assume that η(0, 0) 6= 0. Choosing

each of f, g to be the indicator function of an interval of length cλ−1/3 centered at 0 with
c = (π/4)1/3, the real part of φ(x, y) is ≥ 2−1/2 whenever f(x)g(y) 6= 0 and it follows that

Tφ,λ(f, g) has order of magnitude λ−1/3‖f‖2‖g‖2.

We next discuss a version of Proposition 4.1 that allows for some degeneracy, and that
will be used in a key proof below. In all results concerning real analytic phases, we will
always assume that the domain of the phase is connected, without stating this assumption
explicitly. Thus an assumption that a related quantity does not vanish identically, means
that it does not vanish identically on any open set.

Proposition 4.2. Consider a bilinear form

Tλ(f, g) =

∫∫
Rd×Rd

eiλφ(x,y) f(x) g(y) η(x, y) dx dy

with real analytic real-valued phase function φ. Suppose that the mixed Hessian matrix
D2
x,yφ of φ does not vanish identically. There exist C <∞ and γ > 0 satisfying

|Tλ(f, g)| ≤ C(1 + λ)−γ‖f‖L2‖g‖L2 ∀ f, g ∈ L2(Rd).

Proof. In proving a result of this type, we may always assume that (x, y) varies over a
Cartesian product domain, by covering a small neighborhood of the support of η by a finite
union of small products of cubes, introducing a finite smooth partition of unity subordinate
to this cover, and regarding the auxiliary partition functions as additional factors of the
cutoff function η.

Following the proof of Proposition 4.1, we apply Cauchy-Schwarz to obtain

|Tλ(f, g)|2 ≤ C‖g‖2L2

∣∣ ∫∫ Kλ(x, x′) f(x) f(x′) dx dx′
∣∣

with

Kλ(x, x′) =

∫
eiλψ(x,x′,y) ζ(x, x′, y) dy

where
ψ(x, x′, y) = φ(x, y)− φ(x′, y).

Fix any point ȳ. By hypothesis, ∂ψ
∂y (x, x′, y) does not vanish identically. Therefore there

existsN such that
∑

1≤|α|≤N |∂αy ψ(x, x′, y)| is uniformly comparable to
∑

1≤|α|≤N |∂αy ψ(x, x′, ȳ)|.
Equivalently, (

∑
1≤|α|≤N |∂αy ψ(x, x′, y)|)2 is uniformly comparable to the real analytic func-

tion
∑

1≤|α|≤N ∂
α
y ψ(x, x′, ȳ)2.

Therefore by Lemma 2.6, there exist τ > 0 and C <∞ such that for each (x, x′),∣∣ ∫ eiλψ(x,x′,y) ζ(x, x′, y) dy
∣∣ ≤ C(1 + λ2θ(x, x′))−τ

where
θ(x, x′) =

∑
1≤|α|≤N

|∂αy ψ(x, x′, ȳ)|2.
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The function θ is real analytic7 and does not vanish identically. The next lemma therefore
suffices to complete the proof. �

Lemma 4.3. Let θ be a real analytic function in a bounded connected domain Ω that does
not vanish identically. For any τ > 0 there exist γ > 0 and C <∞ such that for all λ > 0,∫∫

Ω
(1 + λ|θ(x, y)|)−τ |f(x)| |g(y)| dx dy ≤ Cλ−γ‖f‖L2‖g‖L2 ∀ f, g ∈ L2.

Proof. This is an almost immediate consequence of the uniform sublevel set inequality of
Lemma 2.9.

For any x, the function (y, x′) 7→ ψ(x, x′, y) = φ(x, y)−φ(x′, y) does not vanish identically.
If it did, then φ(x′, y) would be independent of x′ for every y, contradicting the hypothesis
that the mixed Hessian of φ does not vanish identically. Therefore there exists no x for
which θ(x, x′) vanishes identically as a function of x′.

Now let K(x, y) = (1 + λθ(x, y))−τ . By Lemma 2.9, there exist C < ∞ and ρ > 0 such

that Sx(δ) = {y : θ(x, y) < δ} satisfies |Sx(δ)| ≤ Cδρ uniformly in x, δ. Choose δ = λ−1/2.
Then ∫

Sx(δ)
K(x, y) dy ≤ |Sx(δ)| ≤ Cλ−ρ/2

while ∫
y/∈Sx(δ)

K(x, y) dy ≤ C
∫
y/∈Sx(δ)

λ−τ/2 dy = O(λ−τ/2).

Therefore supx
∫
K(x, y) dy = O(λ−c) for a certain c > 0. Since K(x, y) ≡ K(y, x), the

same integral bound holds with the roles of the two variables interchanged. From (4.5) we
conclude that ∫

K(x, y) |f(x)| |f(y)| dx dy = O(λ−c)‖f‖L2‖g‖L2 .

�

We have proved a bound for an oscillatory integral by reducing matters to a sublevel set
inequality. This process is a theme that runs through these lectures. �

5. The third kind

This is a catch-all term (invented for these lectures) which refers primarily to oscillatory
integrals of the second kind that involve singular kernels, or involve suprema over some
parameters. Some of these are of enormous importance, but they are not the focus of these
lectures. I’ll review a few canonical examples, and then move on.8

Example. The most classical example is the (sequence of) Dirichlet kernels. The partial
sums

SN (f)(x) =

N∑
n=−N

f̂(n) einx

of the Fourier series of a periodic function of one variable are represented by convolution
SN (f) = (2π)−1

∫
R/2πZ f(y)DN (x− y) dy with

DN (x) =
sin((N + 1

2)x)

sin(1
2x)

.

7This analyticity is the benefit of replacing a supremum over y by evaluation at a single point ȳ.
8In the oral lectures, I’ll say even less about the third kind in order to save time.
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DN is highly oscillatory for largeN , but there is an additional singularity at x = 0 due to the
vanishing denominator sin(x/2). Riesz’s fundamental theorem about Lp norm convergence
of Fourier series can be formulated as the inequality∣∣ ∫∫ DN (x− y) f(y) g(x) dy dx

∣∣ ≤ C‖f‖Lp‖g‖Lq |
for all dual pairs of exponents p, q ∈ (1,∞).

Example. The maximal operator that arises in Carleson’s theorem on almost everywhere
convergence of Fourier series (formulated in the nonperiodic version) is

S∗f(x) = sup
λ∈R

∣∣ ∫
R
f(y) (x− y)−1 eiλy dy

∣∣.
Here one has a singular factor (x − y)−1, an oscillatory factor eiλy, and a supremum over
all parameters λ. The Carleson-Hunt theorem states that

‖S∗f‖Lp(R) ≤ Cp‖f‖Lp(R)

for every p ∈ (1,∞). From this it follows in a few lines that SN (f)→ f almost everywhere
on T = R/2πZ as N →∞, for all f ∈ Lp(T).

Example. The initial value problem for the time-dependent Schrödinger equation is

iut = ∆xu with u(0, x) = f(x)

where (t, x) ∈ (0,∞)×Rd, the initial datum f : Rd → C is given, and u is the unknown. Up
to constant factors which I have not checked, there is an explicit formula for the solution
as an oscillatory integral of the second kind:

u(t, x) = c1

∫
Rd
t−d/2f(y) eic2(x−y)2/t dy

for certain explicit nonzero constants c1, c2. In studying convergence of the solution u(t, ·)
to the initial datum f , one is led to the maximal operator

M(f)(x) = sup
t>0
|u(t, x)|.

This is an oscillatory integral operator of the third kind. Carleson asked for which exponents
s it is true that u(t, x) → f(x) for almost every x ∈ Rd, for every f in the Sobolev space
W 2,s(Rd) of functions having s derivatives9 in L2. This problem has been solved in the last
few years — a major advance — but again, is not the focus of these lectures.

Example. Damped oscillatory integrals (of the second kind)∫∫
Rd×Rd

eiλφ(x,y) f(x) g(y) a(x, y) η(x, y) dx dy

incorporate a smooth factor a which vanishes where the determinant of the mixed Hessian
D2
x,yφ(x, y) vanishes, thus compensating for deficiency of the phase φ. A goal is to find

sharp hypotheses on the pair (φ, a) which guarantee a bound O(λ−d/2‖f‖L2‖g‖L2).

9That is,
∫
|f̂(ξ)|2(1 + |ξ|2)s dξ <∞.
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6. The fourth kind

In this fourth category I place multilinear analogues of oscillatory integrals of the second
kind. Recall that oscillatory integrals of the second kind can be regarded either as linear
operators, or as bilinear scalar-valued forms. In the higher-order multilinear context, I will
stick with the scalar-valued formulation, considering forms

(6.1) Tλ(f) =

∫
(Rd)n

eiλψ(x)
n∏
j=1

fj(xj) η(x) dx

with n ≥ 3 and x = (x1, . . . , xn) ∈ (Rd)n. Here f = (f1, . . . , fn), η ∈ C∞0 is a compactly
supported smooth cutoff function, φ is a smooth real-valued phase function, and λ is a large
positive real parameter. The functions fj are assumed to be measurable and sufficiently
bounded to ensure integrability, but no smoothness of any type is assumed of these.

For trilinear forms

(6.2) Tλ(f1, f2, f3) =

∫
[0,1]3

eiλψ(x1,x2,x3)
3∏
j=1

fj(xj) dx

with ψ real analytic, an inequality

|Tλ(f)| ≤ Cλ−γ
∏
j

‖fj‖2

follows at once by applying the bilinear theory to∫
[0,1]2

eiλψ(x1,x2,x3)
2∏
j=1

fj(xj) dx1 dx2

with x3 fixed, then integrating the bound so obtained with respect to x3. The same can be
done with the roles of the indices 1, 2, 3 permuted arbitrarily. Thus either ψ is equivalent
to 0 in the sense that it can be decomposed as ψ =

∑3
j=1 ψj(xj), in which case no bound

at all holds with a negative power of λ, or an upper bound of the form Cλ−γ
∏
j ‖fj‖L2

follows from the bilinear theory. So long as one does not pursue the questions of optimal,
or near-optimal, values of the exponent γ, that answers our basic question. For bounds for
(6.2) that do not follow from the bilinear theory, see [37] and [15].

We will therefore focus on more singular versions

(6.3) Tλ(f) =

∫
RD

eiλψ(x)
∏
j∈J

(fj ◦ ϕj)(x) η(x) dx

with J a finite index set of cardinality |J | ≥ 3 and with ϕj : RD → Rd smooth submersions.
Such a form may also be regarded (modulo technicalities) as an integral over a submanifold
Λ ⊂ (Rd)J of dimension D: ∫

Λ
eiλΨ(x)

∏
j∈J

fj(xj) η(x) dσ(x)

with redefined phase Ψ, with cutoff function η, and with Λ having positive codimension. The
latter perspective emphasizes two governing features. First, only parameters (xj : j ∈ J)
in a lower-dimensional set directly interact, in contrast to our discussion of forms of the
second kind, in which all pairs (x, y) in the Cartesian product Rd × Rd of the domains of
f, g appear. Second, there is an interaction between the phase Ψ and the submanifold Λ.



14 MICHAEL CHRIST

We’ll sometimes drop the cutoff function η, and instead will integrate over a ball, or a
rectangle. This formulation is essentially equivalent for our purpose.

Perhaps the simplest examples are

(6.4) Tλ(f1, f2, f3) =

∫
B⊂R2

eiλ(x−y)n f1(x) f2(y) f3(x+ y) dx dy

with fj : R1 → C Lebesgue measurable. We are potentially interested in upper bounds of
the form

(6.5) |Tλ(f)| ≤ Cλ−γ
3∏
j=1

‖fj‖Lpj

with γ > 0. What is known about such bounds for these simplest examples? Relatively
little. First, for n = 1, there is no decay, that is, (6.5) does not hold for any γ > 0, not
even with the strongest norm, L∞, placed on each factor fj . Indeed,

eiλ(x−y)1 f1(x) f2(y) f3(x+ y) = f̃1(x) f̃2(y) f3(x+ y)

with

f̃1(x) = eiλxf1(x) and f̃2(y) = e−iλyf2(y),

completely eliminating the oscillatory factor without changing L∞ norms.
The same holds for n = 2. Now

(6.6) (x− y)2 = 2x2 + 2y2 − (x+ y)2;

thus eiλ(x−y)2 is expressed as a product of three factors, each of which can be incorporated
into one of the three factors fj .

We come to the case n ≥ 3.

Proposition 6.1. For each N 3 n ≥ 3 there exists γ = γ(n) > 0 for which the forms Tλ
defined in (6.5) satisfy

(6.7) |Tλ(f)| ≤ Cλ−γ
3∏
j=1

‖fj‖L∞ .

This is proved below. One has a bound with γ = 0 whenever two exponents pj are equal
to 1 and the third is equal to ∞. Thus by (multilinear) interpolation10 one obtains from
the endpoint case p = (∞,∞,∞) an inequality with γ = γ(p) > 0 for any p with each
pj > 1 and

∑
j p
−1
j < 2. Thus so long as one does not seek optimal decay exponents γ, one

might as well restriction to the case where each function fj is measured via the L∞ norm
in studying inequalities of the type in Proposition 6.1.

In the simplest case n = 3, the forms (6.4) have been been studied in a series of papers,
including [20], [23], [27], [47], [34], [24].

With L∞ norms on the right-hand side, (6.5) does not hold for any γ > 1
3 ; see the next

paragraph. It holds for γ = 1
4 , with respect to Lp × Lp × Lp for a certain p < ∞. But it

remains entirely open for 1
4 < γ ≤ 1

3 . An optimal exponent γ (indeed, this exponent is 1
4)

is known for certain finite p, but it remains unknown whether the stronger L∞ hypothesis
results in faster decay.

10The proof of the classical Riesz-Thorin complex interpolation theorem applies, almost verbatim.
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To see that (6.5) cannot hold for any γ > 1
3 when n = 3, consider any smooth, compactly

supported f1, f2, and choose f3 so that f3(x+y) ≡ 1 where f1(x)f2(y) 6= 0. Change variables
(x, y) 7→ (u, v) = (x− y, x+ y) to obtain

1
2

∫
R

∫
R
eiλv

3
η(1

2(u+ v), 1
2(v − u) du dv.

The inner integral takes the form

cλ−1/3η(1
2v,

1
2v)) +O(λ−2/3)

so we obtain

cλ−1/3

∫
R
η(v/2, v/2) dv +O(λ−1/3).

If η ≥ 0 does not vanish identically then the coefficient of the leading term is nonzero.

