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Introduction

These are the lecture notes that I will use for my five-hour mini-course
at the conference. I plan to do “chalk and board” talks in the beginning,
so I will not use these slides for all the lectures.

These notes contain more material then what I intend to present in my
mini-course. In particular, the last section (the second part of the
lecture notes) was not covered in the mini-course. (This second part
contains an attempt to generalize the results of first part.)

At this time, these notes have not been revised carefully. In particular,
not enough credit is given to other researchers, and I sincerely
appologize for this omission. However, I include a very short (and
extremely incomplete) reference section at the end of each of the two
parts of the lecture notes.
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I have two main goals for my mini-course:

First, to give a very quick introduction to some of the main tools
and concepts used in analysis on manifolds.

Second, to use some of these tools to investigate the method of
layer potentials on manifolds with cylindrical ends.
Even if one is interested in domains in Rn, the method of layer
potentials require us to work on a non-trivial manifold, namely the
boundary of our domain.

If time permits, I will state the well-posedness of the Poisson
problem on manifolds with finite width.

The table of contents follows next:
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1 First part: Differential Geometry
Manifolds and vector bundles
Connection and Sobolev spaces

2 Layer potentials and the Mitrea-Taylor trick
Review of layer potentials for Ω ⊂ Rn

The Mitrea-Taylor method on manifolds
3 Pseudodifferential operators and cylindrical ends

Pseudodifferential operators on manifolds
Operators invariant at infinity on manifolds with cylindrical ends
Layer potentials on manifolds with cylindrical ends

4 Second part: Extensions
Manifolds with bounded geometry
Well-posedness for the Poisson problem
A more complete approach to pseudodifferential operators
Motivation for Lie algebroids: cylindrical ends and vector fields
Lie algebroids
Lie manifolds
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(Pseudo)differential operators on Lie manifolds
Groupoids
C∗-algebras
Lie Groupoids
(ISF) and the Fredholm conjecture
Manifolds with cylindrical ends
Manifolds with bounded geometry
Well-posedness for the Poisson problem
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Motivation

Even if one is interested in analysis on Euclidean spaces, one is
lead to consider (smooth) manifolds, because they are the
boundaries of smooth domains.

Because certain domains are not smooth (i.e. do not have a
smooth boundary), we are also lead to consider singular spaces.
Example: domains with conical points (including polygons).

A related example: domains with conical points. (Our method
to study domains with conical points is to use domains with
cylindrical ends.)

More complicated domains, such as polyhedral domains, require
the use of Lie manifolds, discussed in the last section.

Very many researchers: Stein, Strichartz, Browder, ... (early
works on analysis on non-compact manifolds), Dauge, Kondratiev,
Melrose, Schulze, ...
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First part: Differential Geometry Manifolds and vector bundles

Smooth manifolds

Definition
A smooth manifold M is a locally Euclidean, second countable
Hausdorff space endowed with a smooth structure.

Thus M = ∪α∈IUα is Hausdorff, second countable, with each Uα an
open subset of M and there exist homeomorphisms
ϕα : Uα → Wα ⊂ Rn, such that, for all α, β ∈ I, the induced map

ϕαβ := ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

is a diffeomorphism.

A pair (Uα, ϕα) is called a coordinate chart and the set {Uα | α ∈ I} is
called an atlas on M.

f : M → R is smooth (i.e. in C∞(M)) if all f ◦ ϕ−1
α : Wα → R are

smooth. M will always denote a smooth manifold.
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First part: Differential Geometry Manifolds and vector bundles

Remark on the definition of smooth manifolds

Some authors replace second countability by the weaker requirement
that the manifold be a paracompact topological space. The second
choice implies that every connected component is second countable.

Thus, a manifold in the second sense is a manifold in the first sense if,
and only if, the set of connected components is countable. For
instance, an uncountable set D with the discrete topology is not a
manifold in the first sense, but it is a 0-dimensional manifold in the
second sense.

For our results (and for most statements in differential geometry), it
does not matter which definition we choose (second countable or
paracompact).
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First part: Differential Geometry Manifolds and vector bundles

Vector bundles

Let E ,X be topological vector space together with a map π : E → X .
For every A ⊂ X , we shall write E |A := π−1(A) ⊂ E .

Definition
(E , π) is a (real, topological) vector bundle over X if

For every p ∈ X , the set Ep := π−1(p) is a real vector space;
there exists an open covering M = ∪α∈IUα and a
fiber-preserving* homeomorphisms

ψα : E |Uα → Uα × Rnα

that is linear in each fiber.

∗ (i.e. ψα(Eq) = {q} × Rnα , equivalently, π1(ψα(x)) = π(x).)
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First part: Differential Geometry Manifolds and vector bundles

Consequences

It follows that, for any two α, β ∈ X , the resulting map

ψαβ := ψα ◦ ψ−1
β : (Uα ∩ Uβ)× Rnβ → (Uα ∩ Uβ)× Rnα

is a homeomorphism linear in each fiber, thus of the form

ψαβ(x , v) = (x ,Aαβ(x)v) ,

where
Aαβ : Uα ∩ Uβ → GL(Rnβ ) := End(Rnβ )−1

is continuous (the famous “transition functions”).

Alternatively, the continuous vector bundle can be defined starting from
the transition functions, as long as they satisfy the cocycle condition:

Aαβ(x)Aβγ(x) = Aαγ(x) , for x ∈ Uα ∩ Uβ ∩ Uγ .
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First part: Differential Geometry Manifolds and vector bundles

Smooth vector bundles

Using the cocycle condition, we can identify

E ≃
⊔(

Uα × Rnα

)
/ ∼

(disjoint union), where (x , v) ∼ (x ,Aαβ(x)v) (with the first x in Uβ and
the second one in Uα and v ∈ Rnβ ).

Our vector bundles are thus locally trivial.

The simplest example of a vector bundle is the trivial vector bundle

E := X × Rn.

Then all Uα = X and the transition functions are the identity matrices.

Complex vector bundles are treated similarly.
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First part: Differential Geometry Manifolds and vector bundles

Continuous sections of a vector bundle

Definition
Let (E , π) be a topological vector bundle over X . A (continuous)
section of E is a continuous map s : X → E such that

π ◦ s = id .

The last condition means that s(x) ∈ Ex := π−1(x), for all x ∈ X .

If E = X × RN (trivial of rank N), then a section s : X → E is simply an
n-uple of continuous functions:

s(x) = (x , s1(x), s2(x), . . . , sn(x)) ,

sj : X → R continuous.
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First part: Differential Geometry Manifolds and vector bundles

Smooth vector bundles

Definition
Let (E , π) be a vector bundle over X . Let us assume that X is a
smooth manifold and that π and the transition functions Aαβ are
smooth. Then E is a smooth vector bundle (and a smooth manifold).

If U ⊂ Rn is an open subset, then it is a smooth manifold and

TU ≃ U × Rn .

In general, if M is a smooth manifold with coordinate charts (Uα, ϕα),
then the differentials

Dϕαβ(x) ∈ Mn(R)−1

satisfy the cocycle condition and can be used to define a smooth (real)
vector bundle π : TM → M, called the tangent bundle of M.
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First part: Differential Geometry Manifolds and vector bundles

The tangent bundle

Let M be a smooth manifold. Recall that a function f : M → R is in
C∞(M), iff f ◦ ϕ−1

α is smooth on Wα := ϕα(Uα).

An element v ∈ TpM = (TM)p = π−1(p) can be defined intrinsically as
a derivation of C∞(M) at p, that is, a linear map v : C∞(M) → R s.t.

v(fg) = v(f )g(p) + f (p)v(g) .

Similarly, a smooth section X of TM can be identified with a derivation
X : C∞(M) → C∞(M). For instance, if U ⊂ Rn is an open subset, a
section X of TU = U × Rn is of the form X =

∑n
k=1 Xk

∂
∂xk
, explicitly

Xu(x) =
n∑

k=1

Xk (x)
∂u
∂xk

(x) .

Moreover, [X ,Y ]u := X (Yu)− Y (Xu) Lie bracket is also a derivation
(i.e. a vector field.)
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First part: Differential Geometry Connection and Sobolev spaces

Covariant derivatives

For reasons that will become apparent in applications, we want to work
not just with smooth functions on M, but also with smooth sections
C∞(E) = C∞(M;E) of various smooth vector bundles E → M.

Note that C∞(E) is a C∞(M)-module.

The big question that we face then is how to differentiate the smooth
sections of such a bundle (not a unique solution).

Definition

A covariant derivative ∇ = ∇E on E → M is a bilinear map
∇ = ∇E : C∞(TM)× C∞(E) → C∞(E) s.t.

1 ∇fX (ξ) = f∇X (ξ)

2 ∇X (f ξ) = X (f )ξ + f∇X ξ (Leibnitz’s rule),
∀ ξ ∈ C∞(E),X ∈ C∞(TM), f ∈ C∞(M).
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First part: Differential Geometry Connection and Sobolev spaces

The local form of covariant derivatives I

Let us assume that U ⊂ Rn is an open subset and that E = U × RN is
a trivial vector bundle.

A possible choice of a connection ∇ : C∞(TU)× C∞(E) → C∞(E) is

∇X u = Xu :=
n∑

k=1

Xk
∂

∂xk
u ,

where X =
∑n

k=1 Xk
∂

∂xk
and the derivation is component-wise. That is

∇ ∂
∂xk

u =
( ∂

∂xk
u1,

∂

∂xk
u2, . . . ,

∂

∂xk
un

)
,

where u = (u1,u2, . . . ,un). This is the trivial connection on the
trivial vector bundle E = U × RN .
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First part: Differential Geometry Connection and Sobolev spaces

The local form of covariant derivatives II

The choice

∇X u = Xu :=
n∑

k=1

Xk
∂

∂xk
u ,

for the connection ∇ : C∞(TU)× C∞(E) → C∞(E) on the trivial bundle
E = U ×RN is, however, not unique, since, given any choice of smooth
matrix functions Ak ∈ C∞(M;MN), the formula

∇′
X u = Xu +

( n∑
k=1

XkAk

)
u :=

n∑
k=1

Xk

( ∂

∂xk
u + Aku

)
,

also defines a connection on E → U.

These are all connections on E .
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First part: Differential Geometry Connection and Sobolev spaces

The local form of covariant derivatives III

We thus have

∇′
X u −∇X u =

( n∑
k=1

XkAk

)
u =: A(X )u ,

In general, i.e., given two covariant derivatives ∇ and ∇′ on any
E → M

A(X ) := ∇′
X −∇X = C∞(M; End(E)) ,

We can regard then A ∈ Ω1(M; End(E)) := C∞(M;T ∗M ⊗ End(E))

and ∇ = ∇E as a differential operator

∇ : C∞(E) → C∞(T ∗M ⊗ E) ,

satisfying ∇X u = ⟨X ,∇u⟩ and ∇(f ξ) = df ⊗ ξ + f∇ξ.
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First part: Differential Geometry Connection and Sobolev spaces

Operations with vector bundles

If E ,F → M are two (smooth) vector bundles, we can define the
(smooth) vector bundles

E∗, End(E), Hom(E ;F ), E ⊗ F , ΛkE → M ,

by defining their fibers

(E∗)x := (Ex)
∗, End(E)x := End(Ex), Hom(E ;F )x := Hom(Ex ;Fx), . . . ,

for any x ∈ M. Their topology (or smooth structure) is obtained from
the cocycle construction.

Connections on E and F will define natural connections on these new
(derived) bundles.

A metric g on E is a smooth section of E∗ ⊗ E∗ ≃ (E ⊗ E)∗ that is a
metric on each fiber.
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First part: Differential Geometry Connection and Sobolev spaces

Connections on the new bundles

Recall: connection ∇ = ∇E on E → M is a differential operator

∇ : C∞(E) → C∞(T ∗M ⊗ E) s.t. ∇X u = ⟨X ,∇u⟩ .

Connection on E∗: For ξ ∈ C∞(E∗) and η ∈ C∞(E), we let

⟨∇X ξ, η⟩ := X ⟨ξ, η⟩ − ⟨ξ,∇Xη⟩ .

Connection on E ⊗ F : we consider the connection

∇E⊗F := ∇E ⊗ 1 + 1 ⊗∇F ,

that is
∇E⊗F

X (ξ ⊗ η) := ∇E
X ξ ⊗ η + ξ ⊗∇F

Xη .
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First part: Differential Geometry Connection and Sobolev spaces

Higher order covariant derivatives

We endow TM with the Levi-Civita connection

∇M : C∞(M;TM) → C∞(M;T ∗M ⊗ TM) .

This allows us to iterate:

∇k : C∞(E)
∇−→ C∞(T ∗M ⊗ E)

∇−→ C∞(T ∗M ⊗ T ∗M ⊗ E)

∇−→ C∞(T ∗⊗kM ⊗ E) ,

where endow each tensor bundle T ∗⊗kM ⊗ E with the induced
(Levi-Civita) tensor product connection:

∇X (ξ1 ⊗ . . .⊗ ξk ⊗ η) := ∇M
X (ξ1)⊗ . . .⊗ η + ξ1 ⊗∇M

X (ξ2)⊗ . . .⊗ η

+ . . .+ ξ1 ⊗ ξ2 ⊗ . . .⊗ ξk ⊗∇E
X (η) .
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First part: Differential Geometry Connection and Sobolev spaces

Metric preserving connections

These considerations will not be used in what follows.

Recall that a metric g on E is a smooth section of E∗ ⊗ E∗ ≃ (E ⊗ E)∗

that is a metric on each fiber. That is, g is a smoothly varying family of
metrics gx on Ex := π−1(x).

The connection ∇ is called metric preserving if, ∇g = 0, explicitly

g(∇X ξ, η) + g(ξ,∇Xη) = Xg(ξ, η) .

A metric g on M is a metric on TM, in which case M is called
Riemannian.

(M,g) will be a Riemannian manifold from now on.
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First part: Differential Geometry Connection and Sobolev spaces

The Levi-Civita connection

These considerations will not be used in what follows.

The Levi-Civita connection ∇M may be defined using Koszul’s
formula: If X ,Y ,Z are vector fields (i.e. in C∞(M;TM)), then

2g(∇M
X Y ,Z ) = X (g(Y ,Z )) + Y (g(X ,Z ))− Z (g(X ,Y ))

− g([Y ,X ],Z )− g([X ,Z ],Y )− g([Y ,Z ],X ) ,

It is the unique metric preserving connection on TM that is also
torsion-free, in the sense that

∇M
X Y −∇M

Y X = [X ,Y ]

for all (smooth) vector fields X ,Y ∈ C∞(M;TM).)
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First part: Differential Geometry Connection and Sobolev spaces

Sobolev spaces

Let E → M be a finite dimensional vector bundle with metric and
metric preserving connection ∇ = ∇E . We can define then Lp(M;E)

with norm
( ∫

M ∥s∥dx
)1/p

(ess-sup if p = ∞).

Definition
Let k ∈ Z+ and p ∈ [1,∞]. Then

W k ,p(M;E) := {u ∈ Lp(M;E) | ∇ju ∈ Lp(M;T ∗⊗jM⊗E) , 1 ≤ j ≤ k}/≡

is the order k, Lp–type covariant Sobolev space of sections of E .

