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This will be a short course centering on sharp, or isoperimetric, inequalities for the eigenvalues
of the Laplacian. The basic set-up is to consider the eigenvalues of the Laplacian acting on some
bounded domain Ω in Euclidean space Rn as functionals depending on the domain. Typically
we consider Dirichlet, and sometimes Neumann, boundary conditions, and typically our focus
is on low eigenvalues, such as the first eigenvalue, λ1(Ω). If one considers some eigenvalue of
the Laplacian, or a combination of eigenvalues (e.g., λ2/λ1), a natural question is to ask if,
among some class of domains, it has a least, or greatest, value (more precisely a greatest lower
bound (glb, or inf) or a least upper bound (lub, or sup)). If such a bound exists, one can
ask whether it is ever attained, and, if so, for what domains. Natural choices for the class
of domains to consider include domains of fixed area (in general, volume), perimeter (surface
area), diameter, inradius, or . . . , or the class of domains which are convex, simply connected, or
satisfy various constraints on the curvature of their boundary. Such problems have come to be
called isoperimetric problems of mathematical physics, by analogy to the classical isoperimetric
inequality, and out of respect for the first book on the subject, by Pólya and Szegő, titled
Isoperimetric Inequalities in Mathematical Physics.
In particular, in this course we shall focus on what one might think of as the three basic

inequalities for low eigenvalues of the Laplacian, (1) the Faber-Krahn inequality, which gives
the best lower bound for the first Dirichlet eigenvalue for domains of fixed area (volume), (2) the
Segő-Weinberger inequality, which gives the best upper bound to the first nontrivial Neumann
eigenvalue for domains of fixed area (volume), and (3) the sharp upper bound to the ratio of
the second Dirichlet eigenvalue to the first (which applies to all bounded domains, since this
ratio scales with dimension, and hence depends only on the shape of the domain). In all three
of these cases, the sharp bound is attained, and the domain which attains it is the disk (or,
generally, the ball in n dimensions).
We shall develop the methods that are needed to treat these problems, and go through

the proofs in detail. These include the variational characterization of eigenvalues (Rayleigh
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quotients and the Min-Max Principle), symmetrization/rearrangement techniques (for Steiner
and especially Schwarz symmetrization), and sharp center of mass results. In particular, we shall
show that the Faber-Krahn inequality follows easily from an understanding of how the Dirichlet
norm of a function changes under rearrangement, i.e., the Pólya-Szegő inequality. Additionally,
we shall consider Talenti’s theorem and how it leads on to Chiti’s comparison theorem, which
is a key element of the proof of the result for λ2(Ω)/λ1(Ω)). We will also indicate how the
three basic inequalities have precise analogs for the Laplacian acting on domains in the unit
sphere, Sn, or in hyperbolic space, Hn (in the case of the sphere, one typically has to restrict
to domains lying in a hemisphere). In making this generalization, we shall see that the “right”
analog of the ratio result is that, for fixed λ1, the disk/ball maximizes λ2.
Time permitting, we will go on to discuss some further inequalities that build on the three

basic inequalities, some other eigenvalue problems for which isoperimetric inequalities are known
(such as the Steklov problem and the problem of the buckling or the vibration of a clamped
plate), and various related conjectures and open problems. Other possible topics include eigen-
value asymptotics, Pólya’s conjectures, and universal inequalities for eigenvalues, but these are
most likely to be touched on only in passing, or briefly in the context of open problems.
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