We have learned three lessons. Firstly, oscillation can be an illusion; one must beware
of additive relations such as (6.6), which can reveal that a phase function is degenerate in
the sense that it can be rewritten as a multilinear oscillatory form in an equivalent way
with no oscillatory factor at all. Secondly, it need not be immediately apparent whether a
particular phase function is degenerate in this sense; consider the cases n = 2 versus n = 3
above. Thirdly, even in the very simplest examples, optimal exponents are unknown in the
multilinear (that is, |J | ≥ 3) theory.

We now prove that |Tλ(f)| ≤ Cλ−γ
∏3
j=1 ‖fj‖∞ for n ≥ 3, for some γ = γn > 0.

Proof of Proposition 6.1. By Cauchy-Schwarz,

|Tλ(f)|2 ≤ C‖f1‖22
∫∫∫

eiλ[(x−y′)n−(x−y)n]f2(y′)f2(y)f3(x+ y′)f3(x+ y)ζ(x, y, y′) dx dy dy′

for a certain ζ ∈ C∞0 (R3). Substituting (x, y′, y) 7→ (z, y, u) with y′ = y + u and z = x+ y
allows us to rewrite the triple integral on the right-hand side as∫

R

(∫∫
R2

eiλPu(y,z)F u2 (y)F u3 (z)ζ̃(y, z, u) dy dz
)
du

with ζ̃ smooth and compactly supported, with

F u2 (y) = f2(y′)f2(y) = f2(y + u)f2(y)

F u3 (z) = f3(x+ y′)f3(x+ y) = f3(z + u)f3(z)

Pu(y, z) = (x− y′)n − (x− y)n = (z − 2y − u)n − (z − 2y)n.

The inner integral is an oscillatory integral of the second kind. The Hessian matrix is the
1× 1 matrix with entry

∂2

∂y ∂z
Pu(y, z) = −2n(n− 1)[(z − 2y − u)n−2 − (z − 2y)n−2].

This vanishes identically for n = 1 and for n = 2, but for n ≥ 3 one has

∂n−3

∂zn−3

∂2

∂y ∂z
Pu(y, z) = 2n!u.

By Proposition 4.2 (more precisely, by its proof) there exist C < ∞ and τ > 0 such that
for every u ∈ R,∣∣∣ ∫∫

R2

eiλPu(y,z)F u2 (y)F u3 (z)ζ̃(y, z, u) dy dz
∣∣∣ ≤ C(1 + λ|u|)−τ‖F u1 ‖L2‖F u2 ‖L2 .
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To complete the proof, it suffices to observe that ‖F uj ‖L2 ≤ C‖fj‖2L∞ and∫
B

(1 + λ|u|)−τ du ≤ Cτ,B min(λ−τ , λ−1)

for any ball B ⊂ R1. �

7. More about the fourth kind

Li, Tao, Thiele, and the author [9] investigated multilinear oscillatory integrals in the
singular case |J |d > D in 2005. Their theory was developed for the special case of poly-
nomial phases φ. Much of the theory was extended to real analytic phases by Greenblatt
[26], but we maintain the restriction to polynomial phases in these notes. We do this in
preparation for the discussion below of oscillatory integrals of the fifth kind — which is the
main focus of these lectures.

Consider

(7.1) Tλ(f) =

∫
RD

eiλP (x)
∏
j∈J

(fj ◦ Lj)(x) η(x) dx

where J is a finite index set, Lj : RD → Rd are linear and surjective, η ∈ C∞0 is a smooth
cutoff function, and P : RD → R1 is a real-valued polynomial.

We seek upper bounds of the form

(7.2) |Tλ(f)| ≤ Cλ−γ
∏
j∈J
‖fj‖L∞ ,

with the unimportant constant C < ∞ permitted to depend on η. As noted above, com-
bining such a bound with more trivial bounds without decaying factors via complex in-
terpolation leads to a wider family of bounds with λ−γ(p)

∏
j∈J ‖fj‖Lpj on the right-hand

side.
We are potentially also interested in weaker bounds

(7.3) |Tλ(f)| ≤ Cθ(λ)
∏
j∈J
‖fj‖L∞

where θ(λ)→ 0 as λ→∞, in those situations in which (7.2) is either untrue, or unknown.

Definition 7.1. P is degenerate (relative to the family {Lj : j ∈ J}) if there exist polyno-
mials Qj such that

(7.4) P ≡
∑
j∈J

(Qj ◦ Lj).

P is of course said to be nondegenerate (relative to {Lj : j ∈ J} if it is not degenerate.
It is shown in [9] that P is degenerate in this sense, if and only if it is degenerate in the

alternative sense that there exist distributions that satisfy P ≡
∑

j∈J(hj ◦ Lj).
As was observed above, if P is degenerate then even the weaker bound (7.3) cannot hold.

Proposition 7.1. [9] P is nondegenerate if and only if there exists a constant-coefficient
differential operator L that satisfies

(7.5)

{
L(P ) 6= 0

L(g ◦ Lj) ≡ 0 ∀ g ∈ C∞, ∀ j ∈ J.
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We say that L witnesses the nondegeneracy of P . Thus Proposition 7.1 says that non-
degeneracy is always witnessed by some constant-coefficient partial differential operator.

Obviously the existence of such an L implies the degeneracy of P , but the converse also
holds. This provides a useful criterion for nondegeneracy.

Example 7.2. Let D = 3, d = 1, and P (x1, x2, x3) = x2
3. Let vj be nonzero vectors in the

light cone in R3; thus

v2
3,j = v2

1,j + v2
2,j .

Let Lj(x) = x · vj. The d’Alembertian operator

� =
∂2

∂x2
3

− ∂2

∂x2
1

− ∂2

∂x2
2

witnesses the nondegeneracy of P .

In this example, the index set J can be chosen to have arbitrarily large cardinality,
though the phase P has degree 2. The method used above in the proof of Proposition 6.1
does not apply here unless |J | ≤ 2.

Question 7.3. Consider any D, d, P, J, {Lj}. If P is nondegenerate relative to {Lj}, does
the inequality (7.2) hold for some C, γ? Does at least the weaker inequality (7.3) hold for
some function θ that tends to zero?

We have already seen, in the discussion of oscillatory integrals of the first kind, that there
are closely allied inequalities concerning sublevel sets. To the above data D, d, P, J, {Lj},
any ε > 0, any ball B ⊂ RD, and any measurable functions fj : Rd → R associate the
sublevel sets

(7.6) S(f , ε) = {x ∈ B :
∣∣P (x)−

∑
j∈J

(fj ◦ Lj)(x)
∣∣ < ε}.

The sublevel analogues of (7.2) and (7.3) are respectively∣∣S(f , ε)| ≤ Cεγ(7.7) ∣∣S(f , ε)| ≤ θ(ε) for some θ(7.8)

with θ denoting an auxiliary function that depends only on D, d, P, J, {Lj}, B and satisfies
limε→0 θ(ε) = 0.

Question 7.4. Consider any D, d, P, J, {Lj}, B. If P is nondegenerate relative to {Lj},
does the inequality (7.7) hold for some C, γ? Does at least the weaker inequality (7.8) hold
for some function θ that tends to zero?

An affirmative answer to either part of Question 7.3 implies an affirmative answer to the
corresponding part of Question 7.4, by the reasoning that we have already discussed in §3.
Indeed, fix an auxiliary Schwartz function ϕ ≥ 0 satisfying ϕ(0) > 0. Inequality (7.7) is
completely equivalent to ∫

B
ϕ(ε−1(P −

∑
j

(fj ◦ Lj))) = O(εγ).

the integral equals ∫
R
ϕ̂(ξ)

(∫
B
eiε
−1ξ(P (x)−

∑
j(fj(Lj(x)) dx

)
dξ.
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The inner integral can be rewritten as∫
B
eiλP (x)

∏
j

(gj ◦ Lj)(x) dx

with λ = ε−1ξ and with gj = eifj = O(1) in L∞ norm. If (7.2) holds then (slurring over a
technical point, the presence of a factor of 1B rather than of a smooth cutoff function η)
this inner integral is O(1 + ε−1|ξ|)−γ . The inequality (7.7) follows.

In the same way, (7.8) follows from (7.3).

One of the two main results of [9] answers Question 7.3 satisfactorily in the codimension
one case d = D − 1.

Theorem 7.2. [9] Consider any D, d, P, J, {vj} with d = D − 1. Let Lj(x) = 〈x, vj〉. If P
is nondegenerate then (7.2) holds for some C <∞ and γ > 0.

In this situation, the degree of P must be ≥ |J | for nondegeneracy to hold (provided that
Li is never a scalar multiple of Lj unless i = j). The method of proof is the same as that
of Proposition 6.1, with a sequence of applications of Cauchy-Schwarz eliminating factors
fj ◦ Lj one by one.

At the opposite extreme, when D is arbitrary and d = 1, Question 7.3 remains largely
open. The following very partial result is the second main theorem of [9].

When d = 1, we write each Lj in the form

Lj(x) = x · vj
for a unique vector vj ∈ RD.

Theorem 7.3. [9] Consider any D, d, P, J, {vj} with d = 1. Suppose that for any J ′ ⊂ J
of cardinality ≤ D, {vj : j ∈ J ′} is linearly independent. If P is nondegenerate, and if
|J | < 2D, then (7.2) holds.

Even in the example (7.2) above, it remains an open question whether (7.2) holds for
|J | = 6 = 2D.

In § 9 I outline a proof of Theorem 7.3 by a method different from the (significantly sim-
pler!) original proof of [9]. This discussion introduces a technical device (local Fourier de-
composition), a theme (decomposition into structured and “pseudorandom” components),
and a second theme (reduction of an oscillatory inequality to a related sublevel set in-
equality) that will all be relied upon in our discussion of oscillatory integrals of the fifth
kind.

8. A naive attack

We discuss an unsuccessful attack on Theorem 7.3. This may help to motivate the
successful, but more complicated, proof in §9.

Assuming as we may that the support of η has small diameter, expand each fj in Fourier
series

fj(y) =
∑
n∈Z

f̂j(n) e2πiny

and insert each of these representations to obtain

Tλ(f) =
∑

n1,n2,...,n|J|

∏
k∈J

f̂k(nk)

∫
eiλP (x)e2πi

∑
j njvj ·x η(x) dx.
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Denoting the integral by Iλ(n) with n = (nj : j ∈ J), this gives

(8.1) |Tλ(f)| ≤
∑
n∈ZJ

|Iλ(n)|
∏
k∈J
|f̂k(nk)|.

Iλ(n) is an oscillatory integral of the first kind, depending on a parameter n. The theory
of oscillatory integrals of the first kind gives the promising upper bound

|Iλ(n)| ≤ Cλ−γ uniformly in n.

On the other hand, the multiple infinite series∑
n∈ZJ

∏
k∈J
|f̂k(nk)|

converges if and only if every fk has Fourier coefficients in `1 (or if some factor vanishes
identically) — far too strong a condition to be useful since in typical situations, |Iλ(n)| ≥
cλ−γ uniformly for all (λ,n) satisfying |n| ≤ cλ. Indeed, the net frequency

∑
j njξjvj ∈ RD

in the integral defining Iλ(n) is then small relative to λ|∇P |, so no additional cancellation
can be expected.

The Fourier coefficients belong to `2, but no better, even if fj ∈ L∞. Suppose that each

fj satisfies |f̂j(nj)| ≥ cλ−1/2 for all |nj | ≤ cλ, as is consist with Parseval’s relation.∑
|n|≤cλ

∏
k∈J
|f̂k(nk)| & λDλ−D/2 = λD/2.

Thus in order for this analysis to succeed, we would need γ > D/2. That’s too much; not
a single example is known of a phase with at least one critical point satisfying a bound
with such a large exponent.11 This method of proof seems to break down irrevocably.
Nonetheless, a modification will succeed. See §9.

9. Analysis of certain trilinear (explicitly) oscillatory integrals

Set r = 3
4 . Any value in (1

2 , 1) will work, and 3/4 is chosen only for the sake of concrete-
ness. I will most often write r, rather than the value 3/4, in an attempt to improve the
readability of the formulas and to remind the reader of where various quantities originate.
Let J = {1, 2, . . . , 2D − 1}.

Assume fj ∈ L∞ with ‖fj‖∞ ≤ 1 for each j ∈ J ; we seek a bound Tλ(f) = O(λ−γ).
Partition R1 into intervals Im of lengths |Im| = λ−r. Decompose each fj in local Fourier
series of the type

fj(y) =
∑
m∈Z

ηm(y)
∑
n∈Z

aj,m(n)eπiλ
rny

where each ηm is supported in the interval I∗m concentric with Im satisfying |I∗m| = 3|Im|
and satisfies natural bounds;

‖ d
k

dxk
ηm‖C0 ≤ Ckλrk ∀ k ≥ 0,

and ∑
n

|aj,m(n)|2 = O(1).

The latter bound comes from Parseval’s theorem, an affine change of variables for each m,
and the assumption that ‖fj‖L∞ = O(1).

11In this connection, recall the question of Zelditch mentioned above.
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Repeating the above analysis leads to an upper bound for |Tλ(f)| of the form

(9.1)
∑
m

∑
n

∏
k∈J
|ak,mk(nk)| · |Iλ(n,m)|

with

(9.2) Iλ(n,m) =

∫
RD

eiλP (x)eiπλ
r
∑
j∈J njvj ·x ζm(x) dx

with cutoff functions ζm(x) = η(x)
∏
j ηmj (x · vj).

For most m, ζm will vanish identically; ηmj (x·vj) = 0 unless x·vj lies in the small interval
Imj . If ζm does not vanish identically, we say that the tuple of indices m is interacting. For
each interacting tuple, choose x̄m in the support of ζm. For any x in the support of ζm,

|λ∇P (x)− λ∇P (x̄)| = O(λ · λ−3/4) = O(λ1/4)� λ3/4 = λr.

Thus (provided that λ is large) if

(9.3) |λ∇P (x̄m) + πλr
∑
j

njvj | ≥ λr

then

(9.4) |λ∇P (xm) + πλr
∑
j

njvj | ≥ 1
2 |λ∇P (x̄m) + πλr

∑
j

njvj |

for every point x in the support of ζm. We have a trivial bound

|Iλ(n,m)| ≤ Cλ−Dr.

From repeated integrations by parts there follows

|Iλ(n,m)| ≤ CNλ−Dr(1 + λ−r|λ∇P (x̄m) + πλr
∑
j

njvj |)−N

= CNλ
−Dr(1 + |λ1−r∇P (x̄m) + π

∑
j

njvj |)−N(9.5)

for every N <∞.
We say that an interacting index m is nonstationary if

(9.6) |λ1−r∇P (x̄m) + π
∑
j

njvj | ≥ λρ.