∥u∥W k,p(M;E) :=


(∑k

j=0 ∥∇j(u)∥p
Lp(M;E⊗T∗⊗j M)

)1/p
if p <∞

maxk
j=0 ∥∇j(u)∥Lp(M;E⊗T∗⊗j M) if p = ∞ .
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Newtonian potential

The goal is to solve the Dirichlet boundary value problem{
∆u = 0 in Ω

u = f on ∂Ω .

To explain the layer potentials method, recall that the solution of

∆v = h ∈ Cc(Rn)

is given by the Newtonian potential (fundamental solution of ∆):

v(x) = ∆−1h(x) = cn

∫
Rn

|x − y |2−nh(y)dy .
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

The method of layer potentials (S)

The method of the single layer potential (for ∆) is to try to represent
u in the form

u(x) := ∆−1(g ⊗ δ∂Ω) =

∫
∂Ω

|x − y |2−ng(y)dσ .

More precisely, let:

dσ is the surface measure on ∂Ω.

⟨h,g ⊗ δ∂Ω⟩ :=
∫
∂Ω h(x)g(x)dσ(x) .

Then the single layer potential operator S

Sg(x) := ∆−1(g ⊗ δ∂Ω) =

∫
∂Ω

|x − y |2−ng(y)dσ ,
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Harmonic function and boundary condition

The first formula:
Sg(x) := ∆−1(g ⊗ δ∂Ω)

gives that Sg is harmonic inside Ω:

∆Sg(x) = ∆(∆−1(g ⊗ δ∂Ω))(x) = g ⊗ δ∂Ω(x) = 0 .

The second formula:

Sg(x) := cn

∫
∂Ω

|x − y |2−ng(y)dσ(y) , x ∈ Ω ,

for x →z ∈ ∂Ω gives directly

Sg(z) := Sg|∂Ω(z) := cn

∫
∂Ω

|z − y |2−ng(y)dσ(y) , z ∈ ∂Ω .
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Boundary conditions

Let (as on the previous slide)

Sg(z) := Sg|∂Ω(z) := cn

∫
∂Ω

|z − y |2−ng(y)dσ(y) , z ∈ ∂Ω ,

(a “jump relation.”)

Summary of the single layer potential method

Let g = S−1f . Then u := Sg solves the Dirichlet problem{
∆u = 0 in Ω

u = f on ∂Ω .

So we it is enough to invert S.
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

The second lecture
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Double layer potential

We prefer the analogous double layer potential operator D, namely:

Dh(x) := cn

∫
∂Ω
∂νy |x − y |2−nh(y)dσ(y) = ∆−1(f ⊗ δ′∂Ω) ,

Difference: if we pass to the limit x → z ∈ ∂Ω, we obtain a “jump
relation” that has some additional terms:

lim
x→z

Dh(x) = cn p.v.
∫
∂Ω
∂νy |z − y |2−nh(y)dσ(y) +

h(z)
2

=

(
K +

1
2

)
h(z) , z ∈ ∂Ω .

Summary of the double layer potential method
Our Dirichlet problem (∆u = 0 and u = f on ∂Ω) is reduced to(1

2 + K
)

h = f .

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 28 / 197



Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Pseudodifferential operators

Recall that (up to a factor) K is the integral operator with kernel

∂νy |z − y |2−n = (2 − n)
(z − y) · νy

|z − y |n
.

Hence, if ∂Ω is smooth, then K is an order −1 pseudodifferential
operator. (A similar fact holds for S, but will not be used.)

An order −1 pseudodifferential operator on a compact manifold is
compact. Thus

Basic fact
If Ω is smooth and bounded, then K is compact.
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Fredholm operators

Definition
Let T : X → Y be a continuous, linear map between Banach spaces.
We say that T is Fredholm if T−1(0) and Y/TX are finite dimensional.
Then its index is ind(T ) := dim ker(T )− dim(Y/TX ).

Easy observation

An often used argument

If T is Fredholm of index zero and injective, then it is an
isomorphism (invertible).

We obtain that 1
2 + K is a Fredholm operator.
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Well-posedness of the Dirichlet problem

We can now prove the Hadamard well posedness (solvability) of our
Dirichlet problem (∆u = 0 and u|∂Ω = f ) if Ω is smooth and bounded.

Recall that it is enough to invert 1
2 + K, since our solution is

u = D
((1

2
+ K

)−1
f
)
.

The proof of the invertibility of 1
2 + K is as follows:
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Invertibility of 1
2 + K and solvability for Ω smooth,

bounded

Since K is of order -1, we know that it is compact, and hence
P := 1

2 + K is Fredholm of index := dimT−10 − dimT ∗−10 = 0.

Energy estimates (∆u = 0 and u ∈ H1
0 (Ω) imply u = 0) and the

restriction to the boundary (or “jump”) relations show that P has
zero kernel.

Hence P is invertible and the solution to our Dirichlet problem is

u(x) := D
(

P−1(f )
)

= D
((1

2
+ K

)−1
(f )

)
.

Indeed, we already noticed that u is harmonic. Then

u|∂Ω := D
((1

2
+ K

)−1
(f )

)
|∂Ω =

(1
2
+ K

)(1
2
+ K

)−1
(f ) = f .
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Layer potentials and the Mitrea-Taylor trick Review of layer potentials for Ω ⊂ Rn

Extensions

This completes our discussion of layer potentials on a smooth,
bounded domain Ω.

If Ω is not smooth or not bounded, K may no longer be compact.

Many further results and extensions: S. Chandler-Wilde, M.
Costabel, M. Dauge, M. Kohr, M. Lanza de Cristoforis, V. Mazya,
S.E. Mikhailov, M. Putinar, W.L. Wendland, . . .

We want to extend these results to the case when Ω is a domain with
cylindrical ends (inside some manifold). (Outlets, wave-guides, tubes
(David’s talk :-) ... )

Extensions to manifolds: D. & I. & M. Mitrea and M. Taylor.
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Layer potentials and the Mitrea-Taylor trick The Mitrea-Taylor method on manifolds

The Mitrea-Taylor “trick”

Let us assume that Ω ⊂ M = a smooth manifold.

The first issue: ∆ := d∗d may no longer be invertible on M.

The Mitrea-Taylor “trick” is to replace ∆ with ∆+ V , where V is a
suitable potential and then, to replace ∆−1 (which may not exist) with
(∆ + V )−1 (after proving that the later exists).

Then

Sf (x) := (∆ + V )−1(f ⊗ δ∂Ω) and

Df (x) := (∆ + V )−1(f ⊗ δ′∂Ω) .
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Layer potentials and the Mitrea-Taylor trick The Mitrea-Taylor method on manifolds

How does the “trick” work?

Let V ∈ C∞(M) satisfy:
V ≥ 0 on M and V = 0 on Ω,

V is not identically 0 on M.

Assume M to be smooth, compact, and connected, then:
∆+ V ≥ 0 is Fredholm of index zero.

If (∆ + V )u = 0, then

0 =
(
(∆ + V )u,u

)
= (du,du) + (Vu,u) ,

and hence Vu = 0 and du = 0. Since V ̸≡ 0, u = 0 (L2-unique
continuation property). We obtain that ∆+ V is injective.

Consequently, ∆+ V is invertible.
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Layer potentials and the Mitrea-Taylor trick The Mitrea-Taylor method on manifolds

The (proved) invertibility of ∆+ V ≥ 0 allows us to define the layer
potential operators

Sf (x) := (∆ + V )−1(f ⊗ δ∂Ω) and

Df (x) := (∆ + V )−1(f ⊗ δ′∂Ω) .

Let us notice that, because V = 0 inside Ω, we obtain

∆D(f ) = (∆ + V )(∆ + V )−1(f ⊗ δ′∂Ω) = f ⊗ δ′∂Ω = 0 ,

and hence D(f ) (and, similarly, S(f )) are again harmonic in Ω, in spite
of us having introduced the potential V .

The proof that 1
2 + K is invertible is then the same.

This then gives the the well-posedness of the Dirichlet problem.
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Layer potentials and the Mitrea-Taylor trick The Mitrea-Taylor method on manifolds

Having explained the Mitrea-Taylor trick for compact manifolds, we now
want to extend it to manifolds with cylindrical ends. This will take
most of the rest of the first part of the lecture notes.

More precisely,

We want to first invert ∆+ V (the Mitrea-Taylor trick).

This allows us to define the layer potential operators. (For
instance, recall Df := (∆ + V )−1f .)

The jump relations extend immediately (they are the same).

We then want to show that 1
2 + K is also invertible: another use

of the Mitrea-Taylor trick.
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Layer potentials and the Mitrea-Taylor trick The Mitrea-Taylor method on manifolds

The M.-T. trick for cylindrical ends

In order to invert ∆+ V and then 1
2 + K, we will need:

To establish that our layer potential operators K and S are “nice”
pseudodifferential operators (essentially translation invariant at
infinity).

The Fredholm property for these “nice” pseudodifferential
operators.

The jump relations.

The L2-unique continuation property.

This will be done in the following (several) slides.

(Additional results were given in Mirela Kohr’s talk.)
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Outline of this section

Pseudodifferential operators and cylindrical ends

- In this section, our main interest is in:

closed manifolds (smooth, compact, without boundary) (0) and
manifolds with cylindrical ends (1).

- In the second part, more general classes of manifolds, incl.:

conformally compact manifolds (2);
Euclidean spaces (3).
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Motivation

Let D be a differential operator some manifold M.

Assume D = invertible between certain Sobolev spaces.

its inverse D−1 will not be a differential operator.
(we assume D is not a multiplication operator).

D−1 = a pseudodifferential op. of order = −order(D) (Beals).

The pseudodifferential operators generalize:

- the differential,
- the convolution, and
- the regularizing operators (order −∞).
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

The main formula of pseudodifferential theory

The MAIN FORMULA of pseudodifferential theory is:

a(x ,D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ a(x , ξ)û(ξ)dξ ,

(pseudodifferential operator with symbol a : Rn × Rn → C.)

a(x) is a multiplication operator and a(D) is a convolution operator.

Here ⟨x , ξ⟩ := x1ξ1 + x2ξ2 + . . . xnξn and

û(ξ) = Fu(ξ) :=

∫
R

e−ı⟨y ,ξ⟩ u(y)dy .

is the Fourier transform of u.
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Symbols and pseudodifferential operators on Rn

Question: Which “symbols” a(x , ξ) should we allow?

Order m, (1,0)-symbols, Hörmander:

Sm
1,0(R

n × Rn) := {a : R2n → C | ∀α, β, ∃Cα,β ≥ 0

s.t. |∂αx ∂
β
ξ a(x , ξ)| ≤ Cα,β(1 + |ξ|)m−|β|} .

Theorem
If a ∈ Sm

1,0(R
n × Rn), then it defines a continuous map

a(x ,D) : C∞
c (Rn) → C∞(Rn) .a

a(Schwartz’ kernel theorem)
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

The third lecture
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

The distribution kernel of a(x ,D)

Theorem
The distribution kernel ka(x ,D) of a(x ,D) is:

“ka(x ,D)(x , y)” = 1
(2π)n

∫
Rn eı⟨x−y ,ξ⟩ a(x , ξ)dξ = (F−1

ξ a)(x , x − y) .

Fourier inversion gives a(x , ξ) in terms of ka(x ,D)(x , y).

If ∂Ω is smooth, this proves that S and K are pseudodifferential
operators of order k = −1 on ∂Ω, because they have distribution
kernels

kS(x , y) :=
cn

|x − y |2−n and kK(x , y) :=
c′

n⟨x − y , νy ⟩
|x − y |2−n ,

which are (essentially) homogeneous of order

−(n − 1)− (−1) = − dim(∂Ω)− k .
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Product and diffeomorphism invariance

Theorem

Let a ∈ Sm
1,0(R

n × Rn) and b ∈ Sm′

1,0(R
n × Rn). Then

ab ∈ Sm+m′

1,0 (Rn × Rn) and there exists c ∈ Sm+m′−1
1,0 (Rn × Rn) s. t.

a(x ,D)b(x ,D) = (ab)(x ,D) + c(x ,D) .

Localization: Let U ⊂ Rn be open and

Ψm
c (U) := {a(x ,D) | supp ka(x ,D) ⋐ U × U} .

Theorem
For U ⊂ Rn open, Ψ∞

c (U) := ∪m∈ZΨ
m
c (U) is a filtered algebra invariant

under diffeomorphisms.
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Principal symbol

Recall:

Ψm
c (U) := {a(x ,D) | supp (ka(x ,D)) compact ⊂ U × U} and

a(x ,D)b(x ,D) = ab(x ,D)+ a lower order operator.

Let Sm
c (T ∗U) := {a ∈ Sm

1,0(R
n × Rn) | supp(a) ⊂ K × Rn , K ⋐ U}.

Theorem
If a(x ,D) ∈ Ψm

c (U), then the principal symbol

σm(a(x ,D)) := a + Sm−1
c (T ∗U) ∈ Sm

c (T ∗U)/Sm−1(T ∗U)

is well-defined, multiplicative, and diffeomorphism invariant.
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Pseudodifferential operators on manifolds

Let ϕ : U ≃ W ⊂ Rn, U ⊂ M open (arbitrary ϕ =coordinate chart).
Diffeomorphism invariance gives

Ψm
c (U) := ϕ−1

∗ Ψm
c (W )

Definition
A linear map P : C∞

c (M) → C∞(M) is a pseudodifferential operator
of order ≤ m on M if, for any U ⊂ M as above and η ∈ C∞

c (U), we have

ηPη ∈ Ψm
c (U).

Let Ψm(M) =set of order ≤ m pseudodifferential operators on M.

For instance ∆−1 = a(D) ∈ Ψ−2(Rn), although a(ξ) := −|ξ|−1 is not in
S−2

1,0(R
n) (it has the right decay in ξ, but is not smooth).
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Examples and properties

Recall Ψm(M) =order m pseudodifferential operators on M.

If ∂Ω is smooth, them S,K ∈ Ψ−1(∂Ω) since their distribution kernels
have the right asymptotic developement at the diagonal and are
smooth outside the diagonal.

Theorem
The principal symbol gives surjective, diffeomorphism invariant
maps

σm : Ψm(M) → Sm
1,0/S

m−1
1,0 (T ∗M) .
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Definition
P ∈ Ψm(M) is elliptic if σm(P) is invertible (mod. lower order ops.).

Theorem
Let a ∈ Sm(T ∗M). The following are equivalent

1 There exist b ∈ S−m(T ∗M) such that ab − 1 ∈ S−1(T ∗M)

2 There are C,R > 0 such that |a(ξ)| ≥ C|ξ|m for ξ ∈ T ∗M , |ξ| ≥ R.

Then a is called elliptic and this property is a property of its class in
Sm(T ∗M)/Sm−1(T ∗M).
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Properties of psdos on manifolds

1 If P ∈ Ψm(M), then P : C∞
c (M) → C∞(M) continuously, if

P,Q ∈ Ψ∞(M), the product PQ may not be defined.
(It is enough for them to have distribution kernels supported
“close” to the diagonal i.e properly supported.)

2 Ψm(M) contains all differential operators of order m.

3 Ψm(M) ⊂ Ψm′
(M) for m < m′ and Ψ−∞(M) := ∩mΨ

m(M) =all
operators with smooth kernel.

4 kP is smooth away from the diagonal.
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Properties of psdos on closed manifolds

Assume M = closed, then we can compose any two pseudos!

We can easily include vector bundles.

1 If P ∈ Ψm(M;E), then P : Hs(M;E) → Hs−m(M;E) is bounded.

2 If P ∈ Ψq(M;E), q < 0, then P : Hs(M;E) → Hs(M;E) is
compact.

3 If P ∈ Ψm(M;E) is elliptic, then, for any s ∈ R,

P : Hs(M;E) → Hs−m(M;E) is Fredholm.

The proof of the last result is based on Atkinson’s theorem (see next
slide).
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Pseudodifferential operators and cylindrical ends Pseudodifferential operators on manifolds

Proof of ‘elliptic ⇒ Fredholm’

Theorem (Atkinson’s theorem)

Let X and Y be Banach spaces; T ∈ B(X ;Y ) is Fredholm iff there
exists Q ∈ B(Y ;X ) such that TQ − 1Y and QT − 1X are compact.

Proof.
s[Proof of ‘elliptic ⇒ Fredholm’] • P is elliptic means that there is
b ∈ S−m(T ∗M) such that σm(P)b − 1 ∈ S−1(T ∗M).

• The surjectivity of σ−m and its multiplicativity give that there exists
Q ∈ Ψ−m(M) (parametrix) such that PQ − 1,QP − 1 ∈ Ψ−1(M) .

• Consequently, PQ − 1 and QP − 1 are compact operators.
Atkinson’s theorem then gives that P is Fredholm.

The converse is true (Fredholm for one s implies elliptic).
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The last two lectures
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Pseudodifferential operators and cylindrical ends Operators invariant at infinity on manifolds with cylindrical ends

“Pictorial” definition of cylindrical ends

We want to extend the Fredholmness result to manifolds with
cylindrical ends M. (Additional ingredient limit operator.)

Let M be a smooth manifold with boundary ∂M.

To M we attach the cylindrical end ∂M × (−∞,0] along ∂M.

Thus M := M ∪ (∂M × (−∞,0]).
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Pseudodifferential operators and cylindrical ends Operators invariant at infinity on manifolds with cylindrical ends

Translation invariant operators near infinity

Consider the partial translations (isometries)

Φs(x , t) := (x , t − s) , s ≥ 0
Φs : ∂M × (−∞,0] → ∂M × (−∞,−s] .

Definition
P : C∞

c (M) → C∞
c (M) is called translation invariant at infinity if

its distribution kernel is supported in a neighborhood of the
diagonal {(x , y) ∈ M × M : dist(x , y) < ε} for some ε > 0, and
there is R > 0 s.t. if supp(f ) ⊂ ∂M × (−∞,−R) and s > 0,

PΦs(f ) = ΦsP(f ) .

Equivalently: kP(t , x , t ′, x ′) = kP(t − s, x , t ′ − s, x ′), if t , t ′ << 0.
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Psdos translation invariant near infinity

Definition
Let Ψm

inv(M) be the space of (classical) pseudodifferential operators P
of order ≤ m that are translation invariant in a neighborhood of
infinity.

(It is contained in the b-calculus of Melrose and Schulze.)

As usual:

Ψ∞
inv(M) :=

⋃
m∈ZΨ

m
inv(M).

We can also introduce vector bundles E ,F → M to obtain

Ψm
inv(M;E ,F ) , . . .
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Almost translation invariant operators at infinity

Drawback: Ψ∞
inv(M) is not stable under inversion.

Definition
Ψ∞

ess(M)= operators essentially translation invariant:

Ψm
ess(M) := Ψm

inv(M) + Ψ−∞
ess (M)

Ψ−∞
ess (M) = suitable closure of Ψ−∞

inv (M) (w.r.t the norms ∥ · ∥m′,m

of linear operators Hm′
(M) → Hm(M), m′,m ∈ 2Z and with

respect to the norms ∥adk
x (P)∥m′,m.)

Ψ∞
ess(M) is larger than Ψ∞

inv(M) and stable under inversion (next). (It is
smaller than the c-calculus: Mazzeo-Melrose, Cipriana Anghel, ... )
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Pseudodifferential operators and cylindrical ends Operators invariant at infinity on manifolds with cylindrical ends

Spectral invariance

Ψ∞
inv(M) is a subset of the b-calculus, but Ψ∞

ess(M) is not.

Our definition is simple and our algebra is (stable under
inversion).

Theorem (Kohr-Mitrea-V.N.)

Let T ∈ Ψm
ess(M;E ,F ) m ≥ 0, be such that T is invertible as a

(possibly unboundeda) operator on L2(M;E). If m > 0, we assume
also that T is elliptic. Then T−1 ∈ Ψ−m

ess (M;F ,E).

aT is invertible as an unbounded operator if T is injective and T−1 extends to a
bounded operator.
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Specific feature: limit operator

Definition
Let P ∈ Ψ∞

inv(M). The limit (or normal) operator associated to P is
the unique pseudodifferential operator
P̃ : C∞

c (∂M × R) → C∞
c (∂M × R) s.t.

P̃(f ) := Φ−sPΦs(f ) ,

for s large enough and Φs is the translation by s on ∂M × R.

kP̃(t , x , t
′, x ′) := lim

s→∞
kP(t − s, x , t ′ − s, x ′) = kP(t − sLrg , x , t ′ − sLrg , x ′) .

P̃ is well-defined: Φ−sPΦs(f ) is independent of s as above.
P̃ is pseudodifferential and translation invariant.
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Pseudodifferential operators and cylindrical ends Operators invariant at infinity on manifolds with cylindrical ends

Fredholm conditions

Next theorem: generalization of the result on closed manifolds.

Theorem (Kondratiev, Melrose and Mendoza, Kohr-Mitrea-Nistor)

Let M = M ∪ (∂M × (−∞,0]) be a manifold with cylindrical and
P ∈ Ψm

ess(M;E ,F ). Then P : Hs(M;E) → Hs−m(M;F ) is a Fredholm
operator if, and only if,

it is elliptic and

its limit operator

P̃ : Hs(∂M × R;E) → Hs−m(∂M × R;F )

is invertible.

Also, including many generalizations: Anghel, Kondratiev,
Mazzeo-Melrose, Lauter-Moroianu, Schrohe, Schulze, Kohr-V.N., . . .
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Pseudodifferential operators and cylindrical ends Layer potentials on manifolds with cylindrical ends

“Pictorial” definition of domains with cylindrical ends

N has a boundary and M does not (both have straight cylindrical ends)

Figure: Manifolds with boundary (or domains) with cylindrical end

The domains with cylindrical ends in Rn are called “with outlets.”
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Pseudodifferential operators and cylindrical ends Layer potentials on manifolds with cylindrical ends

Operators on manifolds with cylindrical ends

∆ = d∗d = Laplace-Beltrami op. on M = M ∪ ∂M × (−∞,0].

Then

∆ = ∆M = −∂2
t +∆∂M on cylindrical end ∂M × (−∞,0] ,

is translation invariant (in a nbhd of infinity) v important.

To construct the layer potential operators S, D, S, and K, in the
case with boundary, we need to “invert” ∆ (or a suitable
modification: Mitrea-Taylor “trick.”)

Recall that inverting ∆ is a substitute for |x − y |2−n (i.e. the
convolution with the fundamental solution cn|x |2−n of the
Laplacian, which is not possible directly.)
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Doubling and “inverting” ∆

To construct the layer potential operators on Ω = N with
boundary and cylindrical ends (similar definition, see fig.) we
include an additional function V (the Mitrea-Taylor ‘trick’).

More precisely, we double Ω (to obtain M) by gluing two copies of
Ω along the common boundary and we replace ∆ with ∆+ V ,
where V vanishes on N, but not at infinity.
The limit (jump) properties remain true (this is easy).
We prove that ∆+ V and then 1

2 + K are still Fredholm of index
zero and injective, hence isomorphisms (using Fredholm and
unique continuation properties, Kohr-Mitrea-V.N., discussed next).
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Recall how does the “trick” work

Let V ∈ C∞(M) satisfy:
V ≥ 0 on M and V = 0 on Ω,

V is not identically 0 on M (or at the “infinity” of M).

Assume M to be smooth, compact, and connected, then:
∆+ V ≥ 0 is Fredholm of index zero.

If (∆ + V )u = 0, then

0 =
(
(∆ + V )u,u

)
= (du,du) + (Vu,u) ,

and hence Vu = 0 and du = 0. Since V ̸≡ 0, u = 0 (L2-unique
continuation property). We obtain that ∆+ V is injective.

Consequently, ∆+ V is invertible and (∆ + V )−1 ∈ Ψ−2
ess(M)

Domains with cylindrical ends: delicate or different issues in red.
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Pseudodifferential operators and cylindrical ends Layer potentials on manifolds with cylindrical ends

Main result

Theorem (Mitrea-V.N., Kohr-V.N.)

Let V ≥ 0 be non-zero and translation invariant at infinity and Ω ⊂ Rn

be a domain with outlets (cylindrical ends).
∆+ V is invertible.
Let K be the double layer potential operator associated to the
∆+ V . Then 1

2 + K is invertible and hence the Dirichlet problem
on Ω is well posed.

We need to consider suitable classes of (pseudodifferential)
operators that take into account the (translation invariant) structure of
the Laplacian on manifolds with cylindrical ends.
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Proof of the main result

The proof of our main result (the invertibility of ∆+ V and of 1
2 + K) is

done then as in the compact case (outlined for ∆+ V )
Fredholm property
Properties of Ψm

ess(M;E ,F ).
Jump relations.

Moreover,
(∆ + V )−1 and K

are essentially translation invariant (hence also (1
2 + K)−1).

Mirela Kohr: generalization to Stokes operator. (Joint w. Wendland.)
Similarities, but also essential differences. (The Neumann problem
on domains with conical points behaves quite differently from the
Dirichlet problem, Costabel, Dauge, Mazya, Nicaise, V.N., ... )
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Conclusion

Although the double layer potential operator K is no longer compact
on a manifold with cylindrical ends, we still obtain the invertibility of
1
2 + K and hence the well-posedness of the Dirichlet problem.

We also obtain the structure of the operators K and (1
2 + K)−1.

Thank you for your attention !

The material beginning with next slide were not covered in the Padova
course
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Second part: Extensions

The second part of the
lectures notes

(Not covered in the mini-course.)
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Second part: Extensions Manifolds with bounded geometry

More on Sobolev spaces II

If M is not compact the Sobolev spaces W m,p depend on the
choice of connection on E and on the choice of metric g on M,
global objects. (Joint with Mirela Kohr.)

If M is complete, we can define the space
Hs(M;E) := W s,2(M;E) as the domain of (1 −∆g)

s/2, where
∆s := −∇∗∇ (Bochner Laplacian).

For s > 0 real, we define Hs(M;E) by interpolation.

The case s < 0, for manifold with boundary and relative
bounded geometry (later).
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Second part: Extensions Manifolds with bounded geometry

Differential operators

Let E ,F → M be vector bundles, with E endowed with a connection.

Definition

Let a[k ] be measurable section of Hom(T ∗⊗k ⊗ E ;F ) and ∇0 = id . A
∇–differential operator is a map of the form

P = a · ∇tot :=
∑µ

j=0 a[j]∇j : C∞(M;E) → C∞(M;F ) .

ord(P) is the least µ for which such a writing exists (the order of P).

Suitable extensions by continuity of P will also be called ∇–differential
operators and will be denoted by the same letter.

Locally, there is no difference between the ∇–differential operators
and the usual differential operators.
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Mapping properties of differential operators

Let E ,F → M be vector bundles with metrics and metric-compatible
with connections.

Theorem

Let ℓ ∈ Z+ and a[k ] ∈ W ℓ,∞(M; Hom(T ∗⊗k ⊗ E ;F )) and ∇0 = id . Then
the ∇–differential operator

P = a · ∇tot :=
∑µ

j=0 a[j]∇j : W s+µ,p(M;E) → W s,p(M;F ) .

for 0 ≤ s ≤ ℓ. (Operator with coefficients in W ℓ,∞.)

Better results (including |s| ≤ ℓ) for manifolds with bounded
geometry, but first the simpler particular case of manifolds with
cylindrical ends.
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Curvature

The curvature RE of (E ,∇) is the anti-symmetric part of ∇2 (i.e. the
composite map)

∇2 : C∞(E) → C∞(T ∗⊗2M ⊗ E) → C∞(Λ2T ∗M ⊗ E) .

That is,
RE(X ,Y )u := ⟨∇2u,X ∧ Y ⟩ .

The curvature of (M,g) is R = RTM , the curvature of E = TM.
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Second part: Extensions Manifolds with bounded geometry

Curvature

It turns out that the curvature RE is C∞(M)–linear, and hence

RE ∈ Ω2(M; End(TM)) = C∞(Λ2T ∗M ⊗ End(TM))

Explicitly,
∇2u(X ,Y ) = ∇X∇Y u −∇∇X Y u ,

and hence the curvature RE of (E ,∇) is given by

RE(X ,Y )u = ∇X∇Y u −∇Y∇X u −∇[X ,Y ]u .

Definition
We say that M has totally bounded curvature if its curvatures
RM := (∇M)2 and all its covariant derivatives (∇M)kRM are bounded.

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 74 / 197



Second part: Extensions Manifolds with bounded geometry

Injectivity radius and geodesics

A C1-curve γ : (a,b) → M is a geodesic if ∇M
γ′(t)γ

′(t) = 0. It is locally
distance minimizing and uniquely determined by any γ′(t0), t0 ∈ I. If
M = Rd with the usual metric, then a geodesic is just a straight line.

Let
expM(v) := γv (1),

where γv is the unique geodesic with γ′(0) = v , the (geodesic)
exponential map.

Let BX
r (x) := {y ∈ X | d(x , y) < r} , and

rM
inj(p) := sup{r | expM : BTpM

r (0) → BM
r (p) is a diffeomorphism} and

rinj(M) := inf
p∈M

rM
inj(p).

rinj(M) =the injectivity radius of the Riemannian manifold (M,g).
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Second part: Extensions Manifolds with bounded geometry

Manifolds with bounded geometry

Recall the curvature RM(X ,Y )u = ∇M
X ∇M

Y u −∇M
Y ∇M

X u −∇M
[X ,Y ]u and

that M has totally bounded curvature if its curvatures RM := (∇M)2

and all its covariant derivatives (∇M)kRM are bounded.
The following concept is crucial.

Definition
A smooth Riemannian manifold (M,g) is said to have bounded
geometry if M has totally bounded curvature and rinj(M) > 0.

Then H−s(M) := H−s(M)∗. (Negative order spaces.)
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Second part: Extensions Manifolds with bounded geometry

Examples

The following are manifolds with bounded geometry:

(i) A closed manifold (i.e. a smooth, compact manifold without
boundary).

(ii) M = Rd with the standard (Euclidean) metric
dx2 := (dx1)

2 + (dx2)
2 + . . .+ (dxd)

2 .