We have shown that if m is nonstationary then

(9.7) |Iλ(n,m)| ≤ CNλ−N ∀N <∞.

Now return to (9.1) and consider the sum on the right-hand side. Each noninteracting
index m contributes 0 since then Iλ(n,m) = 0 for every n. For nonstationary interacting
m we have the very favorable bound |Iλ(n,m)| = O(λ−N ) for every N , but this is not
sufficient since (as we have seen in the unsuccessful analysis above!)

∑
n

∏
k∈J |ak,mk(nk)|

is far from being absolutely convergent given the only available information, which is that
ak,m ∈ `2 uniformly in k,m.

The key is that (9.5) contains additional information, beyond (9.7), that is favorable for
typical n.
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Lemma 9.1. Let {vj : 1 ≤ j ≤ 2D− 1} be a collection of vectors in RD. Suppose that any
D of these are linearly independent. Then there exist C < ∞ and τ ∈ (0, 1) such that for
any sequences ak ∈ `2, for any b ∈ C,

(9.8)
∑

n∈Z2D−1

(1 +
∣∣b− 2D−1∑

k=1

nkvk
∣∣)−2D

2D−1∏
k=1

|ak(nk)| ≤ C
∏
k

‖ak‖1−τ`2

∏
k

‖ak‖τ`∞ .

The particular exponent 2D is of no particular significance; this lemma holds provided
a sufficiently large exponent is written in its place, and we will invoke the lemma in a
situation where (9.5) provides any exponent that we desire.

Having a bound with positive powers of `∞ norms of Fourier coefficients on the right-
hand side will be decisive later in the proof. If the number of indices j is 2D, rather than
being strictly smaller than 2D, then such a bound would not be true; this is the point at
which the assumption that |J | < 2D is exploited in an essential way.

Proof. It suffices to bound the left-hand side by

C
∏
k∈S
‖ak‖`1

∏
k/∈S

‖ak‖`∞

for any subset S ⊂ {1, 2, . . . , 2D−1} of cardinality D. For then complex interpolation gives
the indicated bound, with τ = D/(2D − 1).

Since the hypotheses and conclusions are invariant under permutations of the indices
j ∈ {1, 2, . . . , 2D − 1}, it suffices to prove this for S = {1, 2, . . . , D}. Now

∑
n∈Z2D−1

(1 +
∣∣b− 2D−1∑

k=1

nkvk
∣∣)−2D

2D−1∏
k=1

|ak(nk)|

≤
∏
k>D

‖ak‖`∞
∑

(n1,...,nD)∈ZD

∏
j≤D
|aj,nj |

∑
(nD+1,...,n2D−1)∈ZD−1

(1+
∣∣β(b, n1, . . . , nD)−

2D−1∑
k=D

nkvk
∣∣)−D

where β(b, n1, . . . , nD) = b−
∑

j≤D njvj , though this formula need not concern us; all that

we need is that β is independent of (nD+1, . . . , n2D−1).
The inner sum is bounded, uniformly in all β(b, n1, . . . ), since {vk : D ≤ k ≤ 2D − 1}

is linearly independent. (The verification is left as an elementary exercise for the reader.)
Therefore the right-hand side is majorized by

C
∏
k>D

‖ak‖`∞
∑

(n1,...,nD)∈ZD

∏
j≤D
|aj,nj | = C

∏
k/∈S

‖ak‖`∞
∏
j∈S
‖aj‖`1 ,

as claimed. �

Returning to the proof of Theorem 7.3, let σ > 0 be a small exponent to be chosen below
and split each fj as fj = f♦j + f♥j so that the local Fourier coefficients a♥j,m, a

♦
j,m satisfy

(9.9) a♥j,m(n) =

{
aj,m(n) if |aj,m(n)| ≤ λ−σ

0 otherwise.

Thus ‖a♦j,m‖`2 = O(1) and for each j,m, a♦j,m(n) = 0 for all but O(λ2σ) indices n. The

latter is an immediate consequence of the bound ‖a♦j,m‖`2 ≤ ‖aj,m‖`2 = O(1).

Tλ(f) is thus expressed as a sum of 22D−1 terms Tλ(g) where each gj is equal either to

f♥j , or to f♦j . The term with each gj = f♦j will be discussed below. For each of the other
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terms, at least one gl equals f♥l and hence all of its local Fourier coefficent series satisfy

‖a♥j,m‖`∞ = O(λ−σ). It follows from the above analysis that

(9.10) |Tλ(g)| = O((λ−σ)τ )

for a certain exponent τ > 0. For any σ > 0, this is a bound of the desired type.
It remains to bound |Tλ(f♦1 , . . . , f

♦
2D−1)|. Each f♦j can be written as a sum of O(λ2σ)

local Fourier monomial functions F , each of which takes the form

(9.11) Fj(y) =
∑
m

bj,me
iπλrkj,myηm(y)

with a Fourier series with a single term eiπλ
rky for each m and with coefficients bj,m = O(1).

By multilinearity of Tλ, Tλ(f♦1 , . . . , f
♦
2D−1) is a sum of O(λ4Dσ) terms Tλ(F1, . . . , F2D−1)

with each Fj taking the form (9.12). If we can show that there exist C < ∞ and τ > 0
such that

(9.12) |Tλ(F1, . . . , F2D−1)| ≤ Cλ−τ

for any tuple of functions of the special form (9.11), then in all we will have

(9.13) |Tλ(f♦1 , . . . , f
♦
2D−1)| ≤ Cλ−τ+4Dσ,

and choosing σ < τ/4D will complete the proof.
We have arrived at a crucial juncture in the proof. To prepare for the proof of (9.12),

change notation, defining

(9.14) gj(y) = −πλr−1kj,m for y ∈ Im for each j,m.

Thus we view the frequencies kj,m as functions.
Now return to the full expansion of Tλ(F1, . . . , ), which simplifies because there is no

longer a sum over n. Since bj,m = O(1),

|Tλ(F1, . . . , F2D−1)| ≤ C
∑
m

|Iλ(m)|

with

Iλ(m) =

∫
RD

eiλP (x)eiπλ
r
∑
j∈J njvj ·x ζm(x) dx.

We need only sum over stationary interacting tuples m. These satisfy

|λ1−r∇P (x̄m)− λ
∑
j

gj(Lj(x̄m))vj | ≤ λρ

and therefore
|∇P (x)−

∑
j

(gj ◦ Lj)(x)vj | ≤ Cλr−1+ρ + Cλ−r

for every x in the support of ζm. Because r = 3
4 , λr−1+ρ + λ−r = O(λ−1/8) provided ρ is

chosen to be < 1
8 . Thus for every stationary interacting m,

(9.15) |∇P (x)−
∑
j

(gj ◦ Lj)(x)vj | ≤ Cλ−1/8 for every x in the support of ζm.

The precise exponents are of no importance; various choices have been made to arrange
that a strictly negative power of λ arises on the right-hand side of this last inequality.

The sum of the contributions of all noninteracting m to Tλ(F1, . . . , F2D−1) is zero. There

are at most O(λ(2D−1)r) tuples m in all, and each nonstationary m contributes O(λ−M ))
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for any M < ∞, so the sum of the contributions of all nonstationary interacting m u is
O(λ−N ) for every N <∞.

Each stationary interacting m contributes at most Cλ−Dr. ζm is supported on a ball
of radius O(λ−r) in the ambient space RD. I will proceed as if these balls were pairwise
disjoint. One can very easily reduce matters to that case by partitioning the indices mj

into congruence classes modulo some fixed integer p and reducing to the situation in which
for each j, only indices in a single congruence class, depending on j, arise.

Under this pretence, the sum of the contributions of all nonstationary interacting m is
majorized by a constant multiple of the sum of the measures of these balls. Thus after
a slight redefinition of the functions gj , the sum of these contributions is majorized by a
constant multiple of the measure of the sublevel set

(9.16) S(g, ε) =
{
x ∈ B :

∣∣∇P (x)−
2D−1∑
j=1

(gj ◦ Lj)(x) vj
∣∣ ≤ ε}

where ε = λ−1/8.
We have seen above that an upper bound for the oscillatory form Tλ would imply an upper

bound for the measures of sublevel sets of the form {x ∈ B : |P (x)−
∑

j(hj ◦Lj)(x)| < δ}.
We have now succeeded in conversely controlling the oscillatory form by the measure of an
associated sublevel set — but it is a different sublevel set. Both ∇P and vj are RD–valued;
this is a sublevel set associated to an RD–valued function, rather than to a scalar function.
Having a vector-valued function in the definition of the sublevel set will turn out to be a
decisive advantage.

Lemma 9.2. Let D, vj , Lj be as above. Let P : RD → R1 be nondegenerate relative to
{Lj : 1 ≤ j ≤ 2D − 1}. There exist C < ∞ and γ > 0 such that for any measurable
functions gj and any ε > 0, the sublevel sets S(g, ε) defined in (9.16) satisfies

(9.17) |S(g, ε)| ≤ Cεγ .
Proof. By a linear change of variables we can reduce matters to the case in which for each
j ≤ D, vj = ej , the j-th unit coordinate vector in RD. Thus Lj(x) = xj for j ≤ D.

The (2D − 1) × D matrix whose columns are the vectors vj ∈ RD has rank D, and
moreover, any D of its columns are linearly independent, by assumption. By elementary
row operations, D − 1 of the D inequalities defining membership in S(g, ε) can be used
to eliminate the D − 1 quantities gD+1, . . . , g2D−1, leaving a single scalar inequality of the
form ∣∣Q(x)−

D∑
j=1

αjgj(xj)
∣∣ = O(ε) ∀x ∈ S(g, ε)

for some vector w ∈ RD and for some constants αj , with Q equal to the polynomial
Q = (w ·∇)P for some w ∈ RD. Moreover, the linear independence hypothesis ensures that
every αj is nonzero. (Exercise!)

There exists x′ = (x′2, . . . , x
′
D) such that |{x1 : (x1;x′) ∈ S(g, ε)}| & |S(g, ε)|. Write the

inequality as

g1(x1) = α−1
1 Q(x1, x

′) +
∑

2≤j≤D
α−1

1 αjgj(x
′
j) +O(ε)

whenever (x1;x′) ∈ S(g, ε). Thus we conclude that there exist a polynomial Qj of degree
less than or equal to the degree of ∇P , and a subset S′ ⊂ S(g, ε) satisfying

|S′| & |S(g, ε)|2,
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such that g1(x1) = Q1(x1) +O(ε) whenever x ∈ S′.
Replacing S(g, ε) by S′ and repeating this argument with the roles of the indices j = 1, 2

interchanged yields the same conclusion for j = 2, and this can be repeated D times.
Moreover, the initial setup was invariant under permutation of all 2D−1 indices j, so with
D − 1 more iterations this process can be applied to all indices j. The conclusion is that
there exist a measurable set S∗ ⊂ S(g, ε) satisfying |S∗| & |S(g, ε)|c with c = 22D−1 and
polynomials Qj of degrees not exceeding the degree of ∇P such that

∣∣∇P (x)−
2D−1∑
j=1

(Qj ◦ Lj)(x) vj
∣∣ = O(ε) ∀x ∈ S∗.

Equivalently,

R(x) =
D∑
k=1

(
ek · ∇P (x)−

2D−1∑
j=1

(Qj ◦ Lj)(x) vj
)2

satisfies

R(x) = O(ε2) ∀x ∈ S∗.
R is a polynomial, whose degree is at most D, twice the degree of P .
R does not vanish identically. If it did, then ∇P ≡

∑2D−1
j=1 (Qj ◦ Lj)vj for some polyno-

mials Qj : R1 → R. Let pj be an antiderivative of Qj and let h = P −
∑

j(pj ◦ Lj). Then

∇h = ∇P −
∑

j(Qj ◦Lj)vj = 0, so h is constant. Therefore upon adding h to p1 we obtain

P =
∑

j(pj ◦Lj), contradicting the nondegeneracy hypothesis — which had not been used
in the proof until this point!

The quantity ‖R‖ is not only nonzero; it is bounded below by a strictly positive constant,
uniformly for all choices of the Qj of degrees ≤ D. For ∇P does not belong to the finite-
dimensional vector space of all RD-valued polynomials

∑
j(Qj ◦ Lj)vj with Qj of degree

≤ D, so the distance (with respect to any fixed norm) from ∇P to that subspace is strictly
positive. ‖R‖ is comparable to the square of that distance.

Therefore by Lemma 2.9 concerning sublevel sets, there exist C < ∞ and τ > 0, which
depend only on D, B, and the degree of P , such that for any δ > 0

(9.18)
∣∣{x ∈ B : R(x) ≤ δ‖R‖

}∣∣ ≤ Cδτ
where ‖ · ‖ denotes any fixed norm on the space of polynomials of degree at most D. Thus

(9.19)
∣∣{x ∈ B : R(x) ≤ Cε2

}∣∣ ≤ C ′ε2τ‖R‖−τ .

This completes the proof of Lemma 9.2, and with it, the proof of Theorem 7.3. �

10. On the rationally commensurate case

Definition 10.1. {Lj : j ∈ J} is rationally commensurate if there exist choices of a basis

for RD, and for each j a j-dependent basis for the target space Rd, with respect to which
each Lj is represented by a D × d matrix with rational entries.

Perhaps the simplest example that is not rationally commensurate, is as follows.

Example 10.2. The family of four mappings R2 → R1 given by (x, y) 7→ x; 7→ y; 7→ x+y;
and 7→ x−

√
2y is not rationally commensurate.

Continue to write Lj(x) = x · vj .
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Theorem 10.1. [14] Consider any D, d, P, J, {vj : j ∈ J} with d = 1. Suppose that for any
J ′ ⊂ J of cardinality ≤ D, {vj : j ∈ J ′} is linearly independent. If a quadratic polynomial
P is nondegenerate, and if |J | = 2D, then there exists a function θ satisfying θ(λ)→ 0 as
λ→∞ such that |Tλ(f)| ≤ θ(λ)

∏
j ‖fj‖L∞ for all f and all λ ≥ 0.

Note the assumption that P is quadratic. Theorem 10.1 was proved only in the last
few days, and I have not yet verified details of the extension to polynomials P of arbitrary
degrees.

Theorem 10.1 is based on a connection with combinatorics; indeed, an extension of
Szemerédi’s theorem due to Furstenberg and Katznelson is one of several central elements
in its proof. We will merely present some key ideas and ingredients of the analysis.
f |S denotes the restriction of a function f to a set S.

Definition 10.3. Let P : RD → R be a polynomial. P is said to be nondegenerate with a
finite witness, relative to L, if there exists a finite set S ⊂ Rd such that the restriction P |S
of P to S does not belong to the span of the set of all functions (fj ◦ Lj)|S.