(iii) D × M, where M is a manifold with bounded geometry and D is
discrete set.

(iv) M1 × M2, where M1 and M2 have bounded geometry.

(v) However, if M is a manifold with bounded geometry and U ⊂ M is
an open subset, then U has totally bounded curvature, but may
not have positive injectivity radius (so no bounded geometry).
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Second part: Extensions Manifolds with bounded geometry

Boundary and bounded geometry

Let now M0 be a Riemannian manifold with boundary, then
rinj(M0) = 0, so a manifold with non-empty boundary will never have
bounded geometry in the sense of the above definition. The way
around this conundrum was found by Schick (2001), who has defined
the concept of “manifold with boundary and bounded geometry,” (we
shall call these manifolds “manifolds with boundary and relative
bounded geometry,” to avoid confusions). We recall the equivalent
definition of manifolds with boundary and relative bounded geometry in
(Ammann-Grosse-V.N.)

The main point of that definition is to assume that the boundary ∂M0 of
M0 is a suitable submanifold of a (boundaryless) manifold M with
bounded geometry.
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Second part: Extensions Manifolds with bounded geometry

Second fundamental form

Let hence M be a (boundaryless) manifold with bounded geometry
and let us consider a hypersurface H ⊂ M, that is, a submanifold H of
M of codimension dim(M)− dim(H) = 1. We assume that H carries a
globally defined unit normal vector field ν. We let

exp⊥(x , t) := expM
x (tνx)

be the exponential in the direction of the chosen unit normal vector.
We shall need the second fundamental form IIH of H in M, which, we
recall, is defined by

IIH(X ,Y )ν := ∇M
X Y −∇H

X Y ,

where ∇Z is the Levi-Civita connection of Z . Equivalently, since
g(ν,∇H

X Y ) = 0, we have IIH(X ,Y ) := g(ν,∇M
X Y ).
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Bounded geometry hypersurface

Definition
Let (M,g) be a Riemannian manifold of bounded geometry and H ⊂ M
be a hypersurface with unit normal vector field ν on H. We say that H
is a bounded geometry hypersurface in M if:

(i) H is a closed subset of M;
(ii) all covariant derivatives (∇H)k IIH , k ≥ 0, are bounded;
(iii) exp⊥ : H × (−δ, δ) → M is a diffeomorphism onto its image for

some δ > 0.

Then H has bounded geometry.

If H ⊂ M is a compact hypersurface, then H is a bounded geometry
hypersurface in M.
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Manifolds with boundary and relative bounded
geometry

We are ready now to recall the definition of a central concept in
analysis on manifolds.

Definition
We shall say that M0 is a manifold with boundary and relative
bounded geometry if M0 is isometrically contained in a
(boundaryless) Riemannian manifold M with bounded geometry such
that ∂M0 is a bounded geometry hypersurface in M.

Note that we use the term “manifold with boundary and relative
bounded geometry,” which we think is more precise than the term
“manifold with boundary and bounded geometry” used before.
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Second part: Extensions Manifolds with bounded geometry

Trace and ‘negative’ spaces

Let ∂ν be the normal derivative at the boundary and let

Hk
0 (M0) := ∩k−1

j=0 ker(res ◦∂ j
ν)

denote the joint kernel of the restrictions maps res ◦∂ j
ν , 0 ≤ j ≤ k − 1.

Theorem (Trace theorem: Grosse-Schneider, Triebel)
Let M0 be a manifold with boundary and relative bounded geometry.
Then, for every s > 1/2, the restriction res : C∞

c (M0) → C∞
c (∂M0)

extends by continuity to a surjective map

res : Hs(M0) → Hs− 1
2 (∂M0).

Moreover, C∞
c (M0 ∖ ∂M0) is dense in Hk

0 (M0) and H−k (M0) identifies
with Hk

0 (M0)
∗, k ∈ N.
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Finite width

Definition
Let (M0,g) be a Riemannian manifold with boundary ∂M0. We say that
M0 has finite width if:

(i) (M0,g) is a manifold with boundary and relative bounded
geometry and

(ii) The function M0 ∋ x → distM0(x , ∂M0) is bounded on M0.

The last condition is equivalent to

“∃R > 0 such that M0 ⊂ {x ∈ M | ∃y ∈ ∂M0, distM0(x , y) < R }.”
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Second part: Extensions Well-posedness for the Poisson problem

Poincaré inequality

Theorem (Ammann-Grosse-V.N., Sakurai)

Let (M0,g) be a Riemannian manifold with finite width. Then there
exists 0 < CM0 <∞ such that, for all f ∈ C∞

c (M0) (thus f = 0 on the
boundary of M0),

∥f∥L2(M0)
≤ CM0∥df∥L2(M0)

.

A regularity argument then yields the following result.

Theorem (Ammann-Grosse-V.N.)

Let M0 be a smooth Riemannian manifold with smooth boundary ∂M0
and finite width. Then ∆ induces isomorphisms

∆D = ∆: Hm+1(M0) ∩ H1
0 (M0) → Hm−1(M0) , m ∈ Z+ := {0,1, . . .} .
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Second part: Extensions Well-posedness for the Poisson problem

Applications: polygonal regularity

Let us consider a polygonal domain Ω∞ with maximum angle αMAX
and the Poisson problem

∆u∞ = f∞ in Ω∞, u∞ = 0 on ∂Ω∞.

It is known that u∞ has limited regularity, less than H1+π/αMAX :
Costabel, Dauge, Griesvard, Jerison-Kennig, Kondratiev, Mazya, ...

Theorem (Limited regularity: Kondratiev, ... )

Let δ < π/αMAX . Then there exists C = Cδ > 0 such that the solution
un ∈ H1

0 (Ωn) of the equation ∆un = fn satisfies

∥un∥H1+δ(Ωn) ≤ C∥fn∥L2(Ωn) .
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Second part: Extensions Well-posedness for the Poisson problem

Applications: well-posedness in weighted spaces

The “limited regularity” theorem of the previous slide is not very
satisfying. It is, in any case, a consequence of the following more
satisfying result in the Babuška-Kondratiev (weighted Sobolev) spaces

Km
a (Ω) := {ρ|α|−a∂αu ∈ L2(Ω), |α| ≤ m}

ρ =distance to vertices (Costabel, Dauge, Kondratiev, Mazya, ... )

Theorem (Unlimited weighted regularity: Kondratiev ’67, ...)

Let 0 ≤ δ < π/αMAX and m ∈ Z+. Then there exists C = Cm,δ > 0 such
that the solution u∞ ∈ H1

0 (Ω∞) of the equation ∆u∞ = f∞ satisfies

∥u∞∥Km+1
δ+1 (Ω∞) ≤ C∥f∞∥Km−1

δ−1 (Ω∞) .

This, as well as the next theorem, are consequences of the
well-posedness on manifolds with boundary and relative
bounded geometry (Thm 68 stated earlier).
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Second part: Extensions Well-posedness for the Poisson problem

Applications: “rounding up the corners”

Consider a sequence of smooth domains Ωn, n ∈ Z, converging to a
polygonal domain Ω∞ (picture) and the associated Poisson problems
∆un = fn, un ∈ H1

0 (Ωn), for which we want uniform estimates.
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Second part: Extensions Well-posedness for the Poisson problem

Applications: “rounding up the corners”

Theorem (Daniel-Labrunie-V.N.)

Let Ωn ⊂ R2 be a sequence of smooth domains “converging” to a
polygonal domain Ω∞, as in the picture (repeated below). Let
δ < π/αMAX . Then there exists C = Cδ > 0 such that for all
n ∈ N ∪ {∞}, the solution un ∈ H1

0 (Ωn) of ∆un = fn satisfies

∥un∥H1+δ(Ωn) ≤ C∥fn∥L2(Ωn) .
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Second part: Extensions A more complete approach to pseudodifferential operators

The main formula of pseudodifferential theory
(repeated)

Recall the MAIN FORMULA of pseudodifferential theory is:

a(x ,D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ a(x , ξ)û(ξ)dξ ,

(pseudodifferential operator with symbol a : Rn × Rn → C.)

Here ⟨x , ξ⟩ := x1ξ1 + x2ξ2 + . . . xnξn and

û(ξ) = Fu(ξ) :=

∫
R

e−ı⟨y ,ξ⟩ u(y)dy .

is the Fourier transform of u.
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Second part: Extensions A more complete approach to pseudodifferential operators

First example

Let a : R2n → C, a(x , ξ) = a(x), (no ξ dependence). Then:

a(x ,D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ a(x)û(ξ)dξ

= a(x)
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ û(ξ)dξ = a(x)u(x) ,

by the Fourier inversion formula:

(F−1w)(x) :=
1

(2π)n

∫
R

ei⟨x ,ξ⟩w(ξ)dξ .
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Second part: Extensions A more complete approach to pseudodifferential operators

Second example

Let a : Rn × Rn → C be now a(x , ξ) = aj(ξ) = ıξj :=
√
−1ξj , with

no x dependence1 this time. Then:

aj(D)u(x) = a(x ,D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ ıξj û(ξ)dξ

=
∂u(x)
∂xj

=: ∂ju(x) ,

because the Fourier transf. interchanges multiplication by ıξj with ∂j :

F ∂j = ıξj F ⇒ ∂ju = F−1(ıξj û
)
= F−1(ajFu

)
.

1a(D) = F−1aF =convolution operator
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Second part: Extensions A more complete approach to pseudodifferential operators

Third example

Iterating, we get

∂αu := ∂α1
1 ∂α2

2 . . . ∂αn
n u = F−1((ıξ)αû

)
.

Hence, for a(x , ξ) :=
∑

|α|≤m aα(x) (ıξ)α, polynomial in ξ:

a(x ,D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩
∑
|α|≤m

aα(x) (ıξ)α︸ ︷︷ ︸
a(x ,ξ)

û(ξ)dξ

=
∑
|α|≤m

aα(x) ∂αu(x) ,

a differential op. (We have used |α| :=
∑
αj .)
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Example 31
2

In the particular case a(ξ) = 1 + |ξ|2 := 1 + ξ2
1 + . . .+ ξ2

n :

a(D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ (1 + |ξ|2) û(ξ)dξ = (1 −∆)u(x) .

It turns out that the inverse of a(D) is of a similar form!

(1 −∆)−1u(x) =
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ 1
1 + |ξ|2

û(ξ)dξ =: b(D)u(x) ,

where b(x , ξ) = b(ξ) := 1
1+|ξ|2 .

2

2b(D) =convolution with the fundamental solution of 1 −∆.
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Second part: Extensions A more complete approach to pseudodifferential operators

Symbols and pseudodifferential operators on Rn

(repeated)

Recall the order m, (1,0)-symbols, Hörmander:

Sm(R2n) = Sm
1,0(R

2n) := {a : Rn × Rn → C | ∀α, β, ∃Cα,β ≥ 0

s.t. |∂αx ∂
β
ξ a(x , ξ)| ≤ Cα,β(1 + |ξ|)m−|β|} .

Also recall:

Theorem

If a ∈ Sm(R2n), then it defines a continuous map

a(x ,D) : C∞
c (Rn) → C∞(Rn) .a

a(Schwartz’ kernel theorem, next!)
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Second part: Extensions A more complete approach to pseudodifferential operators

Schwartz’ kernel theorem

Let ⟨ , ⟩ : C∞
c (M)′ × C∞

c (M) → C be the paring between
distributions and test functions.

A linear map T : C∞
c (M) → C∞

c (M)′ is continuous if ⟨Tϕ, ψ⟩ is
continuous with respect to ϕ ∈ C∞

c (M), for any ψ ∈ C∞
c (M).

Theorem (Schwartz’ kernel theorem)

Let T : C∞
c (M) → C∞

c (M)′ be linear and continuous. Then there exists
a unique kT ∈ C∞

c (M × M)′ such that

⟨Tϕ, ψ⟩ = ⟨kT , ψ ⊠ ϕ⟩ ,

where (ψ ⊠ ϕ)(x , y) = ψ(x)ϕ(y) . (kT =distribution kernel.)

The converse is also true. Question: Find the kernel ka(x ,D).
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Equivalent form using the Fourier transform

If in the main formula

a(x ,D)u(x) :=
1

(2π)n

∫
Rn

eı⟨x ,ξ⟩ a(x , ξ)û(ξ)dξ

we substitute the Fourier transform

û(ξ) = Fu(ξ) :=

∫
R

e−i⟨y ,ξ⟩ u(y)dy ,

we obtain the second main formula

a(x ,D)u(x) =
1

(2π)n

∫
Rn

(∫
Rn

eı⟨x−y ,ξ⟩ a(x , ξ)u(y)dy
)

dξ .
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The distribution kernel of a(x ,D)

Theorem
The distribution kernel ka(x ,D) of
a(x ,D) : C∞

c (Rn) → C∞(Rn) ⊂ C∞
c (Rn)′ is:

“ka(x ,D)(x , y)” = 1
(2π)n

∫
Rn eı⟨x−y ,ξ⟩ a(x , ξ)dξ = (F−1

ξ a)(x , x − y) .

Proof.
The second main formula gives (integrating wrt ξ):

⟨a(x ,D)u, v⟩ = 1
(2π)n

∫
Rn

∫
Rn

∫
Rn

eı⟨x−y ,ξ⟩a(x , ξ)u(y)dydξ︸ ︷︷ ︸
a(x ,D)u(x)

v(x)dx

=

∫
Rn

∫
Rn

ka(x ,D)(x , y) v(x)u(y)dydx = ⟨ka(x ,D), v ⊠ u⟩ ,
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Second part: Extensions A more complete approach to pseudodifferential operators

Properties of the kernel ka(x ,D)

The Fourier inversion formula allows us to recover a(x , ξ) from
ka(x ,D)(x , y) = 1

(2π)n

∫
Rn eı⟨x−y ,ξ⟩ a(x , ξ)dξ .

Localization: Let U ⊂ Rn be open and

Ψm
c (U) := {a(x ,D) | supp ka(x ,D) ⋐ U × U} and

Sm
c (T ∗U) := {a ∈ Sm(R2n) | suppa ⊂ K × Rn , K ⋐ U} .

The last point shows that

a(x ,D) ∈ Ψm
c (U) ⇒ a ∈ Sm

c (T ∗U) ⊂ Sm(R2n).

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 98 / 197



Second part: Extensions A more complete approach to pseudodifferential operators

Diffeomorphism invariance

Recall Ψm
c (U) := {a(x ,D) | supp ka(x ,D) compact ⊂ U × U} .

Theorem
For U ⊂ Rn be open, Ψ∞

c (U) := ∪m∈ZΨ
m
c (U) is an algebra invariant

under diffeomorphisms∗ and under adjoints.

∗More precisely, a diffeomorphism ϕ : U → W ⊂ Rn induces bijections:

ϕ∗ : T ∗W → T ∗U, (where ϕ∗(x , ξ) = (ϕ−1(x), (dϕ)T ξ));
ϕ∗ : C∞

c (U) → C∞
c (W ), (where ϕ∗u := u ◦ ϕ−1); and

ϕ∗ : Sm
c (T ∗U) → Sm

c (T ∗W ), (where ϕ∗a := a ◦ ϕ∗).

Let a(x ,D) ∈ Ψm
c (U), then ϕ∗a := a ◦ ϕ∗ ∈ Sm

c (T ∗W ) and

ϕ∗ ◦ a(x ,D) ◦ ϕ−1
∗ − (ϕ∗a)(x ,D) ∈ Ψm−1

c (W ) .

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 99 / 197



Second part: Extensions A more complete approach to pseudodifferential operators

Principal symbol

Let ϕ : U → W be a diffeomorphism, as before. Then

Sm
c (T ∗U) ∋ a ϕ∗(a) ∈ Sm

c (T ∗W )

Ψm
c (U) ∋ a(x ,D) ϕ∗a(x ,D)ϕ−1

∗ ∈ Ψm
c (W )

ϕ∗ //

�� ��
//

commutes up to lower order symbols.

Theorem
If a(x ,D) ∈ Ψm

c (U), then the principal symbol

σm(a(x ,D)) := a + Sm−1(T ∗U) ∈ Sm(T ∗U)/Sm−1(T ∗U)

is well-defined, multiplicative, and diffeomorphism invariant.
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Second part: Extensions A more complete approach to pseudodifferential operators

Pseudodifferential operators on manifolds (repeated)

Let M be a smooth manifold. Recall the following. If ϕ : U ≃ W ⊂ Rn,
U ⊂ M is open, the diffeomorphism invariance allows us to define

Ψm
c (U) := ϕ−1

∗ Ψm
c (W )ϕ∗ and

σm : Ψm
c (U) → Sm

c /S
m−1
c (T ∗U) .

Definition
A linear map P : C∞

c (M) → C∞(M) is a pseudodifferential operator
of order ≤ m on M if, for any U ≃ W ⊂ Rn, U ⊂ M, and η ∈ C∞

c (U), we
have ηPη ∈ Ψm

c (U).

Let Ψm(M) be the set of all pseudodifferential operators on M. Then
the principal symbol maps extend to surjective maps

σm : Ψm(M) → Sm/Sm−1(T ∗M) .
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Second part: Extensions A more complete approach to pseudodifferential operators

Pseudodifferential operators on Rn

For the particular case M = Rn, the space Ψm(Rn) contains:

1 all a(x ,D) with a ∈ Sm(R2n) = Sm(T ∗Rn).

2 all differential ops. with smooth coefficients.

3 all operators with smooth distribution kernel.

Not all these operators are of the form a(x ,D), with a ∈ Sm(R2n).
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Second part: Extensions A more complete approach to pseudodifferential operators

Asymptotic sums

Theorem
Let aj ∈ Smj (M), with mj decreasing to −∞, j = 0,1,2, . . . Then there
exists a ∈ Sm0(M) such that, for all N ∈ N, a −

∑N
j=0 amj ∈ SmN+1(M) .

We then write a∼
∑∞

j=0 amj .

Definition
We say that ak : T ∗M → C is (eventually) homogeneous of order k if

ak (tξ) = tkak (ξ) for t , |ξ| ≥ 1 .

An eventually homogeneous function of order m is in Sm(M) if it is
smooth enough.
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Second part: Extensions A more complete approach to pseudodifferential operators

Classical symbols

Definition
A symbol a ∈ Sm(Rn) is classical if it can be expanded asymptotically
a∼

∑∞
j=0 am−j , where ak ∈ Sk (M) is homogeneous of order k .

All results remain true for classical symbols.

Let Ψm
cl (M) be the corresponding classical psedodifferential op,

then σm : Ψm
cl (M) → Sm

cl /S
m−1
cl (T ∗M) has kernel Ψm−1

cl (M).

If S∗M is the set of vectors of length 1 in T ∗M, then

Sm
cl /S

m−1
cl (T ∗M) ≃ C∞(S∗M) ,

and we can choose am a representative of σm(a).

Parametrices of differential operators are classical (index theory).
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Second part: Extensions A more complete approach to pseudodifferential operators

Vector bundles

We can include vector bundles:

If E → M is a vector bundle, let E ⊂ CN be a smooth embedding,
and let e ∈ C∞(M;MN(C)) be the projection CN → E .

Ψm(M;E) := eMN(Ψ
m(M))e acts on Hs(M;E) ≃ eHs(M)N .

σm : Ψm(M;E) → Sm/Sm−1(T ∗M; End(E)) and the Fredholm
theorem remains unchanged.

Moreover,

Sm
cl /S

m−1
cl (T ∗M; End(E)) ≃ C∞(S∗M; End(E)) ,

where Sm
cl ⊂ Sm denotes the set of classical symbols, as before.
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Second part: Extensions Motivation for Lie algebroids: cylindrical ends and vector fields

Outline of the rest of this presentation

We use Lie groupoids, Lie algebroids, and C∗-algebras to study
operators on Lie manifolds generalization of manifolds with
cylindrical ends. These objects are motivated by the case of
manifolds with cylindrical ends.

This material is about 2/3 of a sequence of lectures (course)
delivered in Bruxelles in 2023. The material on pseudodifferential
operators is also from that course.
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Second part: Extensions Motivation for Lie algebroids: cylindrical ends and vector fields

Motivation: recall manifolds with cylindrical ends

A model class of non-compact manifolds M:

M contains a part (end) that contains a copy of ∂M × (−∞,0] with a
product metric isometrically: M = M ∪ (∂M × (−∞,0]).

We want now to take a quick look at the differential operators that are
invariant (in a neighborhood of) infinity.
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Second part: Extensions Motivation for Lie algebroids: cylindrical ends and vector fields

Going back in the definition of with cylindrical ends

Kondratiev’s transform r := et :

(−∞, ln ϵ)× ∂M ∋ (t , y) → (r , y) ∈ (0, ϵ)× ∂M
∂t → r∂r

a transl. inv. → a smooth on M .

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 108 / 197



Second part: Extensions Motivation for Lie algebroids: cylindrical ends and vector fields

Differential operators translation invariant operators
near infinity

Back to M, we get differential operators of the form

P =
∑
j,Q

aQ(et , y)(r∂r )
jQ(y)

Q(y) differential operator on the boundary ∂M ∋ y .

aQ(et , y) = aQ(y) for r = et very small.

P̃ =
∑

j,Q aQ(0, y)∂
j
t Q(y) on ∂M × R.

Diff. ops. enerated by r∂r and ∂y , all tangent to the boundary ∂M.

a Lie algebra.
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Second part: Extensions Lie algebroids

Differential operators in general

On a closed manifold M, we considered all differential operators
(all vector fields and all smooth functions).

In the non-compact case, we need to restrict the choices of
vector fields and of smooth functions in order to obtain
meaningful results.

The choices: The ‘Quantization Program,’ vector fields on
manifolds with corners (Cordes, Melrose, Schulze, ... )

The non-smooth case is treated using the non-compact case, by
looking at the set of smooth points M and then choosing a suitable
compactification M of that set (of smooth points).

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 110 / 197



Second part: Extensions Lie algebroids

Manifolds with corners

A manifold with corners M is locally of the form [0,1]n.

A face H ⊂ M of maximal dimension is called a hyperface.

The boundary ∂M of M is the union of all faces of M other than
its interior.

A defining function of a hyperface H of M is a function r such
that H = {r = 0} and dr ̸= 0 on H.

The hyperface H ⊂ M is embedded if it has a defining function.
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Second part: Extensions Lie algebroids

Embedded and non-embedded faces
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Second part: Extensions Lie algebroids

A word on assumptions and notation

Our vector bundles E → Z will always be smooth (and our spaces
will be manifolds, possibly with corners).

C∞(Z ;E) denotes the space of smooth sections s : Z → E of E ,
also C∞(E), if Z is clear from the context.

C∞
c (Z ;E) or C∞

c (E) denotes the space of compactly supported,
smooth sections of E .

The Lie bracket will be denoted by [ , ].
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Second part: Extensions Lie algebroids

The ‘Quantization Program’

Main players:

M = compact manifold with corners.

Vb(M) := {X ∈ C∞(M;TM) tangent to ∂M}.
We will consider a C∞(M)− submodule V ⊂ Vb(M) which is stable
for the Lie bracket of vector fields (Lie subalgebra).

Diff(V) = differential operators generated by V and C∞(M).

The quantization program:

To study the analytic properties of the differential operators in Diff(V).

Albin, Mazzeo, Melrose, Piazza, Rochon, (the list is v. incomplete ...)

Convenient approach: using Lie algebroids.
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Second part: Extensions Lie algebroids

Lie algebroids (informal definition)

A Lie algebroid is a real vector bundle A → M (a manifold with
corners, as usual) such that “C∞(A) is a C∞(M)−Lie algebra.”

More precisely, we are given:

1 A Lie algebra structure on the space C∞(A) = C∞(M;A) of
global (smooth) sections of A.

2 A Lie algebra action of C∞(A) on the base ring C∞(M) :

C∞(A)× C∞(M) ∋ (X , f ) → X (f ) ∈ C∞(M) .

3 Compatibility conditions (next).

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 115 / 197



Second part: Extensions Lie algebroids

Lie algebroids (informal discussion)

Saying that C∞(A) is a C∞(M)-Lie algebra implies the followng
compatibility conditions:

The action C∞(A)× C∞(M) → C∞(M) is a C∞(M)−module
morphism:

(fX )g = f (Xg) .

The bracket [ , ] on C∞(A) satisfies the Leibnitz rule:

[X , fY ] = f [X ,Y ] + (Xf )Y .

Saying that action on the base ring is a Lie algebra action means
that we have a Lie algebra morphism C∞(A) → C∞(T M) :

[X ,Y ]f = X (Yf )− Y (Xf ) .
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Second part: Extensions Lie algebroids

Lie algebroids

Formalizing “C∞(A) is a C∞(M)-Lie algebra”

Definition (Pradines 1967, (Book: Mackenzie))

A Lie algebroid is a real vector bundle A → M together with

1 a Lie algebra structure [ , ] on C∞(A) and
2 a vector bundle map ϱ : A → T M (anchor, action), such that,
3 ∀ X ,Y ∈ C∞(A), f ∈ C∞(M), [X , fY ] = f [X ,Y ] + (ϱ(X )f )Y .

The action (X , f ) → Xf := ϱ(X )f is automatically a Lie action.

ϱ = ϱ∗ : C∞(M;A) → C∞(M;TM) is the induced map and we shall
usually write Xf := ϱ(X )f .
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Second part: Extensions Lie algebroids

Examples of Lie algebroids

Let us notice first that if ϱ = 0, then the Leibnitz rule

[X , fY ] = f [X ,Y ] + (Xf )Y = f [X ,Y ]

simply states that the Lie bracket is bilinear.

Example 1. A Lie algebra:

M = pt is reduced to a point and C∞(A) = A is a Lie algebra.
the anchor map ϱ = 0.

Conditions are satisfied: (1) the Lie structure is given; (2) The action of
C∞(A) on C∞(M) is trivial (zero) because ρ = 0; (3) Leibnitz is satisfied
since the action is trivial (ϱ = 0).
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Second part: Extensions Lie algebroids

Examples of Lie algebroids (cont.)

Example 2. A manifold I (as a topological space):
Let M = any manifold with corners and A any vector bundle. We let:

1 [ , ] = 0 on C∞(A).

2 The action of C∞(A) on C∞(M) is trivial (ρ = 0).

3 The Leibnitz rule is satisfied since ρ = 0 and the bracket is bilinear
(even zero).

Importance: Lie algebroids encompass both Lie algebras and
smooth manifolds (if E = M × C), they “interpolate” between these
two classes.
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Second part: Extensions Lie algebroids

Exemples of Lie algebroids (cont.)

Example 3. A manifold II (tangent space):
This time M = M closed manifold (smooth, compact, no corners or
boundary) and A = TM.

The usual Lie structure (bracket) on C∞(A) = C∞(TM).

C∞(TM) acts on C∞(M) by derivations, that is

ϱ = id : T M → T M.

The Leibnitz rule is satisfied by the Lie bracket of vector fields.

This example corresponds to the first example (0) of the last
lecture: closed manifolds. The simplest setting in the quantization
program is then:

“To study the differential operators on M, a closed manifold.”
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Second part: Extensions Lie algebroids

The Serre-Swan theorem and our main examples

The next example correspond to the second example discussed in the
last lecture: manifolds with cylindrical ends (1).

To make the connection(s):

Theorem (Serre–Swan)

Let E be a projective, finitely generated C∞(M)-module. Then there
exists a smooth, finite-dimensional vector bundle E → M such that
E ≃ C∞(M;E) naturally as C∞(M)-modules.

The converse is also true (but not used in this talk).

(M is a manifold with corners, as usual).
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Second part: Extensions Lie algebroids

The b-calculus and cylindrical ends

Example 4. The b-calculus (or cylindrical ends)

Let M = a manifold with boundary ∂M.

Vb(M) := {X ∈ C∞(M;T M) | X |∂M tangent to ∂M } .

Near the boundary of M, we can assume M = [0,∞)× Rn−1.
Then Vb(M) is even a free module with basis

x1∂1, ∂2, ∂3, . . . , ∂n .

Serre-Swan theorem gives that Vb(M) identifies with the sections
of a vector bundle usually denoted bTM . (V = Vb(M)).
bT M is a Lie algebroid because Vb(M) is a Lie algebra.

The Laplacian in generalized spherical coordinates corresponds to
the this class of Lie algebroids. (Conical points, APS, ... )
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Second part: Extensions Lie algebroids

The “edge”-calculus

Example 5. Mazzeo’s “edge”-calculus:
Let M = a manifold with boundary plus a fibration ∂M → Bk

Ve := {X | X |∂M tangent to the fibers of ∂M→ Bk } .
Near the boundary of M, we can assume M = [0,∞)× Rn−1.
Then Ve(M) is even a free module with basis

x1∂1, ∂2, . . . , ∂n−k , x1∂n−k+1, . . . , x1∂n.

Serre-Swan theorem gives that Ve(M) identifies with the sections
of a vector bundle eT M (Mazzeo V = Ve(M)).
eT M is a Lie algebroid because Ve is a Lie algebra.

- ∂M → Bk := pt : b-calculus (k = 0).
- ∂M → Bk := ∂M : conformally compact manifolds (k = n − 1).
- The Laplacian in cylindrical coordinates: n = 3, k = 1.
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Second part: Extensions Lie algebroids

Lie algebroids and Geometry

Many examples of Lie algebroids often arise from Geometry:

Foliations.
This time we have a subbundle A = F ⊂ TM such that C∞(M;F) is
stable for the Lie bracket (and hence a Lie algebra).
In particular, C∞(A) = C∞(F) consists of vector fields tangent to
the leaves of the foliation.
Again, ϱ : F → TM is the identity (more precisely, the inclusion).

(Connes. Also Androulidakis, Benameur, Skandalis, ... ).

Poisson manifolds. A = T ∗M → M.

ATTENTION: the vector associated to some X ∈ C∞(A) may
vanish at some point, without X vanishing at that point. Ex:
Poisson not symplectic. ISOTROPY (next).
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Second part: Extensions Lie algebroids

Isotropy gx

Let ϱ : A → T M be a Lie algebroid over M and x ∈ M. We set:

gx := ker(ϱx : Ax → TxM); (finite dim.)