Equivalently, there should exist a finite set S ⊂ Rd and scalars cs such that

(10.1)


∑
x∈S

cxP (x) 6= 0∑
x∈S

cx(fj ◦ Lj)(x) = 0 ∀ f .

The usefulness of discrete characterizations of nondegeneracy in the context of oscillatory
integral theory was recognized and exploited in [6]. In that spirit, from the Szemerédi–type
theorem of Furstenberg and Katznelson [22] we will deduce:

Proposition 10.2. Suppose that a real-valued polynomial P is nondegenerate with a finite
witness, with respect to L = {Lj}. Then there exists a function Θ satisfying

(10.2) lim
ε→0+

Θ(ε) = 0

such that for every ε > 0 and any measurable functions fj,

(10.3) |S(f , ε)| ≤ Θ(ε).

Finitely witnessed nondegeneracy obviously implies nondegeneracy.

Theorem 10.3. Let L be rationally commensurate, let a polynomial P : RD → R be
nondegenerate relative to L. Then P is nondegenerate with a finite witness relative to L.

Proposition 10.2 and Theorem 10.3 together yield a sublevel set inequality, albeit not
one of power law O(εγ) type, for arbitrarily large finite index sets J , in the rationally
commensurate case.

Theorem 10.4. Let a polynomial P be nondegenerate with respect to a rationally commen-
surate collection L. Then there exists a function Θ satisfying

(10.4) lim
ε→0+

Θ(ε) = 0

such that for every ε > 0 and all measurable functions fj,

(10.5) |S(f , ε)| ≤ Θ(ε).
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The property of being rationally commensurate is not necessary in order for (10.5) to
hold, in general; see Theorems 7.2 and 7.3, above.

Denote by #(A) the cardinality of a set A. Furstenberg and Katznelson [22] have shown
that for any finite set S ⊂ Zd there exists a positive function θ, satisfying θ(N) → 0 as
N →∞, such that for any set A ⊂ {1, 2, · · · , N}d, either there exist 0 6= n ∈ Z and x ∈ Zd
such that x+nS ⊂ A, or #(A) ≤ θ(N)Nd. The next result, a continuuum analogue of this
theorem, is an almost immediate consequence.

Proposition 10.5. Let B ⊂ Rd be a bounded region, and let S ⊂ Rd be a nonempty finite
set. There exists a positive function Θ satisfying limr→0+ Θ(r) = 0, depending only on S
and on B, with the following property: For any Lebesgue measurable set E ⊂ B and any
r > 0, either (i) there exist x ∈ B and t ≥ r such that x+ tS ⊂ E, or (ii) |E| ≤ Θ(r).

Outline of the proof of Theorem 10.1:

(1) A purely algebraic argument proves that nondegeneracy implies finitely witnessed
nondegeneracy, in the rationally commensurate case.

(2) Theorem 10.4 has an analogue for vector-valued functions fj and polynomials P .
(3) A Cauchy-Schwarz/T ∗T–type argument converts the multilinear form Tλ in 2D

general functions fj(y) to a form in 2D − 1 functions Fj(y, t) = fj(y + t)fj(y)

indexed by J̃ ⊂ J , in a new ambient space of dimension 2D − 1.
(4) Because P is quadratic rather than of higher degree, the local Fourier series expan-

sions of §9 turn out not to be needed. Expanding each Fj(y, t) in Fourier series∑
n aj(t, n)e2πiny, implementing a ♦/♥–type decomposition, integrating by parts

to reduce matters to the contribution of stationary n = (nj : j ∈ J̃), and reducing
from sums

∑
n aj(t, n)e2πiny with O(λ2σ) nonzero coefficients aj(t, ·) for each t to

monomials aj(t, n(t))e2πin(t)y, the problem is reduced to a vector-valued sublevel

sublevel set inequality for 2D − 1 RD–valued functions in the auxiliary space v⊥2D.
(5) Moreover, the new vector-valued polynomial that appears in the definition of this

sublevel set is nondegenerate,12 and of course the structure is rationally commen-
surate. Therefore Theorem 10.4 applies, completing the proof.

11. Introduction to implicitly oscillatory integrals

By an implicitly oscillatory integral I mean a multilinear form, acting on a tuple f of L∞

functions, of the type

(11.1) T (f) =

∫
RD

∏
j∈J

(fj ◦ ϕj) η.

Here η ∈ C∞0 is a compactly supported smooth auxiliary function. The principal ingredient
is a tuple Φ = (ϕj : j ∈ J) of Cω surjective mappings ϕj from a neighborhood of the

support of η to some lower-dimensional target space Rd.
In this formulation, there is no explicitly oscillatory factor eiλφ. We have also dropped the

assumption that the mappings Lj are linear. The assumption of real analyticity simplifies
aspects of the theory; a Cω function in a connected open set either vanishes identically, or
vanishes only to finite order at any point, while for C∞ functions there is an intermediate
possibility.

12Example: Q(y) = y2 satisfies Q(y+ t)−Q(y) = 2ty+ t2, which is a linear function of y for each t, but
as a function of t remains quadratic. This is a source of nondegeneracy for the sublevel set problem here.
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We seek inequalities asserting significant cancellation in the integral if fj are highly
oscillatory. A natural formulation is phrased in terms of negative order Sobolev norms
through inequalities of the form

(11.2) |T (f)| ≤ C
∏
j

‖fj‖W p,s

where W p,s is the space of functions having s derivatives in Lp, and s is strictly negative.
Having such an inequality is equivalent to the following property: There exists γ > 0

such that for any functions fj ∈ L∞, for any λ ≥ 1, if there exists k ∈ J such that f̂k(ξ) = 0
whenever |ξ| ≤ λ, then

(11.3) |T (f)| ≤ Cλ−γ
∏
j

‖fj‖L∞ .

The inequality is essentially invariant under real analytic diffeomorphisms of both the
ambient space RD and the target spaces Rd, with each target space allowed its own diffeo-

morphism. Indeed, let f̂ be supported where |ξ| ≥ λ. Let h be a diffeomorphism of Rd,
and let ζ ∈ C∞0 (Rd). Let g = (fk ◦h) · ζ. Then g need not satisfy the same Fourier support
restriction, even if h is the identity. However, this is misleading; g effectively satisfies the
support restriction since it can be decomposed as g = g0 + g1 with ‖g0‖∞ = O(‖g‖∞), ĝ0

supported where |ξ| ≥ λ1/2, and ‖g1‖∞ = O(λ−N ) for all N < ∞. (Verification is left as
an exercise for the audience.)

A simple example is fk(y) = eiλv·y for any nonzero v. More generally, h : R → R be a
C2 function with nowhere vanishing derivative, and choose ζ ∈ C∞0 (R1) so that ζ ◦ ϕk ≡ 1

on the support of η. Set fk(y) = eiλψ(y) ζ(y). However, general L∞ functions fk with
the Fourier support restriction are far less structured than the oscillatory factors eiλφ with
which we have been dealing.

The hypothesis on fk implies that fk is highly oscillatory, in the particular sense that∫
I fk = O(λ−1) uniformly for all bounded intervals I ⊂ R.

We restrict attention to the nontrivial case, in which D < |J |d.
Consider the case in which every mapping ϕj = Lj is linear. Suppose for simplicity that∫
η 6= 0, though this is inessential. Let λ be a large scalar parameter. For each j, consider

some wj ∈ Rd. Choose each fj(y) = eiλwj ·y. Then

T (f) =

∫
eiλx·w η(x) dx

where

w =
∑
j

L∗j (wj).

If w = 0 then the integral is independent of λ (and is nonzero). On the other hand, the
hypothesis on the Fourier transform of fk is satisfied provided that wk 6= 0. Thus for linear
mappings ϕj = Lj , the inequality (11.3) cannot hold, unless the mapping (w1, . . . , w|J |) 7→∑

j L
∗
j (wj) from (Rd)J to RD is injective. This injectivity cannot hold unless D ≥ |J |d, the

trivial case.
Up to bounded factors, the inequalities in question are invariant under real analytic

changes of variables in RD (that is, from a neighborhood of the support of η to another
domain in RD) and in the |J | target spaces Rd. Thus the product of Cω diffeomorphism
groups is, loosely speaking, a symmetry group for this problem.
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Definition 11.1. Let ϕj be real analytic surjections from a nonempty open set in RD to

Rd. {ϕj : j ∈ J} is linearizable if there exist Cω diffeomorphisms h for RD and hj for Rd
such that in some nonempty open subset of RD, all of the compositions hj ◦ ϕj ◦ h−1 are
linear.

In particular, the inequality (11.3) fails whenever {ϕj : j ∈ J} is linearizable.

Question 11.2. Does the inequality (11.3) hold for every family {ϕj : j ∈ J} of real
analytic surjections that is not linearizable?

An immediate application is to weak continuity of mappings f 7→
∏
j∈J(fj ◦ ϕj). Let

p < ∞ and s < 0 be parameters for which the inequality is valid.13 Let (fν : ν ∈ N) be a
sequence of tuples fν = (fj,ν : j ∈ J) of functions in Lp that converges weakly to a limit
f , in the sense that

∫
Rd fj,ν h →

∫
Rd fj h for every continuous compactly supported test

function h, for each j ∈ J . Then limitν→∞T (fν) = T (f). That is,

fj,ν ⇀ fj ∀ j ⇒
∏
j

(fj,ν ◦ ϕj) ⇀
∏
j

(fj ◦ ϕj).

This follows from the W p,s inequality, because the natural inclusion of Lp into W p,s is
compact for strictly negative s.

Joly, Métivier, and Rauch [29] proved weak continuity for D = 2 and |J | = 3, with
somewhat weaker hypotheses. Their proof was based on microlocal defect measures and
an argument by contradiction, and yielded no quantitative upper bound corresponding to
(11.3).

For threefold products, an inequality in terms of negative order Sobolev norms was proved
by Bourgain [3] in a particular case, and later by the author [15] in a relatively general Cω

case. More recently, Evans [21] has developed another proof for threefold products. A more
streamlined version of the analysis in [15], with certain supplementary hypotheses relaxed,
was presented in [19].

12. Some results

We assume henceforth that the target spaces Rd have dimension d = 1, and that the
ambient space RD has dimension D = 2. In general, decreasing D with d and |J | held fixed
increases the difficulty of the problem, so D = 2 is the most difficult case. On the other
hand, increasing |J | increases difficulty. |J | = 2 is the classical bilinear case, called type two
in the classification that we are using. Thus |J | = 3 is the simplest genuinely multilinear
case.

12.1. The trilinear case. In this case, an inequality of the desired type is proved. Let
ϕj : R2 → R1 be real analytic mappings. Let η ∈ C∞0 (R2) be infinitely differentiable and
have compact support. Consider a trilinear form

(12.1) T (f) =

∫
R2

2∏
j=0

(fj ◦ ϕj)(x) η(x) dx

acting on ordered triples f = (f0, f1, f2) of functions fj : R1 → C.

13We exclude p =∞ solely in order to avoid irrelevant discussion about possible definitions of W∞,s for
negative s. The discussion extends to p =∞ with any reasonable definition.



IMPLICITLY OSCILLATORY MULTILINEAR INTEGRALS 29

Theorem 12.1. Let U be a connected neighborhood of the support of η. Let ϕj : U → R1

be real analytic. Assume that for any i 6= j ∈ {0, 1, 2}, det(∇ϕi,∇ϕj) does not vanish
identically in any nonempty open set. Assume that for any nonempty connected open subset
U ′ ⊂ U , for any g ∈ Cω(Φ(U ′)) that satisfies

∑2
j=0(gj ◦ ϕj) ≡ 0 in U ′, each gj is constant

in ϕj(U
′).

Then there exist p <∞, σ < 0, and C <∞ such that for all Lebesgue measurable func-
tions f = (f0, f1, f2) ∈ (Lp × Lp × Lp)(R1), the integral defining T (f) converges absolutely
and

(12.2) |T (f)| ≤ C
2∏
j=0

‖fj‖W p,σ .

The example ϕj(x, t) = x + tj for j ∈ J = {0, 1, 2} satisfies all hypotheses of Theo-
rem 12.1.

This was first proved in [15] under certain auxiliary hypotheses, for instance, a transver-
sality hypothesis that ∇ϕi,∇ϕj are everywhere linearly independent for all i 6= j, rather
than merely being linearly independent on the complement of an analytic variety of positive
codimension. The general case was proved in [19] using ingredients from [15], [8], and [16].

12.2. A small digression. Before discussing the trilinear case, we pause to discuss a
particularly simple-looking question about multilinear integral forms in which increasing
the number of factors fj changes the situation dramatically.

Consider firstly forms

T (f1, f2)(x) =

∫ 1

−1
f1(x+ y) f2(x− y) dy.

If f1, f2 ∈ L1 then T (f1, f2) is finite almost everywhere; indeed, T (f1, f2) ∈ L1 and if f1, f2

are nonnegative then ‖T (f1, f2)‖L1 is a positive constant multiple of ‖f1‖1‖f2‖1. This
statement is optimal in various ways; in particular, for any p < 1 there exist fj ∈ Lp such
that T (f1, f2) =∞ on a set of positive measure.14

Now consider trilinear forms

T (f) = T (f1, f2, f3)(x) =

∫ 1

−1
f1(x+ y) f2(x− y) f3(x+ αy) dy

with α /∈ {0, 1,−1}. Assume that each function fj is nonnegative. If p ≥ 3
2 and each

fj ∈ Lp then T (f) is finite almost everywhere; indeed, T (f) ∈ L1. This can be proved, for
instance, by showing that ‖T (f)‖1 ≤ C‖fi‖1‖fj‖1‖fk‖∞ for every permutation (i, j, k) of
(1, 2, 3), and invoking multilinear interpolation.

Can the threshold p = 3
2 for almost everywhere finiteness of the integral be improved?

This question was investigated in [10], where two things were proved: Firstly, if α ∈ Q then
Yes, there exist p < 3

2 and q > 0 such that

‖T (f)‖Lq(I) ≤ CI
3∏
j=1

‖fj‖p

for every bounded interval I ⊂ R. Secondly, if α /∈ Q then No; for any p < 3
2 there exist

fj ∈ Lp such that T (f) =∞ at every point of a set of positive Lebesgue measure.

14This is trivial; consider building blocks fj = δ−1/p1[ − δ, δ] and form appropriate infinite linear com-

binations of these.
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The proof of the former result relies on a variant and generalization of an inequality of
Katz and Tao [31] and related to work of Bourgain [5] on the Kakeya problem, descending
in part from work of Gowers [25] on Szemerédi’s theorem. The proof of the latter relies on a
lattice construction based on a Diophantine approximation property of irrational numbers.

These results are not directly relevant to the main topics of these lectures. They do
illustrate that increasing the number of factors can have a dramatic impact, at least in one
context.

12.3. The quadrilinear case. Our main result for the quadrilinear case is the following
theorem. Its main hypothesis is that there exists an open set U ⊂ R2 containing the support
of the cutoff function η such that for any connected open subset U ′ ⊂ U , for any functions
gj ∈ Cω(ϕj(U

′)), if
∑4

j=1(gj ◦ϕj) ≡ 0 in U ′ then each gj is constant in ϕj(U
′). As we have

seen in the trilinear case and in the discussion of forms of the fourth kind, such a hypothesis
is a necessary condition for there to be a valid bound in terms of strictly negative order
Sobolev norms.

There are also certain auxiliary hypotheses. One auxiliary hypothesis is that for any
i 6= j ∈ J , {∇ϕi(x), ∇ϕj(x)} is linearly indpendent at every x in a neighborhood of the
support of η. Another similar transversality hypothesis is also imposed. A second auxiliary
hypothesis is phrased in terms of auxiliary nowhere vanishing Cω vector fields Vj that
satisfy Vj(ϕj) ≡ 0. This second hypothesis is that for any permutation (i, j, k, l) of the
indices in J , for any exponent τ ∈ R, the function

Vlϕi · |Vkϕi|τ

Vlϕj · |Vkϕj |τ

does not take the form hi◦ϕi
hj◦ϕj for any Cω functions hi, hj in any nonempty open subset of

R2. The third auxiliary hypothesis is of the same type as the main hypothesis, but applies
to a related problem involving three functions Fj which arises in the proof. It is that for
any k ∈ J , on any nonempty connected open set ω ⊂ R2, any Cω solution (Fj : j 6= k) of∑

j 6=k
(Fj ◦ ϕj) · Vk(ϕj) · ∇ϕj = 0

vanishes identically.

Theorem 12.2. Let Φ satisfy the main hypothesis and the auxiliary hypotheses. For any
p > 2 and any η ∈ C∞0 (B), there exist σ < 0 and C < ∞ such that for every four-tuple
f = (f1, . . . , f4) of functions in Lp(R1),

(12.3) |T (f)| ≤ C
∏
j∈4
‖fj‖W p,σ .

A special case of the corresponding result with two factors fj is a restatement of this
well-known fact: Let t 7→ γ(t) be a real analytic mapping from R1 to R2. Let η ∈ C∞(R)
be compactly supported. Define a measure µ in R2 by

∫
g dµ =

∫
R g(γ(t)) η(t) dt. If the

range of γ is not contained in any affine subspace of R2 then there exists δ > 0 such that
the Fourier transform of µ satisfies |µ(ξ)| = O(|ξ|−δ) as |ξ| → ∞.

12.4. A variant with functions of two variables. A particular variant, in which the
ambient space of integration is R3 and each fj has domain R2 rather than R1, was studied
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in [8]. Let ζ be a smooth function with compact support in R2×(R1\{0}). Let fj : R2 → C.
Consider the trilinear form

(12.4) Λ(f1, f2, f3) =

∫
R3

f1(x+ t, y) f2(x, y + t2) f3(x, y) ζ(x, y, t) dx dy dt.

Theorem 12.3. There exist constants C > 0 and σ > 0 so that for all test functions
f1, f2, f3,

(12.5) |Λ(f1, f2, f3)| ≤ C‖f1‖H(−σ,0)‖f2‖H(0,−σ)‖f3‖L∞ ,

where the constant C only depends on ζ, and

‖f‖2
H(a,b) =

∫
R2

|f̂(ξ1, ξ2)|2 (1 + |ξ1|2)
a
2 (1 + |ξ2|2)

b
2 dξ1 dξ2.

The form Λ is invariant under multiplication of f1(x, y) by h1(y), multiplication of f2(x, y)
by h2(x), and division of f3(x, y) by h1(y)h2(x). Thus no bound in terms of conventional
Sobolev norms ‖fj‖H−σ(R2) for j = 1, 2 is valid, and likewise there is no possible bound in
terms of any negative order norm of f3.

The inequality (12.5) is equivalent to the estimate

|Λ(f1, f2, f3)| ≤ Cλ−σ‖f1‖L2‖f2‖L2‖f3‖L∞

valid for all λ ≥ 1 under the assumption that f̂j is supported where |ξj | � λ for at least
one index j = 1, 2.

13. Consequences

13.1. Weak continuity of products. For any open set S ⊂ R2, we write “gν ⇀ g in S”
to mean that

∫
gν h→

∫
g h as ν →∞, for every C∞ function h supported in S.

Corollary 13.1. Let Φ satisfy the hypotheses of Theorem 12.2. Let p > 2. Let (fν : ν ∈
N) be a sequence of 4-tuples of Lebesgue measurable functions. Suppose that ‖fν,j‖Lp is
bounded, uniformly in ν, j. Suppose that for each j ∈ 4, fν,j ⇀ fj in ϕj(B) as ν → ∞.
Then

(13.1)
∏
j∈4

(fν,j ◦ ϕj) ⇀
∏
j∈4

(fj ◦ ϕj) in B.

13.2. Ramsey theory. Another application is a combinatorial result on the existence of
patterns in subsets of [0, 1]2 having positive Lebesgue measure.

Theorem 13.2. Let ε ∈ (0, 1
2) and E ⊂ [0, 1]2 a measurable set of Lebesgue measure at

least ε. Then there exist

(x, y), (x+ t, y), (x, y + t2) ∈ E
with t > exp(− exp(ε−C)) for some constant C > 0 not depending on E or ε.

It is the quantitative lower bound on t that is significant; without any lower bound,
the conclusion follows directly from the Lebesgue density theorem. A result with worse
ε-dependence can also be deduced from a general theorem of Bergelson and Leibman [1].

Theorem 13.2 recovers the following quantitative nonlinear Roth theorem of Bourgain
[3]: for every measurable E ⊂ [0, 1] with |E| ≥ ε there exist t > exp(− exp(ε−c)) and x

with x, x + t, x + t2 all in E. It suffices to apply Theorem 13.2 to the set Ẽ = {(x, y) ∈
[0, 1]2 : x− y ∈ E}.
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13.3. Maximal functions. Consider the bilinear maximal operator

(13.2) M(f1, f2)(x, y) = sup
r>0

1

2r

∫ r

−r
|f1(x+ t, y)f2(x, y + t2)| dt.

Theorem 13.3. For every p, q ∈ (1,∞), r ∈ [1,∞) with p−1 + q−1 = r−1 there exists
C ∈ (0,∞) such that for all test functions f1, f2,

‖M(f1, f2)‖Lr ≤ C‖f1‖Lp‖f2‖Lq .

Note that for r > 1, the claim in Theorem 13.3 follows immediately from Hölder’s
inequality and the Hardy-Littlewood maximal theorem (in fact, this argument also gives

Lp × Lp′ → L1,∞ bounds for all p ∈ (1,∞)).
Here is a variant, acting on functions of a single real variable. Let fj : R1 → C, and for

each x ∈ R1 define

M(f1, f2)(x) = sup
r∈2Z
|
∫
S1

f1(x+ y1) f2(x+ y2) dσ(y)|

where σ denotes arc length measure on the unit circle S1 ⊂ R2. This can alternatively be
written as

M(f1, f2)(x) = sup
k∈Z
|
∫

0
2πf1(x+ 2k cos(θ)) f2(x+ 2k sin(θ)) dθ|.

Theorem 13.4. Let I0 ⊂ R be a nonempty open interval. Let ϕ : I0 → R2 be a real analytic
mapping that satisfies the three hypotheses. Let η : I0 → [0,∞) be infinitely differentiable
and have compact support in I0. For any p1, p2 > 1 there exists C <∞ such that

(13.3) ‖M(f1, f2)‖Lq(R1) ≤ C‖f1‖Lp1 (R1)‖f2‖Lp2 (R1)

where q = q(p1, p2).

The range of exponents q for which the conclusion holds for some (p1, p2) extends below
q = 1, indeed, to all q > 1

2 . Lacey has shown that if γj(t) = cjt for distinct constants cj
then M satisfies the indicated inequalities in the range q(p1, p2) > 2

3 .
A well known result for maximal linear operators in the same spirit as Theorem 13.4

states that if k < d, if γ : Rk → Rd is real analytic in a neighborhood of a compact set
K, and if the range of γ is not contained in any affine subspace of Rd, then the maximal
function supr∈2Z

∫
K |f(x+rγ(t))| η(t) dt is bounded on Lp(Rd). See [43] for an introduction

to this circle of ideas. A prototypical example is

M0f(x) = sup
r∈2Z

∣∣ ∫
Sd−1

f(x+ ry) dσ(y)
∣∣

where x ∈ Rd, f : Rd → C, and σ is surface measure on the unit sphere Sd−1 ⊂ Rd. A key
fact is that if η ∈ C∞ is supported in K, then the Fourier transform of the measure defined

by dµ(t) = η(γ(t)) dt satisfies µ̂(ξ) = O(|ξ|−δ) as |ξ| → ∞, for some δ > 0. A central
element of our analysis, Theorem 12.1, states that under natural hypotheses, a bilinear
analogue of this Fourier transform decay property holds.

We do not know whetherM map L1×Lp for p > 1, or even to weak L1 for p = 1. Even
for maximal linear operators such as M0, it remains an open question whether weak type
(1, 1) inequalities hold.

For those exponents (p1, p2) ∈ (1,∞)2 satisfying q > 1, that is, p−1
1 + p−1

2 < 1, Theo-
rem 13.4 is an easy of consequence of linear one-dimensional Calderón-Zygmund theory.
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Corollary 13.5. For r ∈ R define

Br(f1, f2)(x) =

∫ 2π

0
|f1(x+ r cos(θ)) · f2(x+ r sin(θ))| dθ.

Let q = q(p1, p2) ∈ (0,∞) satisfy q−1 = p−1
1 + p−1

2 for (p1, p2) ∈ [1,∞]2. For each (p1, p2) ∈
(1,∞]2 there exists C <∞ such that

(13.4) ‖ sup
r∈2Z
|Br(f1, f2)|‖Lq(R1) ≤ C

2∏
j=1

‖fj‖Lpj (R1).

The quantity J(θ) defined above is equal to cos(θ)+sin(θ) in this special case. It vanishes
at θ = 3π

4 and at −π
4 . These points play distinguished roles in our analysis.

There have been several earlier works concerning maximal operators associated to bilinear
forms

(13.5) Br(f1, f2)(x) =

∫
S2d−1

|f1(x+ ry1) f2(x+ ry2)| dσ(y1, y2)

with (y1, y2) ∈ S2d−1 ⊂ Rd × Rd and with σ denoting surface measure on S2d−1 for d ≥ 1,
with suprema taken over r ∈ (0,∞) and/or r ∈ 2Z. The lowest-dimensional case d = 2 is
the most singular case, and had remained open until [19]. (The case r ∈ R+ turns out to
be quite a bit easier than the case r ∈ 2Z; it can be treated using only routine theory of
the Hardy-Littlewood maximal function in R1 together with Hölder’s inequality.)

Work on various variants, including multilinear expressions of general degree d with
integration over Sd−1 is in progress.

13.4. A bilinear singular integral operator. Consider the bilinear singular integral
operator

(13.6) T (f1, f2)(x, y) = p.v.

∫
R
f1(x+ t, y)f2(x, y + t2)

dt

t
,

defined a priori for test functions f1, f2 : R2 → C. We obtain the following result.

Theorem 13.6. Let p, q ∈ (1,∞), r ∈ [1, 2) satisfy p−1 + q−1 = r−1. Then T extends to a
bounded operator Lp × Lq → Lr.

The operator (13.6) is a variant of the bilinear Hilbert transform, analyzed by Lacey
and Thiele [32], [33] in important work. The operator T is also a variant of the triangular
Hilbert transform

(13.7) (f1, f2) 7→ p.v.

∫
R
f1(x+ t, y)f2(x, y + t)

dt

t
.

Determining whether the triangular Hilbert transform satisfies any Lebesgue norm bounds
remains a significant open problem.

Theorem 13.6 unifies two previously known inequalities. First, it implies Lp bounds for
a variant of the bilinear Hilbert transform with curvature,

(13.8) (f1, f2) 7→ p.v.

∫
f1(x+ t)f2(x+ t2)

dt

t
.

The L2 × L2 → L1 bound for this operator was first proved by Li [34]. Second, Theorem
13.6 yields Lp bounds for the operator

(13.9) f 7→ sup
N∈R

∣∣∣p.v. ∫
R
f(x− t)eiNt2 dt

t

∣∣∣,
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due to Stein (see also Stein and Wainger [44]). This is a variant of Carleson’s maximal
operator, with t2 in place of t1 in the phase.

14. Sublevel set inequalities

Let B ⊂ R2 be a ball of positive radius, and let ϕj : B → R1 be real analytic for
j ∈ {1, 2, 3}. Suppose that ∇ϕj are pairwise linearly independent at each point in B. Let
0 ≤ η ∈ C∞(B).

14.1. The constant-coefficient case. The functional equation f(x)+g(y)+h(x+y) = 0,
has been widely studied. Its solutions are the ordered triples (f(x), g(y), h(x + y)) =
(ax+ c1, ay+ c2, a(x+ y)− c1− c2) with a, c1, c2 all constant, and no others. Approximate
solutions, in a certain sense, have been studied in [11], [12]. We consider here the more
general functional equation

(14.1)
3∑
j=1

(fj ◦ ϕj) = 0 almost everywhere

where the mappings ϕj need not be linear, and the functions fj are real-valued. We discuss
related sublevel sets

(14.2) S(f , ε) = {x ∈ B : |
3∑
j=1

(fj ◦ ϕ)(x)| ≤ ε}

associated to ordered triples f of scalar-valued functions.
The inequality (14.2) differs from corresponding inequalities studied and exploited in

various proofs above in two ways: it is homogeneous rather than inhomogeneous, and it is
a single scalar inequality, rather than a system of two scalar inequalities.

Theorem 12.1 has the following implication concerning the nonexistence of nontrivial
solutions of (14.1).

Corollary 14.1. Let B ⊂ R2 be a closed ball of positive, finite radius. For j ∈ {1, 2, 3}
let ϕj ∈ Cω map a neighborhood of B to R, and suppose that ∇ϕj are pairwise linearly
independent at each point of B. Suppose that the curvature of the web defined by (ϕj : j ∈
{1, 2, 3}) does not vanish identically on B. Let f be an ordered triple of Lebesgue measurable
real-valued functions. Suppose that for each index j and each t ∈ R,

(14.3) |{x : fj(x) = t}| = 0.