V := C∞(A), a Lie algebra;

Vx := {Y ∈ V | ϱx(Y ) = 0} = {Y ∈ V | Y (x) ∈ gx}.
Ix := {f ∈ C∞(M) | f (x) = 0}; and

If Y ∈ Vx and f ∈ C∞(M), then (Yf )(x) = 0, as well.
Let Y ∈ V, then

[X , fY ] = X (f )Y + f [X ,Y ] ∈ IxV ,

and therefore IxV is an ideal in Vx .

Consequently, gx = Vx/IxV is a Lie algebra. It is the isotropy of A at
x and will play a very,very important role in what follows.
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Second part: Extensions Lie algebroids

Lie algebroids and isotropy (quick review)

Summary: A Lie algebroid (Pradines 1967) is a real vector bundle
A → M s. t.

“C∞(A) is a C∞(M)−Lie algebra.”

More precisely:

1 V := C∞(A) is a Lie algebra.

2 V := C∞(A) acts on C∞(M).

3 Compatibility conditions (Leibnitz rule, ... ).

We usually give the action: ϱ : A → T M (anchor map).
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Second part: Extensions Lie algebroids

Isotropy gx of ϱ : A → TM

Theorem

Let x ∈ M, then gx := ker(ϱx : Ax → TxM) is a Lie algebra.

Proof.
gx = Vx/IxV, where

Vx := {Y ∈ C∞(A) | ϱx(Y ) = 0}.
Ix := {f ∈ C∞(M) | f (x) = 0}.

Leibnitz’ rule gives that IxV is an ideal in Vx .

Consequently, gx = Vx/IxV is a Lie algebra.

gx is the isotropy of A at x and will play a very,very important role.
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Second part: Extensions Lie algebroids

Examples of isotropies

Example 1. A Lie algebra:

A =a Lie algebra, M = pt , ϱ = 0.
The isotropy is gx = A, maximal.

Example 2. A manifold I (as a topological space):

1 0 = ϱ : A → T M a vector bundle, [ , ] = 0 on C∞(A).

2 The isotropy is gx = Ax , maximal at each point.

Example 3. A manifold II (tangent space):

A = TM → TM with the Lie bracket and ϱ = id .
The isotropy is gx = 0, minimal at each point.
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Second part: Extensions Lie algebroids

The isotropies of the b-calculus

Example 4. b-calculus (or cylindrical ends)

M = a manifold with boundary and A = bT M, so that
C∞(A) = Vb(M) := {X ∈ C∞(T M) | X |∂M tangent to ∂M } .

Near the boundary, Vb(M) is a free module with basis

x1∂1, ∂2, ∂3, . . . , ∂n .

Let x ∈ M := M ∖ ∂M, then ρx = id , so gx = 0, minimal.

Let x ∈ ∂M, then gx = R(x1∂1), NO LONGER minimal.

The section x1∂1 of A = bT M vanishes nowhere, but its
associated vector field ϱ(x1∂1) = x1∂1 vanishes at the boundary.
Notice that ∂1 does not define a section of A = bT M.
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Second part: Extensions Lie algebroids

The isotropies of the “edge”-calculus

Example 5. Mazzeo’s “edge”-calculus:

M = a manifold with boundary, ∂M → Bk smooth fibration.

C∞(A) = Ve := {X | X |∂M tangent to the fibers of ∂M→ Bk } .

Near the boundary, Ve(M) is a free module with basis

x1∂1, ∂2, . . . , ∂n−k , x1∂n−k+1, . . . , x1∂n.

In the interior the isotropy vanishes, but if x ∈ ∂M, then the
isotropy gx is linearly generated by the sections

x1∂1 , x1∂n−k+1, . . . , x1∂n .

gx is a non-commutative Lie algebra if k > 0. (The semi-direct
product Rk ⋊R.) More difficult!
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Second part: Extensions Lie manifolds

Outline

We now introduce a generalization of manifolds with cylindrical
ends following Ammann-Lauter-V.N.
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Second part: Extensions Lie manifolds

Definition of ‘Lie manifolds’

Recall Vb(M) ⊂ C∞(M;T M) = vector fields tangent to all faces.

Definition (Ammann-Lauter-V.N.)

A Lie manifold is pair (M,V) consisting of a compact manifold with
corners M and a subspace V ⊂ Vb(M) of vector fields s.t.

1 V is closed under the Lie bracket [ , ];
2 V is a finitely-generated, projective C∞(M)–module;
3 C∞

c (M;TM) ⊂ V (recall M := M ∖ ∂M).

(1) and (2) ⇔ Lie algebroid A → M. Addl. prop. (3).

Examples 3–5 (compact, b-calc. and “edge”-calc.).
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Second part: Extensions Lie manifolds

Compatible Riemannian metric

Let (M,V) be a Lie manifold.

V =projective C∞(M)−module implies that there exists a vector
bundle A s.t. V ≃ C∞(M;A). (The Serre-Swan theorem.)

A =Lie algebroid (because V =Lie algebra.) (M,A) also called a
Lie manifold.

The inclusion C∞
c (M;TM) ⊂ V is equivalent to A = TM in the

interior M := M ∖ ∂M of M.

Any metric on A will induce a metric on TM (i.e. on M), called
compatible metric, and is unique up to Lipschitz equivalence. It
is complete and has positive injectivity radius.
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Second part: Extensions Lie manifolds

Properties of compatible metrics

Recall TM ⊂ A, where M := M ∖ ∂M. The Levi-Civita connection

∇ : C∞(TM) → C∞(T ∗M ⊗ TM)

associated to a compatible metric g on M (comming from a metric on
A) extends to a map (A−connexion, Weinstein and col.)

∇ : C∞(A) → C∞(A∗ ⊗ A) .

(Proof: Koszul’s formula ... )

Theorem (Ammann-Lauter-V.N.)
All geometric differential operators associated to a compatible
metric g are in Diff(A).

For instance, the Laplacian ∆g ∈ Diff(A).
(Also for the other operators: we need vector bundles.)
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Second part: Extensions Lie manifolds

Bounded geometry +

The curvature ∇2 ∈ C∞(M;A∗⊗2 × End(A)) is bounded.

Bounded geometry (also positive injectivity radius, non-trivial).

If E ,F → M are vector bundles, their “right connections” are the
A-connections ∇ : C∞(M;A) → C∞(M;A∗ ⊗ A).

Differential operators Diff(A;E ,F ) generated by ∇ and
Hom(E ;F ).

Clifford bundles W → M, with a metric and A-connection,
c : A∗ → End(W ), with c(ξ)c(η) + c(η)c(ξ) = 2⟨ξ, η⟩I, then the
associated Dirac operator \DW ∈ Diff(A;W ) (Parker’s talk).
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Second part: Extensions Lie manifolds

Sobolev spaces

(M,A) = a Lie manifold (V = C∞(A)).

g = a compatible metric on M := M ∖ ∂M (from a metric on A).

Lp(M) is defined wrt the measure induced by g.

If s ∈ R+, we let Hs(M) be the domain of (1 −∆g)
s/2.

If m ∈ N,

Hm(M) := {u | X1X2 . . .Xku ∈ L2(M), k ≤ m,Xj ∈ V}

Kondratiev 1967, Mazya, Mazzeo, Melrose, Plamenevskij, ...
(Ammann-Lauter-V.N.)
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Second part: Extensions Lie manifolds

First example (simplest): cylindrical ends

M = a manifold with smooth boundary ∂M = {x = 0}.

V = Vb(M) = vector fields on M tangent to ∂M (recall projective).

No cond. on vector fields in the interior (all Lie man).

Choice of compatible metric (near the boundary):

(dx1)
2

x2
1

+ h(x ′) , h metric on ∂M ∋ x ′ .

Kondratiev’s transform x = et transforms this metric into

(dt)2 + h(x ′) ,

the Riemannian metric of a manifold with cylindrical ends.

Pseudodifferential calculus: b-calculus.
it contains the ‘inv’-calculus of the first lecture. (Isotropy gx ≃ R.)
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Second part: Extensions Lie manifolds

Second example: asymptotically hyperbolic manifolds

As before, M with smooth boundary ∂M = {x = 0}.

V = V0 = xC∞(M;T M) = the space of vector fields on M that
vanish on the boundary.

Particular case of the “edge”-calculus (∂M → ∂M).

Local basis: x∂x , x∂x2 , ... , x∂xn (so projective module).

Compatible metric: g = h
x2 , where h =metric on M.

Metric: conformally compact (ex: asymptotically hyperbolic).

Pseudodifferential calculus: Lauter, Mazzeo, Schulze.

(Isotropy gx ≃ Rn−1 ⋊R at the boundary.)
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Second part: Extensions Lie manifolds

Third example: asymptotically Euclidean manifolds

As before, M with smooth boundary ∂M = {x = 0}.

V = xVb(M) = the space of vector fields on M that vanish on the
boundary ∂M and whose normal covariant derivative to the
boundary also vanishes.

Local basis x2
1∂x , x∂x2 , ... , x∂xn .

gx = Rn at the boundary (trivial inside, all Lie Man.).

The resulting metric and geometry is that of an asymptotically
conical manifold (includes the asymptotically Euclidean case).

If M = spherical compactification of Rn, the resulting Riemannian
manifold is simply Rn with the usual metric. (‘SG’ or sc calculus,
Melrose, Parenti, Schrohe, ... ) N-body problems (Georgescu, Vasy,
Ammann-Mougel-V.N.)
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Second part: Extensions Lie manifolds

Picture of the examples

rα∂r :
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Second part: Extensions Lie manifolds

“No number” example

The metric on M = interior of M does not determine M.

Example, M = Rn with the Euclidean metric:

M1 := Rn
, radial compactification, as in the previous example.

M2 := RkRn−k
, product of radial compactifications.

(Also M3 := (R)n, a product of “closed” lines.)

N-body problems (Kottke, Vasy, Ammann-Mougel-V.N.).

Different differential operators, different analytic properties.
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Second part: Extensions Lie manifolds

Comparison of the three examples of Lie manifolds

h = (non-singular, true) metric on M. Examples of compatible metrics:

1 Cylindrical ends: V = C∞(M)r∂r +
∑

C∞(M)∂y ,

g =
(dr)2

r2 + h.

2 Conformally compact: V = C∞(M)r∂r +
∑

C∞(M)r∂y ,

g =
(dr)2 + h

r2 =
h0

r2 .

3 Asymptotically conical: V = C∞(M)r2∂r +
∑

C∞(M)r∂y ,

g =
(dr)2

r4 +
h
r2
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Second part: Extensions Lie manifolds

Picture of the examples

dt := ± dr
rα ; a. cyl. & hyp.: α = 1; a. euclidean α = 2.
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Examples: ∆ in polar and cylindrical coordinates

1 r2∆R2 = (r∂r )
2 + ∂2

θ is the differential operator generated by

r∂r and ∂θ

on M = [0,∞)× S1. (Totally characteristic operators.)

2 Similarly, r−2∆R3 = (r∂r )
2 + ∂θ

2 + (r∂z)
2 is the differential operator

generated by

r∂r , ∂θ, and r∂z

on M := [0,∞)× S1 × R. Edge differential operators.
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Limit operators for the b-calculus

b-calculus:
(M = compact manifold with boundary.
Vb(M) := {X ∈ C∞(M;T M) tangent to ∂M} and Diff(Vb(M)) of
differential operators generated by Vb(M). r = x distance to the
boundary ∂M.)

Let x1 = r , x2, . . . , xn be local coordinates near some boundary point.
Then, P ∈ Diff(Vb(M)) if, and only if,

Pu(x) =
∑
|α|≤m

aα(x)(x1∂1)
α1∂α2

2 . . . ∂αn
n u(x) .

(Totally characteristic operators. Never elliptic if ∂M ̸= ∅.)

Indicial operator r∂r → ∂t related to the isotropy!
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Fredholm conditions

(M,V) = Lie manifold and let {Z} be the orbits of V on ∂M.

We associate to each orbit Z a simply-connected Lie group GZ ,
with LieGZ ≃ gx , x ∈ Z , and

associate to each D ∈ Diff(V) a differential operator DZ a
GZ -invariant differential operator on Z × GZ (limit operator).

Conjecture (Carvalho-V.N.-Qiao, ... )

Let (M,V) be a Lie manifold and D ∈ Diff(V) have order m.

D : Hs(M) → Hs−m(M) is Fredholm ⇔
D elliptic and all DZ : Hs(Z × GZ ) → Hs−m(Z × GZ ) are invertible .
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Back to the quantization program

Say D ∈ Diff(A) is of order 2m and we want to prove that

D : H2m(M) → L2(M)

is invertible (Hadamard well-posed) or Fredholm.

(1 +∆g)
m : H2m(M) → L2(M) is an isomorphism (the definition).

Our problem is then equivalent to proving that

D(1 +∆g)
−m : L2(M) → L2(M)

is invertible (resp. Fredholm).

D(1 +∆g)
−m is a pseudodifferential operator of order zero (no

longer differential). (Technical reasons: norm closure: C∗-algebra;
we lose asymptotics, regularity, ... , but OK for Fredholm.)
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Pseudodifferential operators

(Pseudodifferential operators were discussed only briefly.)
Let (M,A) be a Lie manifold, M := M ∖ ∂M, the interior of M.

The ‘Quantization Program’

To construct a pseudodifferential calculus Ψm
pr (A) on M with the

usual symbolic properties and which reflects the properties of Diff(A),
the differential operators generated by V = C∞(A).

Usually many choices! We will use the fact that A extends TM and A∗

extends T ∗M.

We fix a compatible metric g on M, as before (TM ⊂ A).

Let exp : TM → M be the exponential map (associated to g),
which we know exists since M is complete.
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Definition of Ψ−∞
pr (A)

Let 0 < r < rM , where rM is the injectivity radius of M, (positive).

Let π : A → M be the projection. For k ∈ C∞(M2) and v ∈ TM we set

k̃(v) := k(π(v), exp(v)) .

Thus k̃ = k ◦ (p, exp) ∈ C∞(TM).

We let Ψ−∞
r (A) be the operators with kernels k : M2 → C with support

in {distg(x , y) < r} such that k̃ extends to a smooth function on A.

Definition

Finally, we let Ψ−∞
pr (A) = the algebra generated by Ψ−∞

r (A).

(It consists of properly supported ops; unlike the b and edge calculi.)
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

The construction of Ψm
pr(A)

To define the “very small calculus” Ψm
pr (A), we choose first a

“quantization” map q : S∞
cl (T

∗M) → Ψ∞(M) as follows.

Let χ : [0,∞) → [0,1] be smooth cut-off f. (1 near 0, 0 far from 0) and

q : Sm
cl (T

∗M) → Ψm(M) ,[
q(a)u

]
(x) := (2π)−n

∫
T∗

x M
a(ξ)

(∫
Tx M

e−ı⟨y ,ξ⟩χ(∥y∥)u(exp(y))dy
)

dξ .

Definition

We then let Ψm
pr (A) := q(Sm

cl (A
∗)) + Ψ−∞

pr (A) .