If f is a solution of the functional equation (14.1) then each function fj is constant.

In particular, all Cω solutions f of (14.1) are constants. Indeed, one of the three com-
ponent functions fj must fail to satisfy the hypothesis (14.3), and hence must be constant.
It follows immediately from the functional equation (14.1) that the other two component
functions are also constant. �

A more quantitative statement is as follows.

Corollary 14.2. Let B ⊂ R2 be a closed ball of positive, finite radius. For j ∈ {1, 2, 3}
let ϕj ∈ Cω map a neighborhood of B to R, and suppose that ∇ϕj are pairwise linearly
independent at each point of B. Suppose that the curvature of the web defined by (ϕj : j ∈
{1, 2, 3}) does not vanish identically on B. There exist δ > 0 and C < ∞ such that for
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any ordered triple f of Lebesgue measurable real-valued functions and any r ∈ (0,∞), the
sublevel set S(f , r) satisfies

(14.4) |S(f , r)| ≤ C sup
t∈R

∣∣{x ∈ ϕj(B) : |fj(x)− t| ≤ r}
∣∣δ

for each j ∈ {1, 2, 3}.

We have discussed how oscillatory inequalities imply sublevel set inequalities by consid-
ering ∫

R2

h(ε−1
∑
j

(fj ◦ ϕj) η,

rewriting this as a superposition∫
R
ĥ(ξ/ε)

∫
R2

∏
j

(Fj,ξ/ε ◦ ϕj)(x) η(x) dx dξ

of oscillatory integrals with Fj,t(y) = eitfj(y), and invoking an oscillatory bound for the
inner integral for each ξ. In order to prove the above two corollaries by this strategy, one
must be able to control the Sobolev norms of eitfj that arise when Theorem 12.1 is invoked;
and one must take into account the obvious fact that the sublevel set can be large if the
functions fj are nearly constant on large sets. The last step relies on the next lemma, which
asserts (for large parameters A) that if fj is suitably far from being constant, then Fj,t has
suitably small negative order Sobolev norm for most large parameters t.

Lemma 14.3. Let σ < 0. Let I ⊂ R be a bounded interval. Then there exists C < ∞
such that for any real-valued function f ∈ L2(R) supported in a fixed bounded set, for any
A ∈ (0,∞),

(14.5)

∫
λ≤A
‖1Ieiλf‖2Hσ dλ ≤ CA sup

t∈R

∣∣{x ∈ I : |f(x)− t| ≤ A−1}||σ|.

Proof. It suffices to treat the case A = 1, since the substitution λ = Aτ reduces the general
case to this one.

Let h be a nonnegative Schwartz function satisfying h(y) ≥ 1 for all y ∈ [−1, 1], with ĥ
supported in [−1, 1].∫

λ≤1
‖1Ieiλf‖2Hσ dλ ≤

∫
h(λ)‖1Ieiλf‖2Hσ dλ

=

∫
h(λ)

∫
R

∣∣ ∫ eiλf(x)e−ixξ 1I(x) dx
∣∣2(1 + ξ2)σ dξ dλ

=

∫
R
h(λ)

∫
R

∫∫
I×I

eiλ[f(x)−f(y)]e−i(x−y)ξ dx dy(1 + ξ2)σ dξ dλ

=

∫∫
I×I

( ∫
R
e−i(x−y)ξ(1 + ξ2)σ dξ

)
Aĥ(A(f(y)− f(x))) dx dy

≤ CA
∫∫

I×I
|x− y|−1−σ ∣∣ĥ(A(f(y)− f(x)))

∣∣ dx dy.
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Since σ < 0, this is majorized by

CA

∫∫
I2
|x− y|−1+|σ|1|f(x)−f(y)|≤A−1(x, y) dx dy

≤ CA sup
y∈I

∫
I
|x− y|−1+|σ|1|f(x)−f(y)|≤A−1(x) dx

≤ CA sup
t

∣∣{x ∈ I : |f(x)− t| ≤ A−1}||σ|.

�

14.2. Variable coefficients. The next result is concerned with general sublevel set in-
equalities with variable coefficients. It is one of the main ingredients of the proof of Theo-
rem 12.2.

Let ϕj be real analytic mappings, and let aj be Cω real-valued coefficients. Let B ⊂ R2

be a ball. Associated that a tuple f = (fj) of real-valued measurable functions are sublevel
sets

(14.6) S(f , ε) =
{
x ∈ B : |

3∑
j=1

aj(fj ◦ ϕj)(x)
∣∣ < ε

}
.

Sublevel sets of this type, associated to triples (ϕ1, ϕ2, ϕ3) of mappings, arise naturally

in the analysis of quadrilinear oscillatory integrals
∫
R2

∏4
j=1(fj ◦ϕj) η. Indeed, consider this

situation: Fix r = 3
4 . Let λ be an arbitrarily large positive parameter. Partition R into

intervals Im of length λ−r. Assume that each factor fj takes the special form

fj(y) =
∑
m

aj,me
iλgj(m)y ζm(y)

with aj,m = O(1). After dealing with various remainder terms that are relatively easily
shown to be O(λ−c), we require an upper bound for |T (f) of the form∑

m

∣∣∣ ∫ eiλ
∑
j gj(mj)∇ϕj(x̄m)·xζm(x)

∣∣∣.
Isolating the contributions of those indices m that are interacting and stationary leads to
the need for a sublevel type inequality. But for which function? It is for a vector-valued
function

4∑
j=1

(gj ◦ ϕj)(x)∇ϕj(x),

taking values in R2, with variable (vector-valued) coefficients ∇ϕj . Thus we have two linear
functions of three scalar-valued unknown functions gj . One of these two linear functions
can be used to eliminate g4, leaving a scalar-valued sublevel set problem in three unknown
functions g1, g2, g3, with variable coefficients that are expressible in terms of {∇ϕj : 1 ≤
j ≤ 4}.

The proof of Theorem 12.2 has two main parts. The first is a reduction — based on
ideas that have been explained above in simpler contexts — to the case of functions of the
special form discussed in the preceding paragraph. This reduces matters to a three term
sublevel set inequality, with variable coefficients. Such an inequality does not follow (so far
as this author is aware) from any known trilinear oscillatory inequality. The second main
part of the proof of Theorem 12.2 is consequently a proof of the next theorem.
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Theorem 14.4. Let aj , ϕj ∈ Cω(B̃). Assume that the coefficients aj vanish nowhere in
B, and that for each i 6= j ∈ {1, 2, 3}, ∇ϕi(x) and ∇ϕj(x) are linearly independent at each
x ∈ B.

Assume that for any nonempty open set U ⊂ B̃, if fj : ϕj(U)→ R are real analytic and∑3
j=1 aj · (fj ◦ ϕj) ≡ 0 in U then each fj ≡ 0 in ϕj(U).

Assume that for each permutation (i, j, k) of (1, 2, 3), for any τ ∈ R and any nonempty

open set U ⊂ B̃, the function ai|Vkϕi|τ
aj |Vkϕj |τ cannot be expressed in U as hi◦ϕi

hj◦ϕj for any real

analytic functions hi, hj.
There exist C < ∞ and τ > 0 with the following property. Let ε > 0 be arbitrary. For

any ordered triple f of Lebesgue measurable functions satisfying

|f3(y)| ≥ 1 for every y ∈ ϕ3(B),

(14.7) |S(f , ε)| ≤ Cετ .
14.3. Sublevel set inequalities with arbitrarily many summands. In this section
we consider sublevel sets S(f , ε) for sums

∑
j∈J aj(x) (fj ◦ϕj)(x) with an arbitrary number

|J | of terms, in the special case in which all mappings ϕj are linear. Such a situation is
specified by a datum

D = (J,Φ,a) = (J, {ϕj : j ∈ J}, {aj : j ∈ J}).
The following result applies to sublevel set inequalities with arbitrarily many summands.

Theorem 14.5. Let B ⊂ R2 be a closed ball of positive, finite radius. Let B̃ ⊂ R2 be an
open neighborhood of B. Let |J | ≥ 1. For each j ∈ {1, 2, . . . , |J |} let ϕj : R2 → R1 be a

surjective linear mapping, and let aj : B̃ → C be real analytic. Let D = (|J |, {ϕj}, {aj}).
Suppose that for any two distinct indices i 6= j ∈ J , ∇ϕi,∇ϕj ∈ R2 are linearly inde-

pendent. Suppose that none of the coefficients aj vanish identically in B. Suppose that for

any nonempty open set U ⊂ B̃, and for D as well as for any datum D∗ associated to D,
any real analytic solution f of the linear equation associated to D∗ vanishes identically in
Φ(U).

Then there exist C < ∞ and τ > 0 such that for any Lebesgue measurable f and any
ε > 0,

(14.8) |{x ∈ S(f , ε) :
∑
j

|fj ◦ ϕj(x)| ≥ 1}| ≤ Cετ .

The proof of this theorem combines a simplification of the proof of Theorem 14.4 with
a recursion. The complexity of this recursion increases quite rapidly as the number of
summands increases; indeed, the number nk of recursions needed to reach |J | = k is roughly
2nk−1 ; it takes perhaps on the order of 2100,000 to reach k = 8. Each recursive step introduces
an associated datum, and each associated datum requires its own auxiliary hypotheses.
Thus the number of hypotheses quickly becomes rather large. This provides an additional
motivation for removal of as many auxiliary hypotheses as possible.

14.4. Reformulation of the hypothesis. We establish an equivalent reformulation of the
main hypothesis for the three term sublevel set inequality. This provides a straightforward
extension of that hypothesis to C∞ data (a,Φ). To any f = (f1, f2, f3) associate the
function

(14.9) Gf (x) =

3∑
j=1

aj(x)(fj ◦ ϕj)(x).
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Proposition 14.6. Let a,Φ be real analytic in a neighborhood B̃ of a closed ball B ⊂ R2.
Assume that none of the mappings ϕj are constant on B, and that there exists no pair of
distinct indices i 6= j ∈ {1, 2, 3} for which ∇ϕi and ∇ϕj are everywhere linearly dependent.
Then the following are equivalent.

(1) (a,Φ) satisfies the main hypothesis.
(2) For each point x̄ ∈ B at which (a,Φ) is nondegenerate, there exists a positive integer

M such that for any f ∈ CM defined in a neighborhood of Φ(x̄), if Gf vanishes to
order M at x̄ then every fj vanishes to order M at ϕj(x̄).

(3) There exist M ∈ N, C <∞, and τ > 0 and a real analytic variety Σ ⊂ B̃ of positive
codimension such that for every x̄ ∈ B and every tuple of functions f ∈ CM defined
in a neighborhood of Φ(x̄),

(14.10) distance(x̄,Σ)τ
3∑
j=1

∑
0≤k≤M

∣∣( dk
dyk

fj)(ϕj(x̄))
∣∣ ≤ C ∑

0≤|α|≤M

∣∣∣ ∂α
∂xα

Gf (x̄)
∣∣∣.

The proof developed below has subsequently been applied in Proposition 7.1 of [19] to
prove a corresponding result for inequalities involving two indices j, rather than three.

Condition (3) of the Proposition directly implies (2), which directly implies (1). Con-
versely, (1) implies (3) by the next lemma and  Lojasiewicz’s theorem. We say that a
function vanishes to order N at a point if the function, and all of its partial derivatives of
orders less than or equal to N vanish at that point.

15. [/] decomposition

A basic strategy for analyzing
∫
R2

∏4
j=1(fj ◦ ϕj) η, is to apply the Cauchy-Schwarz in-

equality to eliminate one of the four functions fj . We have seen, in the analysis above of

? , how (at least in the case in which ϕj are linear) this Cauchy-Schwarz argument brings
in functions Dsfk defined by

Definition 15.1. For x, s ∈ R and f : R→ C,

(15.1) Dsf(x) = f(x+ s)f(x).

If f is highly oscillatory, then Dsf need not be so; if for instance f(x) = eiλx then Dsf
is a constant function of x for each s. On the other hand, if f(x) = eiλx

2
with λ ∈ R and

|λ| large, then Dsf(x) takes the form c(s)ei2sλx with |c(s)| ≡ 1. The next lemma is based
on a simple characterization of those functions for which Dsf is not highly oscillatory.

Lemma 15.1. [8] Let δ > 0 and R ≥ 1. For any f ∈ L2(R) there exists a decomposition
f = f]+f[ satisfying ‖f]‖L2 +‖f[‖L2 . ‖f‖L2, with the following supplementary properties.

The summand f] admits a decomposition

(15.2) f](x) =
M∑
n=1

hn(x)eiαnx

with each αn ∈ R, and with each hn a smooth function satisfying

(15.3)


‖∂Nhn‖∞ ≤ CNRN‖f‖∞ ∀N ≥ 0,

‖hn‖L2 . ‖f‖L2 ,

ĥn is supported in [−R,R],

M . Rδ.
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Moreover, the support of f̂] is contained in a CR–neighborhood of the support of f̂ . Finally,
if f ∈ L∞ then

(15.4) ‖f]‖∞ .M1/2‖f‖∞.

The summand f[ satisfies

(15.5)

∫
R

∫
|ξ|≤R

|D̂sf[(ξ)|2 dξ ds . R−δ‖f‖4L2 .

All implicit constants are independent of R, f .

Thus for most s, the function x 7→ Dsf[(x) either has small norm, or is highly oscillatory.
The conclusion (15.4) is not stated explicitly in [8], but is an immediate consequence of the
construction given there.

Lemma 15.1 is proved by repeatedly applying the following simpler decomposition.

Lemma 15.2. Let f ∈ L2(Rd), ρ ∈ (0, 1) and R > 0. Suppose that∫
Rd

∫
|ξ|≤R

|D̂sf |2(ξ) dξ ds ≥ ρ‖f‖4L2 .

Then there exists an orthogonal decomposition f = g + h with ĝ supported in some ball of
radius R, g ⊥ h, and ‖g‖L2 ≥ 1

2ρ
1/2‖f‖L2.

Proof.

D̂sf(ξ) =

∫
Rd
e2πis·(ξ+ξ′)f̂(ξ + ξ′)f̂(ξ′)dξ′

and hence

|D̂sf(ξ)|2 =

∫
Rd

∫
Rd
e2πis·(ξ′−ξ′′)f̂(ξ + ξ′)f̂(ξ′)f̂(ξ + ξ′′)f̂(ξ′′) dξ′ dξ′′.