(Sm
cl (E) was defined using local trivializations of the v. bundle E → M.)
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Second part: Extensions (Pseudo)differential operators on Lie manifolds

Properties

Ψm
pr (A)Ψm′

pr (A) ⊂ Ψm+m′
pr (A).

σm(q(a)) = a + Sm−1
cl (A∗) for all a ∈ Sm

cl (A
∗); hence, D is a

differential operator in q(Sm
cl (A)), iff D ∈ Diff(A).

D(1 +∆g)
−m ∈ Ψ

0
(A) in general, but D(1 +∆g)

−m ∈ Ψ
0
(A) = a

groupoid C∗-algebra in favorable situations.

compact operators= K ⊂ Ψ
0
(A) and we obtain a map

Ψ
0
(A)/K → B(L2(M))/K ,

which will decide the Fredholm property of our operators. We just
need to decide which operators are invertible in Ψ

0
(A)/K.
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Second part: Extensions Groupoids

The role of groupoids (informal)

Ehresman (Brussels 1959).

Examples of groupoids G: Melrose’s “b-double space”

The groupoid G must satisfy A(G) = A, its Lie algebroid be the one
appearing in the quantization program. (Integration of Lie
algebroids!)

Depending on what one wants, the groupoid must satisfy some
additional conditions (“nice”)

If the groupoid is “nice” (G|∂M Hausdorff and satisfies the (ISF)
condition (“Strong Exel property”)) ⇒ Fredholm conditions.
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Second part: Extensions Groupoids

Groupoids

Definition
A groupoid G is a small category s.t. all morphisms are invertible.

Notations:
1 G ⇒ M denotes a groupoid with objects (or units) M.

2 d , r : G → M give the domain and range of a morphism.

Typically, M is compact with corners and M is its interior.

A more concrete definition of a groupoid d , r : G ⇒ M is in terms of the
structural morphisms d , r , µ,u, ι that define it.
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Second part: Extensions Groupoids

Canonical morphisms

The structural morphisms d , r , µ,u, ι satisfy:

1 The prod µ(g,h) := gh is defined if, and only if, d(g) = r(h);

2 µ : G(2) := {(g,h)| d(g) = r(h)} → G, associative.

3 “Unit map” u : M → G, s.t. gu(d(g)) = g = u(r(g))g.

4 d(u(x)) = r(u(x)) = x (so we will identify x ≃ u(x).)

Above: G = category.Next: “all morphisms are invertible.”

5 “Inverse” ι : G → G, s.t.
gι(g) = r(g)= u(r(g)) and ι(g)g = d(g) .
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Second part: Extensions C∗-algebras

Outline

We show how to use C∗-algebras, Lie groupoids, their Lie
algebroids and associated algebras to characterize Fredholm
operators
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Second part: Extensions C∗-algebras

Fredholm conditions

(M,V) = Lie manifold and {Z} = the orbits of V on ∂M.

Orbit Z → GZ , a simply-connected Lie group with LieGZ ≃ gx ,

D ∈ Diff(V;E ,F ) → differential operators DZ = πZ (D) a
GZ -invariant differential op. on Z × GZ (limit operator).

Conjecture (Carvalho-V.N.-Qiao, ... )

Let (M,V) be a Lie manifold and D ∈ Diff(V;E ,F ) have order m.

D : Hs(M;E) → Hs−m(M;F ) is Fredholm ⇔ D elliptic
and all DZ : Hs(Z × GZ ;E) → Hs−m(Z × GZ ,F ) are invertible .

σm(D) ∈ C∞(S∗A; Hom(E ,F )).

Statement about the {πZ}, C∗−algebras.
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Second part: Extensions C∗-algebras

Proving the Fredholm property

H =Hilbert space, K(H) =compact operators on H.

How to prove that T ∈ B(H) is Fredholm?

Answer: Atkinson’s theorem (T is invertible modulo K(H)).

Equivalent formulation, the image of T is invertible in B(H)/K(H).

It is convenient to use C∗-algebras.
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Second part: Extensions C∗-algebras

C∗-algebras

A concrete C∗-algebras is a subalgebra A = A∗ = A ⊂ B(H).

If 1,a ∈ A and a−1 ∈ B(H), then a−1 ∈ A.

An abstract C∗-algebras is one isometrically isomorphic to a
concrete one. (Ex. B(H)/K(H).)

How to prove that something is invertible in A?

“Invertibility sufficient families of representations”
(Rabinovich-Roch-Silbermann).
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Second part: Extensions C∗-algebras

Invertibility sufficient families of representations

A = C∗−algebra.

A representation of A is a *-morphism π : A → B(Hπ).

Definition
Let F := {π} be a family of representations of A. We say that F is
“invertibility sufficient” (ISF) if the following condition is satisfied:

a ∈ A is invertible in A if, and only if, π(a) is invertible in B(Hπ) for all
π ∈ F .

Example: A = C(X ), where X is a compact space (model
commutative C∗−algebra). We let

F := {ex} , x ∈ X ,

ex(f ) = f (x), the evaluation at x . Then F is (ISF).
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Second part: Extensions C∗-algebras

C∗-algebras

In our applications:

The family {π} will be the family of regular representations of
some Lie groupoid G|∂M ( where G is the “double space”).

π(a) will be the “limit operators” of a.

The algebra A = C∗(G)/K or A = Ψ
0
(G)/K.

We obtain Fredholm conditions when the family of regular
representations of G|∂M is (ISF) condition (“Strong Exel
property”).
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Second part: Extensions Lie Groupoids

Lie groupoids and convolution

Definition

A Lie groupoid G ⇒ M is a groupoid such that G = manifold (poss.
non Hausdorff!), M is a Hausdorff manifold (poss. w. corners), all
structural maps are smooth, and d is a submersion.

The space Cc(G) becomes an involutive (pre)Banach algebra:

(φ1 ∗ φ2)(g) :=

∫
d(h)=d(g)

φ1(gh−1)φ2(h) dλd(g)(h)

λx is a suitable set of measures on Gx := d−1(x) (Haar system, it is
the natural volume form for Lie groupoids: Gx = manifold).
(norm ∥f∥ := maxx∈M

∫
Gx

|f (h)|dλx(h) .)
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Second part: Extensions Lie Groupoids

The Lie algebroid of a Lie groupoid

Let G ⇒ M be a Lie groupoid with structural map d , r : G ⇒ M.

We consider V to be the space of d-vertical vector fields (tangent
to the fibers of d) that are right invariant.

V dentifies with the sections of a vector bundle on M, the Lie
algebroid A(G) of G.

The measures on Gx := d−1(x) comes from a metric on A(G).

To use G, we need A(G) = A, that is, we need to integrate the given
Lie algebroid (Lie’s third theorem). This is the famous construction of
the double spaces (Mazzeo, Melrose, ... , the triple space is the space
of composable arrows).
There are general theorems, but the resulting groupoid is useless.
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Second part: Extensions Lie Groupoids

Groupoid C∗–algebras

Define the regular representation πx , x ∈ M,

πx : Cc(G) → B(L2(Gx , λx)) , πx(f )g := f ∗ g .

Definition (Reduced C∗–algebra C∗
r (G))

C∗
r (G) is the completion of Cc(G) with respect to

∥φ∥r := sup ∥πx(φ)∥ , x ∈ M .

If G is metrically amenable (i.e. C∗(G) ≃ C∗
r (G)), then we have the

short exact sequence for all U = F c open, invariant (Renault)

0 → C∗
r (GU) → C∗

r (G)+ → C∗
r (GF )

+ → 0

We obtain Fredholm conditions when GU := d−1(U) = U × U, since
C∗(GU) ≃ K (next).
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Second part: Extensions Lie Groupoids

Examples of Lie groupoids I

1 The pair groupoid H := M × M is the groupoid H having exactly
one arrow between any two units. Hence

d(x , y) = y , r(x , y) = x , and (x , y)(y , z) = (x , z).

A(M × M) = TM.
The Haar measures λx on Gx = M × {x}, x ∈ M, satisfy λx = λy = λ

ϕ1 ∗ ϕ2(x , z) :=

∫
M
ϕ1(x , y)ϕ2(y , z)dλ(y) ,

and hence
C∗(H) ≃ C∗

r (H) ≃ K(L2(M, λ)) .

Finally, πx is the natural representation on L2(M;λ) (indep. of x).
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Second part: Extensions Lie Groupoids

Other examples of Lie groupoids II

3 A locally compact group: G with its Haar measure, M = {e}.

C∗(G) ∼= C∗
r (G) ⇔ G is amenable (this is the case when we have

edge calculi or desingularization in general).

4 A space: G = M (only units), C∗(G) = C∗
r (G) = C0(M).

5 The product of the two: G = M × G ⇒ M, d = r .

6 A bundle of Lie groups G → M, in which case d = r .

The last example is the main building block for the groupoids in
applications.

All these examples satisfy (ISF) if, and only if, the groups involved (if
any) are amenable.
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Second part: Extensions Lie Groupoids

Other examples of Lie groupoids III

7 The cross-product groupoid: obtained from the action of a
locally compact group G on manifold with corners M.

Then G = G × M ⇒ M with
d(g, x) = x , r(g, x) = gx , (h,gx)(g, x) = (hg, x) ,

and C∗(G) = C(M)⋊ G and C∗
r (G) = C0(M)⋊r G.

(cross-prod: Exel, Georgescu-Iftimovici, Karlovich, Mantoiu, Mougel,
Rabinovich, Roch, Silbermann, ... ).

Used for the “scattering calculus” and for the N-body problem with
G = Rn and M a suitable blow-up of Rn

, (Georgescu, Vasy,
Ammann-Mougel-V.N.)
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Second part: Extensions Lie Groupoids

Other examples of groupoids IV

8 The “b-groupoid” Gb(M) for M with smooth boundary ∂M:

Gb(M) :=
(
M × M

)
⊔ (∂M × ∂M)× R ,

M := M ∖ ∂M is the interior of M.

Gb(M) is obtained from the ‘double-space’ construction by removing
outside faces

Also Grieser, Lesch, Monthubert, Schrohe, Schulze, ...

M ⊂ M and ∂M ⊂ M are invariant subsets of M. The restriction of
Gb(M) to M is M × M and to ∂M is ∂M × ∂M × R. Each satisfies (ISF),
so Gb(M) satisfies (ISF), next.
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Second part: Extensions (ISF) and the Fredholm conjecture

The (ISF) property

Assume G to be Hausdorff (non trivial!).

If U ⊂ M is an invariant open subset and if G|U and G|U satisfy (ISF,)
then G satisfies (ISF), a consequence of the exact sequence

0 → C∗
r (GU) → C∗

r (G)+ → C∗
r (GF )

+ → 0 .

We can “slice and dice” our groupoid (which we could not have done
with our operator!)

We prove the Fredholm Conjecture in stages (for sufficiently nice
groupoids).

We can “glue” groupoids that satisfy the conjecture (Rémy Côme).

If a groupoid G satisfies the conjecture, then the groupoid associated to
a desingularization also satisfies the conjecture (“blow-up invariant”).
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Second part: Extensions (ISF) and the Fredholm conjecture

The desingularization groupoid I

• Let G ⇒ M be a Lie groupoid and L ⊂ M a “nice” submanif,
meaning that it has a tubular nbhd in an algebroid sense.

• Let π : SNL → L be the unit sphere bundle in the normal bundle
π : NL → L of L in M (“pies” everywhwere!).

• Let [M : L] = usual blow-up obtained by replacing L with SNL.

• On L we consider the bundle of Lie groups L := TL ⋊R∗
+

π−→ L and
define the fibered pull-back groupoid

H := SNL ×L SNL ×L L := { (x , y , v) | π(x) = π(y) = π(v) }

The desingularization is then

[[G : L]] := H ⊔ GM∖L
M∖L ⇒ [M : L]

(GB
A = d−1(A) ∩ r−1(B)). Uses res. of Debord-Skandalis.
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Second part: Extensions (ISF) and the Fredholm conjecture

The desingularization groupoid II

The desingularization

[[G : L]] := H ⊔ GM∖L
M∖L ⇒ [M : L]

was constructed to satisfy the usual condition (rL = dist to L):

C∞(A([[G : L]])) = rLC∞([M : L])C∞(A((G)) .

If M has no boundary and G = M × M, then any smooth L ⊂ M is nice
(A(G)-tame) and the desingularization [[G : L]] defines the “edge”
calculus for the boundary fibration SNL := ∂[M : L] → L (Grušin,
Schulze, Mazzeo, Krainer).

If, furthermore, L is a point, we obtain the b-groupoid for [M : L].
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Second part: Extensions (ISF) and the Fredholm conjecture

Conclusion

The Fredholm conjecture may be true for all Lie manifolds. Hard
(close to conjectures in C∗−algebras: Effros-Hahn, ...)

In practice, however: the hardest part is to integrate the Lie
algebroid A defining the Lie manifold C∞(A) = V, the vector fields.
You want a Hausdorff groupoid as “double space.”

There exist general results (Crainic-Fernandez, Debord, V.N.,) but
they do not give (in general) Hausdorff groupoids.

If one is lucky, G = ∪Z Z × Z × GZ ∪ M × M , (use [V.N.] ≈ 2000).

Check that on has a stratification of the units M ⊃ Ok , with the
orbits Z closed in Ok+1 ∖Ok and same stabilizer. (Ex. Compact
group actions: Albin-Melrose.) True in all examples that I know.

Thank you for your attention!
See the last slide for some references.
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Second part: Extensions (ISF) and the Fredholm conjecture

References for the second part

This list is very incomplete, but may help you get started.

[1] Pseudodifferential operators on differential groupoids (with
Weinstein and Xu)
https://arxiv.org/pdf/funct-an/9702004.pdf

[2] Groupoids and the integration of Lie algebroids
https://arxiv.org/pdf/math/0004084.pdf

[3] Fredholm conditions on non-compact manifolds: theory and
examples (with Carvalho and Qiao)
https://arxiv.org/pdf/1703.07953.pdf

[4] Gluing groupoids: Fredholm conditions and layer potentials
(Carvalho, Côme, and and Qiao)
https://arxiv.org/pdf/1811.07699.pdf
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Second part: Extensions Manifolds with cylindrical ends
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Second part: Extensions Manifolds with cylindrical ends

REMOVED STUFF 1

“Pictorial” definition of cylindrical ends (repeated)

A model class of non-compact manifolds: the manifolds with
(straight) cylindrical ends (picture):

As for manifolds with bounded geometry, the Sobolev spaces on
manifolds with cylindrical ends can be defined using partitions of
unity.

The formal definition is on the next slides.
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Second part: Extensions Manifolds with cylindrical ends

Formal definition of M with cylindrical ends

M = a smooth, compact Riemannian manifold, ∂M ̸= ∅.
To M we attach the cyl. end ∂M × (−∞,0] along ∂M ≡ ∂M × {0} :

M := M ∪ ∂M × (−∞,0]
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Second part: Extensions Manifolds with cylindrical ends

Translation invariant operators near infinity

Recall the partial translations (isometries) Φs(x , t) := (x , t − s),
s ≥ 0 on the half-infinite cylindrical end

Φs : ∂M × (−∞,0] → ∂M × (−∞,−s] .