Therefore ∫
Rd
|D̂sf(ξ)|2 ds =

∫
Rd
|f̂(ξ + ξ′)|2|f̂(ξ′)|2 dξ′

and finally ∫
Rd

∫
|ξ|≤R

|D̂sf(ξ)|2 dξ ds =

∫∫
|ξ−ξ′|≤R

|f̂(ξ)|2|f̂(ξ′)|2 dξ dξ′

≤ ‖f‖2L2 sup
B

∫
B
|f̂ |2

where the supremum is over all balls B of radius R in Rd. Choose B to essentially realize

this supremum. The desired decomposition is obtained by defining g ∈ L2 via ĝ = 1B f̂ and
h = f − g. �

16. Proof of the theorem on patterns

Theorem 13.2 is a quantitative Ramsey-type theorem, asserting existence of patterns
(x, x + t, x + t2) in E × E × E for measurable sets E ⊂ [0, 1] of arbitrarily small positive
Lebesgue measure. The theorem was proved by Bourgain via an energy increment argu-
ment (see below) that relies on a particular case of the trilinear oscillatory inequality of
Theorem 12.1. In the discussion below, we review that proof with no essential innovations.
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Let ϕ ∈ C∞0 (R1) be an auxiliary function that satisfies ϕ ≥ 0, is supported in [−1
2 ,

1
2 ],

and satisfies ϕ(x) > 0 for all x ∈ [−1
4 ,

1
4 ]. Define ϕr(x) = rϕ(rx) for r ∈ (0,∞) and

Prf = f ∗ ϕr. Define also the translates ϕ̃(x) = ϕ(x− 1) and ϕ̃R(x) = ϕR(x−R−1).
Let E ⊂ [0, 1] be a measurable set, and let f = 1E be its indicator function. Let

R < R′ < R′′ be large positive numbers.
The integral

I(R′) =

∫
[0,1]

∫
R′t∈[

1
2 ,

3
2 ]

1E(x) 1E(x+ t) 1E(x+ t2) dt dx

counts the number of (x, t) satisfying R′t ∈ [1
2 ,

3
2 ] such that x, x+ t, x+ t2 all lie in E.

The main step in the proof is the following energy increment lemma, whose thrust is
roughly that either I(R′) is appropriately large, or

∫
R.|ξ|.R′ |1̂E(ξ)|2 dξ must be reasonably

large.

Lemma 16.1. There exist constants A,B,C <∞ and c > 0 such that for any measurable
set E ⊂ [0, 1],

(16.1) c|E|3 ≤ R′I(R′) + C‖PR′′f − PRf‖L2 + C‖PR′f − PRf‖L2

provided that R < R′ < R′′ satisfy

(16.2) R′′ ≥ A|E|−B and R′ ≥ AR|E|−3.

To deduce Theorem 13.2 from Lemma 16.1, construct sequences of large positive param-
eters Rn, R

′
n, R

′′
n = Rn+1 satisfying R1 ≥ A|E|−B and R′n ≥ ARn|E|−3 for every n. Let

D < ∞ be a large constant to be chosen below, and choose N to be the smallest integer
greater than D|E|−6.

There are two cases. Firstly, if there exists n ∈ [1, N ] for which

(16.3) ‖PR′′nf − PRnf‖L2 + ‖PR′nf − PRnf‖L2 ≤ 1
2C
−1c|E|3

then I(R′n) ≥ c′(R′n)−1|E|3 > 0 by (16.1). Thus there exists t ≥ 1
2(R′n)−1 such that

x, x+ t, x+ t2 all belong to E, as was to be shown.
If there does not exist such an n then

N∑
n=1

‖PR′′nf − PRnf‖
2
L2 ≥ cN |E|6

or the same holds for
∑N

n=1 ‖PR′nf − PRnf‖2L2 . In the former case, |E|1/2 = ‖1̂E‖L2 is
forced to be very large, since

N∑
n=1

‖PR′′nf − PRnf‖
2
L2 =

∫
|f̂(ξ)|2

N∑
n=1

|ϕ̂(Rn+1ξ)− ϕ̂(Rnξ)|2 dξ

and it is well known, and easily verified, that
∞∑
n=1

|ϕ̂(Rn+1ξ)− ϕ̂(Rnξ)|2 <∞

uniformly for all ξ ∈ R, provided merely that A ≥ 2 so that Rn+1 ≥ 2Rn for every n.
Consequently

∞∑
n=1

‖PR′′nf − PRnf‖
2
L2 <∞.
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Therefore N = O(|E|−6), which is a contradiction if D is chosen to be sufficiently large.
The same reasoning applies in the latter case. Thus there must exist n ≤ N ≤ D|E|−6 for
which (16.3) holds. The proof of Theorem 13.2 is complete. �

Proof of Lemma 16.1. In this discussion I will slur over the distinction between integrating
over [0, 1]2, and integrating over R2 with respect to a smooth compactly supported cutoff
function.

R′I(R′) ≥ c
∫

[0,1]2
f(x) f(x+ t) f(x+ t2) ϕ̃R′(t) dt dx.

In this integral, split the third factor f as f = (f − PR′′f) + PR′′f . By Theorem 12.1, the
contribution of the first term, f − PR′′f , is O((R′′)−σ) for a certain σ > 0.15 Thus

R′I(R′) ≥ c
∫

[0,1]2
f(x) f(x+ t) (PR′′f)(x+ t2) ϕ̃R′(t) dt dx−O((R′′)−σ)

≥ c
∫

[0,1]2
f(x) f(x+ t) (PRf)(x+ t2) ϕ̃R′(t) dt dx−O((R′′)−σ)−O(‖PR′′f − PRf‖L2).

To obtain the last line, we have replaced R′′ by R in the integral, and have used the fact
that ‖ϕ̃R′‖L1 = O(1) uniformly in R′. The function PRf is Lipschitz with Lipschitz bound
O(R), and t2 is O((R′)−2) in the support of ϕ̃R′(t), so PRf(x+ t2) = PRf(x) +O(R(R′)−2)
on the support of the integrand. Thus∫

[0,1]2
f(x) f(x+ t) (PRf)(x+ t2) ϕ̃R′(t) dt dx

≥
∫

[0,1]2
f(x) f(x+ t) (PRf)(x) ϕ̃R′(t) dt dx−O(R(R′)−2).

The integral on the right-hand side is equal to∫
[0,1]

f(x) (PR′f)(x+R′−1) (PRf)(x) dx

because ϕ̃r(y) = ϕr(y−r−1). The final step here is to replace (PR′f)(x+R′−1) by PR′f(x),
up to an acceptable remainder term. The last integral is

≥
∫

[0,1]
f(x) (PRf)(x+R′−1) (PRf)(x) dx−O(‖PRf − PR′f‖L2).

PRf is Lipschitz, with Lipschitz norm O(R), so |PRf(x + R′−1) − PRf(x)| = O(R/R′).
Combining all of these steps, we have shown that

R′I(R′) ≥ c
∫

[0,1]
f · PRf · PR −O

(
‖PRf − PR′f‖L2 + ‖PRf − PR′′f‖L2

)
minus a remainder term that is

O((R′′)−σ) +O(RR′−2) +O(R/R′).

15The factor ϕ̃R′ does not appear in Theorem 12.1. It can be absorbed by writing ϕ̃R′(t) =
∫
a(ξ)eitξ dξ

with a ∈ L1 uniformly in R′. Each eitξ can be rewritten as e−ixξei(x+t)ξ, and the first factor can be absorbed
into f(x) and the second into f(x+ t), resulting for each ξ in a form to which Theorem 12.1 can be directly
applied.
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We require that R′′ ≥ A|E|3/σ and R′ ≥ AR|E|−3 for a large constant A. Then

(16.4) R′I(R′) ≥ c
∫

[0,1]
f · PRf · PR

−O
(
‖PRf − PR′f‖L2 + ‖PRf − PR′′f‖L2

)
− a|E|3

where a → 0 as A → ∞. To complete the proof of Lemma 16.1, it suffices to have a
strictly positive lower bound for the integral that remains. The next lemma provides such
a bound. �

Lemma 16.2. There exists a constant c0 > 0 such that for every Lebesgue measurable set
E ⊂ [0, 1], f = 1E satisfies ∫

[0,1]
f · PRf · PR′f ≥ c0|E|3

uniformly for all R,R′ ≥ 2.

One can regard this integral as representing the probability that x, x+s, x+t all belong to
E if x is chosen uniformly at random in [0, 1]. s uniformly at random satisfying 0 ≤ s . 1/R,
and t uniformly at random satisfying 0 ≤ t . 1/R′. The straightforward proof will be given
below.

Inserting the conclusion of Lemma 16.2 into (16.4) gives the conclusion of Lemma 16.1
provided that A is chosen sufficiently large to ensure that a < c0. �

A systematic accounting of the parameters — specifically, of the rate of growth of N as a
function of |E|— yields the bound t > exp(− exp(ε−C)) in the statement of Theorem 13.2.
This accounting is left to the eager reader. �

Proof of Lemma 16.2. Assume that R ≤ R′. Tile R by intervals I of length 1/4R′, and by
intervals of some length between 1/8R and 1/4R, such that each interval J of the greater
length is a union of certain intervals I of the smaller length.

For each interval I, PR′f(x) ≥ c′|I|−1
∫
I f for every x ∈ I, while likewise PRf(x) ≥

|J |−1
∫
J for every x ∈ J . Therefore∫

[0,1]
f · PRf · PR′f ≥ c

∑
J

∫
J

∑
I⊂J

∫
I

[
f · |I|−1

∫
I f · |J |

−1
∫
J f
]

=
∑
J

|J |−1
∫
Jf ·

∫
J

∑
I⊂J
|I|−1(

∫
I f)2

≥
∑
J

|J |−1
∫
J f

∫
J
(
∑
I⊂J

∫
I f)2 · |J |−1

=
∑
J

|J |−2

∫
J
f(

∫
J
f)2

≥ (
∑
J

∫
J
f)3

using Hölder’s inequality to obtain the third and sixth lines. �
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17. On the proof of the three term sublevel set inequality

17.1. A model argument, and some strategy. Let ϕj(x, t) = x + tj for (x, t) ∈ R2.

Let fj ∈ C2. We sketch a proof that if
∑2

j=0 fj(x+ tj) ≡ 0 in a connected set Ω, then each

fj is constant in ϕj(Ω). This proof is based on differentiation of the equation.
Differentiate with respect to t to get

2∑
j=1

jtj−1f ′j(x+ tj) ≡ 0

in Ω. Apply ∂t − ∂x to get

(4t2 − 2t)f ′′2 (x+ t2) = 2f ′2(x+ t2)

in Ω. This forces f ′′2 ≡ f ′2 ≡ 00 in ϕ2(Ω), so f2 is constant. Thus f0(x) + f1(x + t) = C,
some constant. By freezing x we find that f1 is locally constant, hence globally constant,
in ϕ1(Ω). Then the says directly that f0 is constant. �

The proof of Theorem 14.4 is partly modeled on this argument. Given f satisfying
|
∑3

j=1 aj · (fj ◦ ϕj)| < ε and
∑

j |fj ◦ ϕj | ≥ 1 at every point of a set S ⊂ R2, we aim to

prove that there exist differentiable functions gj and S′ ⊂ S satisfying |S′| & |S|C such that
gj = fj +O(ε) on ϕj(S

′), and moreover

∣∣∇ 3∑
j=1

aj(gj ◦ ϕj)
∣∣ = O(ε) on S′.

Since the gradient has two components, this is a system of two inequalities. One inequality
can be used to eliminate g3. The result is a single inequality in two unknown functions
g1, g2, and their derivatives.

The presence of the derivatives is a complication, but having only two mappings ϕj :
R2 → R1 in play is an enormous simplification, as we have seen above in the proof of
Lemma 9.2. The variable coefficients aj turn out to be an advantage at this stage.

Thus much of the analysis is a proof of a regularity theorem, in which all functions are
well-defined only up to O(ε) additive corrections. There are three main steps. In the first,
a preliminary approximation of fj by gj is accomplished, with the domain of each fj tiled
by intervals of length ε and with functions g̃j constructed, each of which is constant on
each interval in the tiling. In the second step, the domain of each g̃j is tiled by intervals

of length δ = ε3/4, and improved approximators gj are constructed, each of which is affine
on each tile with |∇gj | = O(1) and with |g̃j − gj | = O(δ1+κ) for a certain exponent κ > 0.
This holds on S′ ⊂ S, which satisfies |S′| & |S|C . This is sufficient information to lead to
the desired bound for ∇

∑
j aj(gj ◦ ϕj). In this way, a more tractable sublevel set problem

is constructed from the given one.

17.2. Elementary combinatorial inequalities. I will often write Rk for k = 1, 2 when
a subset of Rk is intended.

For each index j, let Vj be a nowhere vanishing vector field with Cω coefficients that
satisfies Vj(ϕj) ≡ 0. R2 is foliated by the one-parameter family of Cω curves {x ∈ R2 :
ϕj(x) = y}, parametrized by y ∈ R1. (More precisely, by y ∈ ϕj(B) ⊂ R1. For each x ∈ R2,
ehe mapping R1 3 t 7→ etVj (x) parametrizes this curve, with y = ϕj(x). {(x, x′) ∈ R2×R2 :
ϕj(x) = ϕj(x

′)} is thus naturally parametrized by (x, s) ∈ R2 × R via x′ = esVj (x).
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The next lemma is a widely used combinatorial principle, adapted to the continuum
setting, with sizes of sets measured by Lebesgue measure(s) rather than by cardinality.

Lemma 17.1. For any δ > 0 and any S ⊂ R2,

|{(x, s) : x ∈ S and esVj (x) ∈ S}| ≥ cδ|S|2.

Proof. Choose coordinates in which ϕj(x1, x2) ≡ x1. Then the measure of the set in
question is equal to ∫∫∫

|x2−x′2|≤δ
1S(x1, x2)1S(x1, x

′
2) dx2 dx

′
2 dx1.

By Cauchy-Schwarz, for δ = 1,

|S| =
∫∫

1S(x1, x2) dx1 dx2

. (

∫ ( ∫
1S(x1, x2) dx2

)2
dx1)1/2

= (

∫∫∫
1S(x1, x2)1S(x1, x

′
2) dx2 dx

′
2 dx1)1/2,

which is the bound claimed for δ = 1.
For the general case, let Sn = {(x1, x2) ∈ S : nδ ≤ x2 < (n+ 1)δ}, apply the case δ = 1

to obtain |Sn| . |S′n|1/2, and apply Cauchy-Schwarz to obtain

|S| =
∑
n

|Sn| ≤
∑
n

|S′n|1/2 . δ−1/2(
∑
n

|S′n|)1/2 = δ−1/2|S′|.

�

Variants of this lemma arise repeatedly in the analysis, and are proved in the same way.