Definition
P : C∞

c (M) → C∞
c (M) is called translation invariant at infinity if

its distribution kernel is supported in a neighborhood of the
diagonal {(x , y) ∈ M × M : dist(x , y) < ε} for some ε > 0, and
there is R > 0 s.t. if supp(f ) ⊂ ∂M × (−∞,−R) and s > 0,

PΦs(f ) = ΦsP(f ) .

The differential operators that are translation invariant at infinity have
coefficients in W∞,∞, and hence, they are bounded on all Sobolev
spaces. The same is true of the pseudodifferential operators.
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Second part: Extensions Manifolds with bounded geometry

Differential operators

Let E ,F → M be vector bundles, with E endowed with a connection.

Definition

Let a[k ] be measurable section of Hom(T ∗⊗k ⊗ E ;F ) and ∇0 = id . A
∇–differential operator is a map of the form

P = a · ∇tot :=
∑µ

j=0 a[j]∇j : C∞(M;E) → C∞(M;F ) .

ord(P) is the least µ for which such a writing exists (the order of P).

Suitable extensions by continuity of P will also be called ∇–differential
operators and will be denoted by the same letter.

Locally, there is no difference between the ∇–differential operators
and the usual differential operators.
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Second part: Extensions Manifolds with bounded geometry

Mapping properties of differential operators

Let E ,F → M be vector bundles with metrics and metric-compatible
with connections.

Theorem

Let ℓ ∈ Z+ and a[k ] ∈ W ℓ,∞(M; Hom(T ∗⊗k ⊗ E ;F )) and ∇0 = id . Then
the ∇–differential operator

P = a · ∇tot :=
∑µ

j=0 a[j]∇j : W s+µ,p(M;E) → W s,p(M;F ) .

for 0 ≤ s ≤ ℓ. (Operator with coefficients in W ℓ,∞.)

Better results (including |s| ≤ ℓ) for manifolds with bounded
geometry, but first the simpler particular case of manifolds with
cylindrical ends.
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Second part: Extensions Manifolds with bounded geometry

Curvature

It turns out that the anti-symmetric part of ∇2 (i.e. the composite map)

∇2 : C∞(E) → C∞(T ∗⊗2M ⊗ E) → C∞(Λ2T ∗M ⊗ E)

is actually linear (curvature, see also next).
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Second part: Extensions Manifolds with bounded geometry

Curvature

The curvature

R ∈ Ω2(M; End(TM)) = C∞(Λ2T ∗M ⊗ End(TM))

of (E ,∇) (or of (M,g) if E = TM) is such that

⟨∇2u,X ∧ Y ⟩ = R(X ,Y )u .

Explicitly, ∇2u(X ,Y ) = ∇X∇Y u −∇∇X Y u , and hence the curvature
R of (E ,∇) is given by

R(X ,Y )u = ∇X∇Y u −∇Y∇X u −∇[X ,Y ]u .

Definition
We say that M has totally bounded curvature if its curvatures
RM := (∇M)2 and all its covariant derivatives (∇M)kRM are bounded.

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 179 / 197



Second part: Extensions Manifolds with bounded geometry

Injectivity radius and geodesics

A C1-curve γ : (a,b) → M is a geodesic if ∇M
γ′(t)γ

′(t) = 0. It is locally
distance minimizing and uniquely determined by any γ′(t0), t0 ∈ I. If
M = Rd with the usual metric, then a geodesic is just a straight line.

Let
expM(v) := γv (1),

where γv is the unique geodesic with γ′(0) = v , the (geodesic)
exponential map.

Let BX
r (x) := {y ∈ X | d(x , y) < r} , and

rM
inj(p) := sup{r | expM : BTpM

r (0) → BM
r (p) is a diffeomorphism} and

rinj(M) := inf
p∈M

rM
inj(p).

rinj(M) =the injectivity radius of the Riemannian manifold (M,g).
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Second part: Extensions Manifolds with bounded geometry

Manifolds with bounded geometry

Recall the curvature RM(X ,Y )u = ∇M
X ∇M

Y u −∇M
Y ∇M

X u −∇M
[X ,Y ]u and

that M has totally bounded curvature if its curvatures RM := (∇M)2

and all its covariant derivatives (∇M)kRM are bounded.
The following concept is crucial.

Definition
A smooth Riemannian manifold (M,g) is said to have bounded
geometry if M has totally bounded curvature and rinj(M) > 0.

Then H−s(M) := H−s(M)∗. (Negative order spaces.)
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Second part: Extensions Manifolds with bounded geometry

Examples

The following are manifolds with bounded geometry:

(i) A closed manifold (i.e. a smooth, compact manifold without
boundary).

(ii) M = Rd with the standard (Euclidean) metric
dx2 := (dx1)

2 + (dx2)
2 + . . .+ (dxd)

2 .

(iii) D × M, where M is a manifold with bounded geometry and D is
discrete set.

(iv) M1 × M2, where M1 and M2 have bounded geometry.

(v) However, if M is a manifold with bounded geometry and U ⊂ M is
an open subset, then U has totally bounded curvature, but may
not have positive injectivity radius (so no bounded geometry).
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Second part: Extensions Manifolds with bounded geometry

Boundary and bounded geometry

Let now M0 be a Riemannian manifold with boundary, then
rinj(M0) = 0, so a manifold with non-empty boundary will never have
bounded geometry in the sense of the above definition. The way
around this conundrum was found by Schick (2001), who has defined
the concept of “manifold with boundary and bounded geometry,” (we
shall call these manifolds “manifolds with boundary and relative
bounded geometry,” to avoid confusions). We recall the equivalent
definition of manifolds with boundary and relative bounded geometry in
(Ammann-Grosse-V.N.)

The main point of that definition is to assume that the boundary ∂M0 of
M0 is a suitable submanifold of a (boundaryless) manifold M with
bounded geometry.
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Second part: Extensions Manifolds with bounded geometry

Second fundamental form

Let hence M be a (boundaryless) manifold with bounded geometry
and let us consider a hypersurface H ⊂ M, that is, a submanifold H of
M of codimension dim(M)− dim(H) = 1. We assume that H carries a
globally defined unit normal vector field ν. We let

exp⊥(x , t) := expM
x (tνx)

be the exponential in the direction of the chosen unit normal vector.
We shall need the second fundamental form IIH of H in M, which, we
recall, is defined by

IIH(X ,Y )ν := ∇M
X Y −∇H

X Y ,

where ∇Z is the Levi-Civita connection of Z . Equivalently, since
g(ν,∇H

X Y ) = 0, we have IIH(X ,Y ) := g(ν,∇M
X Y ).
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Second part: Extensions Manifolds with bounded geometry

Bounded geometry hypersurface

Definition
Let (M,g) be a Riemannian manifold of bounded geometry and H ⊂ M
be a hypersurface with unit normal vector field ν on H. We say that H
is a bounded geometry hypersurface in M if:

(i) H is a closed subset of M;
(ii) all covariant derivatives (∇H)k IIH , k ≥ 0, are bounded;
(iii) exp⊥ : H × (−δ, δ) → M is a diffeomorphism onto its image for

some δ > 0.

Then H has bounded geometry.

If H ⊂ M is a compact hypersurface, then H is a bounded geometry
hypersurface in M.
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Second part: Extensions Manifolds with bounded geometry

Manifolds with boundary and relative bounded
geometry

We are ready now to recall the definition of a central concept in
analysis on manifolds.

Definition
We shall say that M0 is a manifold with boundary and relative
bounded geometry if M0 is isometrically contained in a
(boundaryless) Riemannian manifold M with bounded geometry such
that ∂M0 is a bounded geometry hypersurface in M.

Note that we use the term “manifold with boundary and relative
bounded geometry,” which we think is more precise than the term
“manifold with boundary and bounded geometry” used before.
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Second part: Extensions Manifolds with bounded geometry

Trace and ‘negative’ spaces

Let ∂ν be the normal derivative at the boundary and let

Hk
0 (M0) := ∩k−1

j=0 ker(res ◦∂ j
ν)

denote the joint kernel of the restrictions maps res ◦∂ j
ν , 0 ≤ j ≤ k − 1.

Theorem (Trace theorem: Grosse-Schneider, Triebel)
Let M0 be a manifold with boundary and relative bounded geometry.
Then, for every s > 1/2, the restriction res : C∞

c (M0) → C∞
c (∂M0)

extends by continuity to a surjective map

res : Hs(M0) → Hs− 1
2 (∂M0).

Moreover, C∞
c (M0 ∖ ∂M0) is dense in Hk

0 (M0) and H−k (M0) identifies
with Hk

0 (M0)
∗, k ∈ N.
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Second part: Extensions Well-posedness for the Poisson problem

Finite width

Definition
Let (M0,g) be a Riemannian manifold with boundary ∂M0. We say that
M0 has finite width if:

(i) (M0,g) is a manifold with boundary and relative bounded
geometry and

(ii) The function M0 ∋ x → distM0(x , ∂M0) is bounded on M0.

The last condition is equivalent to

“∃R > 0 such that M0 ⊂ {x ∈ M | ∃y ∈ ∂M0, distM0(x , y) < R }.”
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Second part: Extensions Well-posedness for the Poisson problem

Poincaré inequality

Theorem (Ammann-Grosse-V.N., Sakurai)

Let (M0,g) be a Riemannian manifold with finite width. Then there
exists 0 < CM0 <∞ such that, for all f ∈ C∞

c (M0) (thus f = 0 on the
boundary of M0),

∥f∥L2(M0)
≤ CM0∥df∥L2(M0)

.

A regularity argument then yields the following result.

Theorem (Ammann-Grosse-V.N.)

Let M0 be a smooth Riemannian manifold with smooth boundary ∂M0
and finite width. Then ∆ induces isomorphisms

∆D = ∆: Hm+1(M0) ∩ H1
0 (M0) → Hm−1(M0) , m ∈ Z+ := {0,1, . . .} .
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Second part: Extensions Well-posedness for the Poisson problem

Applications: polygonal regularity

Let us consider a polygonal domain Ω∞ with maximum angle αMAX
and the Poisson problem

∆u∞ = f∞ in Ω∞, u∞ = 0 on ∂Ω∞.

It is known that u∞ has limited regularity, less than H1+π/αMAX :
Costabel, Dauge, Griesvard, Kondratiev, Mazya, ...

Theorem (Limited regularity: Kondratiev, ... )

Let δ < π/αMAX . Then there exists C = Cδ > 0 such that the solution
un ∈ H1

0 (Ωn) of the equation ∆un = fn satisfies

∥un∥H1+δ(Ωn) ≤ C∥fn∥L2(Ωn) .
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Second part: Extensions Well-posedness for the Poisson problem

Applications: well-posedness in weighted spaces

The “limited regularity” theorem of the previous slide is not very
satisfying. It is, in any case, a consequence of the following more
satisfying result in the Babuška-Kondratiev (weighted Sobolev) spaces

Km
a (Ω) := {ρ|α|−a∂αu ∈ L2(Ω), |α| ≤ m}

ρ =distance to vertices (Costabel, Dauge, Kondratiev, Mazya, ... )

Theorem (Unlimited weighted regularity: Kondratiev ’67, ...)

Let 0 ≤ δ < π/αMAX and m ∈ Z+. Then there exists C = Cm,δ > 0 such
that the solution u∞ ∈ H1

0 (Ω∞) of the equation ∆u∞ = f∞ satisfies

∥u∞∥Km+1
δ+1 (Ω∞) ≤ C∥f∞∥Km−1

δ−1 (Ω∞) .

This, as well as the next theorem, are consequences of the
well-posedness on manifolds with boundary and relative
bounded geometry (Thm 68 stated earlier).

Victor Nistor (IECL) Pseudodifferential operators on manifolds July 1, 2024 191 / 197



Second part: Extensions Well-posedness for the Poisson problem

Applications: “rounding up the corners”

Consider a sequence of smooth domains Ωn, n ∈ Z, converging to a
polygonal domain Ω∞ (picture) and the associated Poisson problems
∆un = fn, un ∈ H1

0 (Ωn), for which we want uniform estimates.
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Second part: Extensions Well-posedness for the Poisson problem

Applications: “rounding up the corners”

Theorem (Daniel-Labrunie-V.N.)

Let Ωn ⊂ R2 be a sequence of smooth domains “converging” to a
polygonal domain Ω∞, as in the picture (repeated below). Let
δ < π/αMAX . Then there exists C = Cδ > 0 such that for all
n ∈ N ∪ {∞}, the solution un ∈ H1

0 (Ωn) of ∆un = fn satisfies

∥un∥H1+δ(Ωn) ≤ C∥fn∥L2(Ωn) .
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Second part: Extensions Well-posedness for the Poisson problem

REMOVED STUFF 2
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Second part: Extensions Well-posedness for the Poisson problem

Ellipticity

M is still a closed manifold (smooth, compact, without boundary).

Theorem
Let a ∈ Sm(T ∗M). The following are equivalent

1 There exist b ∈ S−m(T ∗M) such that ab − 1 ∈ S−1(T ∗M)

2 There are C,R > 0 such that |a(ξ)| ≥ C|ξ|m for ξ ∈ T ∗M , |ξ| ≥ R.

Then a is called elliptic and this property is a property of its class in
Sm(T ∗M)/Sm−1(T ∗M).

Definition

P ∈ Ψm(M) is elliptic if σm(P) ∈ Sm/Sm−1(T ∗M) is elliptic.

We can easily include vector bundles.
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Second part: Extensions Well-posedness for the Poisson problem

Fredholm and Atkinson

Recall the following that if X and Y are Banach spaces, an operator
T ∈ B(X ;Y ) is Fredholm if

dim ker(P) , dim(Y/PX ) <∞.

(It implies PX = closed.)

Theorem (Atkinson’s theorem)

Let X and Y be Banach spaces; T ∈ B(X ;Y ) is Fredholm if, and only
if, there exists Q ∈ B(Y ;X ) such that both TQ − 1Y and QT − 1X are
compact.
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Second part: Extensions Well-posedness for the Poisson problem

Fredholm property

Theorem
Assume M is a closed manifold and P ∈ Ψm(M;E) is elliptic. Then,
for any s ∈ R,

P : Hs(M;E) → Hs−m(M;E) is Fredholm.

Proof.
• P is elliptic means that there is b ∈ S−m(T ∗M) such that
σm(P)b − 1 ∈ S−1(T ∗M).

• The surjectivity of σ−m and its multiplicativity give that there exists
Q ∈ Ψ−m(M) (parametrix) such that PQ − 1,QP − 1 ∈ Ψ−1(M) .

• Consequently, PQ − 1 and QP − 1 are compact operators.
Atkinson’s theorem then gives that P is Fredholm.

The converse is true (Fredholm for one s implies elliptic).
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Second part: Extensions Well-posedness for the Poisson problem

Extensions of the Fredholmness results

A quite satisfying result! However, much is hidden. The
pseudodifferential operators that we defined are not enough, they
contain too few regularizing operators!

We need to enlarge the initial, small calculus (open pr. in gen).

Open problem: find the “right class of regularizing operators.”

Second part of the lecture notes: general methods to extend
some of the results in this talk (Pseudodifferential operators,
Fredholm property, ...) to other classes of manifolds.
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