Lemma 17.2. For any measurable S ⊂ R2 there exists a measurable set S′ ⊂ S satisfying
|S′| & |S|2 such that every x ∈ S′,

|{x′ ∈ S′ : ϕj(x′) = ϕj(x)}| & |S|.

In the conclusion, E = {x′ ∈ S′ : ϕj(x′) = ϕj(x)} is identified with a subset of R1 via the
inverse of the exponential map t 7→ etVj (x), and |E| denotes the one-dimensional Lebesgue
measure of this subset of R1.

This lemma is a direct consequence of Fubini’s theorem. Details are left to the reader. �
Throughout the discussion, this type of situation will arise, with a subset E of some

Euclidean space naturally identified with a subset of a lower-dimensional space, and the
notation |E| will denote this lower-dimensional Lebesgue measure, without any explicit
notatioal indication.

Repeated application of Lemma reflemma:doublex gives this conclusion:

Lemma 17.3. There exist measurable sets T ⊂ R3 and T ∗ ⊂ R4, and a point x̄, such that

(17.1)



|T | & |S|8

T ∗| & |S|16

∀ t ∈ T, |{t4 : (t1, t2, t3, t4) ∈ T ∗}| & |S|8,
et3V1et2V2et1V1 x̄ ∈ S ∀ (t1, t2, t3) ∈ T
et4V2et3V1et2V2et1V1 x̄ ∈ S ∀ (t1, t2, t3, t4) ∈ T ∗
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17.3. A supplementary hypothesis. We aim for an upper bound for the Lebesgue mea-
sure of

S = {x ∈ S(f , ε) : |(f3 ◦ ϕ3)(x)| ≥ 1}.
No nontrivial upper bound is available if each fj is allowed to be small on a large set, so
the lower bound |f3 ◦ ϕ3)(x)| ≥ 1 is imposed.

Matters reduce to the case in which a supplementary hypothesis

(17.2) |(fj ◦ ϕj)(x)| ≤ 2 ∀x ∈ S

is also given. Indeed, partition S as a pairwise disjoint union S =
⋃
n≥0

⋃3
k=1 Sn,k with the

property that

|(fk ◦ ϕk)(x)| ≥ 2n ∀x ∈ Sn,k

|(fj ◦ ϕj)(x)| < 2n+1 ∀x ∈ Sn,k.

The supplementary hypothesis can be applied for Sn,k upon replacing each fj by 2−nfj and
replacing ε by 2−nε; the formulation of Theorem 14.4 is invariant under permutation of the
indices j ∈ {1, 2, 3}, so having a lower bound for |fk| is functionally equivalent to having
a lower bound for |f3|. We find that if the conclusion of Theorem 14.4 can be established
under the supplementary hypothesis, it follows that

|Sn,k| . (2−nε)τ ∀n, k.

By summing over n, k we obtain the desired conclusion in general, without any supplemen-
tary hypothesis. �

We will assume henceforth that (17.2) is satisfied.

17.4. Reduction to a sublevel problem with only two unknown functions. Let
S = S(f , ε). Form

S′ = {(x, s) : x ∈ S, esV3x ∈ S, and |s| ≤ ε}.
By Lemma 17.1, |S′| & ε|S|2. Form

S̃ = {(x, s) : x ∈ S, eεtV3x ∈ S, and |t| ≤ 1}.

Then |S̃′| & |S|2. We aim for a lower bound |S̃| & εc, which implies a corresponding bound
for |S| with exponent c/2.

By dividing through by the nowhere vanishing coefficient a3 in the definition of S(f , ε),

we may reduce matters to the case in which a3 ≡ 1. Consider any (x, t) ∈ S̃ and write
(x, x′) = (x, eεtV3x) ∈ S2. Subtraction gives

2∑
j=1

[
aj(x)(fj ◦ ϕj)(x)− aj(x′)(fj ◦ ϕj)(x′)

]
= O(ε).

Now |x− x′| = O(ε), so |aj(x)− aj(x′)| = O(ε), so this can be simplified to

2∑
j=1

aj(x)
[
(fj ◦ ϕj)(etεV3x)− (fj ◦ ϕj)(x)

]
= O(ε).

Define mappings ψj,ε : R3 → R2 and functions gj : R2 → C by

(17.3)

{
ψεj (x, t) = (ϕj(x), ε−1

[
ϕj(e

εtW3x)− ϕj(x)
]
)

gj(y, s) = fj(y + εs)− fj(y).
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Thus

(fj ◦ ϕj)(eεtV3x)− (fj ◦ ϕj)(x) = (gj ◦ ψεj )(x, t)

and consequently
2∑
j=1

aj(x)(gj ◦ ψj)(x, t) = O(ε) ∀ (x, t) ∈ S̃.

We have arrived at a sublevel set problem in a three-dimensional ambient space, with
two unknown functions gj , each of which is a function of two real variables. Note that no
lower bound on |gj | is given or deducible. But our goal is to show that |gj | are small on
suitably large sets, so a proof by contradiction would naturally provide us with such a lower
bound.

As ε → 0, the mappings ψεj converge in the C∞ topology to mappings ψj . The vector
fields W ε

j can be chosen so that they also converge to limiting vector fields Wj .

17.5. A two term sublevel set inequality. This subsection is concerned with two term
sublevel set inequalities, for functions of two variables, in a three-dimensional ambient space.
The next proposition is a general result that treats a slight simplification of the situation
that arose in §17.4. Its proof contains the main elements of a proof for the elaboration
needed in that context.

The setup for the next result is as follows. Let B ⊂ R3 be a ball, let ψj : B → R2 be Cω

submersions and let aj be nowhere vanishing Cω functions. To any Lebesgue measurable
functions g1, g2 : R2 → C associate the sublevel sets

(17.4) S(g, ε) = {x ∈ B :
∣∣∣ 2∑
j=1

bj(x) (gj ◦ ψj)(x)
∣∣∣ < ε}.

Let Wj be nowhere vanishing Cω vector fields in a neighborhood of B that satisfy Wj(ψj) ≡
0.

Proposition 17.4. Suppose that W1,W2 satisfy the bracket condition at each point of
B̃ × (R \ {0}). Suppose also that in every nonempty open subset of a neighborhood of B,
any Cω solution g∗ = (g∗1, g

∗
2) of the equation

2∑
j=1

bj · (g∗j ◦ ψj) = 0

vanishes identically. Then there exist C < ∞ and τ > 0 such that for any ε > 0 and any
pair of measurable functions gj,

(17.5)
∣∣{x ∈ S(g, ε) : max

j
|(gj ◦ ψj)(x)| ≥ 1}

∣∣ ≤ Cετ .
The constants C, ε0 depend on B,ψj , σ but neither on S nor on the functions gj .
We next prove Proposition 17.4. The next two lemmas are used in that proof. They are

essentially exercises in differential calculus, the implicit function theorem, and aspects of
real analytic functions.

Lemma 17.5. If Φ = (ϕ1, ϕ2, ϕ3) is not linearizable then the limiting vector fields W1,W2

satisfy the bracket condition at every point of B × (R \ {0}).
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Since W ε
j → Wj in the C∞ topology as ε→ 0, the same conclusion holds for {W ε

1 ,W
ε
2 }

for every sufficiently small ε > 0. Moreover, the bracket condition holds uniformly in ε,
uniformly on every compact subset of B × (R \ {0}), in the natural sense.

For x ∈ R3 define Θx : R3 → R3 by

Θx(t1, t2, t3) = et3W1et2W2et1W1x.

Let Jx(t) = Jx(t1, t2, t3) be the Jacobian determinant of Θx with respect to t. We will often
suppress the subscript x and write simply Θ(t).

Lemma 17.6. Let ψ1, ψ2,W1,W2 be as in Proposition 17.4. Assume that {W1,W2} satis-
fies the bracket condition. Then Jx(t) does not vanish identically as a function of (x, t) ∈
B × R3.

The hypotheses, and therefore the conclusion, are invariant under permutation of the
indices j = 1, 2.

Lemma 17.7. Let S ⊂ R3 be Lebesgue measurable. There exist x̄ ∈ B and a set T ⊂ R3

such that

(17.6)

{
|T | & |S|A

Θ(t) ∈ S ∀ t ∈ T

The proof is a repeated application of the proof of Lemma 17.2.
Define F : R3 → C as follows. Write the relation as

(f1 ◦ ψ1)(x) = a(x) (f2 ◦ ψ2)(x) +O(ε) ∀x ∈ S

where a ∈ Cω vanishes nowhere.

(17.7)



F (0, 0, 0) = (f1 ◦ ψ1)(x̄)

F (t1, 0, 0) = F (0, 0, 0)

F (t1, t2, 0) =
a(Θx̄((t1, t2, 0)))

a(Θx̄((t1, 0, 0)))
(f1 ◦ ψ1)(Θx̄((t1, 0, 0))

F (t1, t2, t3) = F (t1, t2, 0).

The function F is manifestly real analytic; the successive lines of (17.7) define analytic
functions whose domains are respectively subsets of R0, R1, R2, and finally R3.

I claim that

(17.8) F (t) = (f1 ◦ (ψ1 ◦Θ))(t) +O(ε) ∀ t ∈ T.

Consequently, since t ∈ T ⇒ Θ(t) ∈ S, it is also true that

(17.9) F (t) = a(Θ(t))(f2 ◦ (ψ2 ◦Θ))(t) +O(ε) ∀ t ∈ T.

Proof of (17.8). The relation (17.8) holds for t = (0, 0, 0) by the first clause in the definition
since Θ(0, 0, 0) = x̄. It consequently holds for all (t1, 0, 0) ∈ T since Θ(t1, 0, 0) ∈ S and

ψ1(Θ(t1, 0, 0)) = ψ1(etW1 x̄) = ψ1(x̄).

Therefore

(f1 ◦ ψ1)(Θ(t1, 0, 0)) = (f1 ◦ ψ1)(x̄) = (f1 ◦ ψ1)(et1W1 x̄) = (f1 ◦ ψ1)(Θ(t1, 0, 0)).
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For t = (t1, t2, 0) ∈ T ,

(f1 ◦ ψ1)(Θ(t)) = a(Θ(t))(f2 ◦ ψ2)(Θ(t)) +O(ε)

= a(Θ(t))(f2 ◦ ψ2)(Θ(t1, 0, 0)) +O(ε)

=
a(Θ(t))

a(Θ(t1, 0, 0))
· a(Θ(t1, 0, 0))(f2 ◦ ψ2)(Θ(t1, 0, 0)) +O(ε)

=
a(Θ(t))

a(Θ(t1, 0, 0))
(f1 ◦ ψ1)(Θ(t1, 0, 0)) +O(ε)

= F (t) +O(ε).

The first equality holds because Θ(t) ∈ S, the second because ψ2(Θ(t1, 0, 0)) = ψ2(Θ(t1, t2, 0)),
and the third because Θ(t1, 0, 0) ∈ S, while the fourth is the definition of F (t1, t2, 0). Fi-
nally, for t = (t1, t2, t3) ∈ T with t3 6= 0,

F (t) = F (t1, t2, 0) = (f1 ◦ ψ1)(Θ(t1, t2, 0)) +O(ε) = (f1 ◦ ψ1)(Θ(t)) +O(ε).

�

Define ψ̃j = ψj ◦Θ, and ã = a ◦Θ. There exist Cω vector fields W̃j whose push-forwards

with respect to Θ satisfy Θ∗(W̃j) = JWj , where J is the Jacobian determinant of Θ with

respect to t. W̃j factors through ψ̃j , and conversely, if h ∈ C1 satisfies W̃j(h) ≡ 0 then h

factors through ψ̃j .
By (17.8) and (17.9),F (es1W̃1t) = F (t) +O(ε)

ã(es2W̃2t)−1F (es2W̃2t) = ã(t)−1F (t) +O(ε)

whenever t, es1W̃1t, and esW̃2t all belong to T . The set of all (t, s1, s2) satisfying this
condition has five-dimensional Lebesgue measure & |T |C for some C <∞.16

The function F is completely determined by ψ1, ψ2 and a single datum (x̄, α) with α =
f1(ψ1(x̄)). This datum ranges over a compact subset of R3 × (C \ {0}) since it is assumed
that |fj | = O(1) and that maxj |(fj ◦ψj)(x̄)| ≥ 1. Denote by F the set of all such functions
F(x̄,α).

I claim that if some function H that is Cω in some open subset of R3 satisfies the exact
relations H(es1W̃1t) = H(t)

ã(es2W̃2t)−1H(es2W̃2t) = ã(t)−1H(t)

for all (t, s1, s2) in some nonempty open set in R5, then H vanishes identically. Indeed,
there exists a nonempty open subset on which Θ is a bijection. By defining f1(y) = H(t)

with t ∈ ψ̃1−1({y}) and similarly f2(y) = ã(t)−1H(t) with t ∈ ψ̃−1
2 ({y}) we obtain a

real analytic exact solution of the equation (f1 ◦ ψ1) = a · (f2 ◦ ψ2) in a nonempty open
subset of R3. By hypothesis, fj ◦ ψj both vanish identically in that open set. Therefore
H vanishes identically in a nonempty open subset of its domain. This reasoning applies in
any connected component of the domain of H. Therefore H vanishes identically. �

The family F of all functions F that are defined by (17.7) from data (f1, f2) that are
O(1) is parametrized by (x̄, α) with α = (f1 ◦ ψ1)(x̄). The parameter (x̄, α) ranges over a

16Justification is needed here, but these lectures do not include full details.
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compact subset of R3× (C\{0}). The mapping (x̄, α, t) 7→ F (t) = F(x̄,α)(t) is real analytic.
Moreover, F does not vanish identically, since F (x̄) = α 6= 0.

Consider the family G consisting of all functions

Gx̄,α(t, s1, s2) = |F (es1W̃1t)− F (t)|2 + |ã(es2W̃2t)−1F (es2W̃2t)− ã(t)−1F (t)|2

such that F ∈ F . This is a family of real analytic functions of (t, s1, s2) that depends real
analytically on (x̄, α). We have shown, two paragraphs above, that no function Gx̄,α ∈ G
vanishes identically. Therefore by Lemma 2.9 there exist C, τ such that∣∣{(t, s1, s2) : |Gx̄,α(t, s1, s2)| < δ

}∣∣ ≤ Cδτ
uniformly for all (x̄, α) and all δ ∈ (0, 1].

Choose δ = Cε for a large constant C. By our construction, the measure of the set of all
such (t, s1, s2) is ≥ c|S|C for some c > 0 and C < ∞. Thus |T | ≤ Cεc, and consequently
the same holds for the measure of S, for some (other) constants c, C ∈ R+. �
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