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THE KIRCHHOFF-LOVE MODEL FOR A THIN PLATE

Consider a plate, the vertical projection of which is the planar
region Ω ⊂ R2. A simple model for its elastic energy is

J(u) =

∫
Ω

(
1
2 (∆u)2 + (1− σ)

(
u2
xy − uxxuyy

)
− f u

)
dxdy ,

where f = external vertical load, u = vertical deflection.

σ is the Poisson ratio: σ = λ
2(λ+µ) with the Lamé constants λ ≥ 0,

µ > 0 that depend on the material, hence 0 ≤ σ < 1
2 . Usually

σ > −1 and some exotic materials have a negative Poisson ratio.

For −1 < σ < 1, the quadratic part of the functional is positive.
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BOUNDARY CONDITIONS: ONE DIMENSIONAL BEAM

Figure: The depicted boundary condition for the left endpoint of the
beam is clamped whereas for the right endpoint it is hinged.

Clamped: u(a) = u′(a) = 0, also known as homogeneous
Dirichlet boundary conditions.

Hinged: u(b) = u′′(b) = 0, also known as homogeneous Navier
boundary conditions. This is not the real hinged situation in 2D,
due to the boundary curvature!

Filippo Gazzola - Politecnico di Milano (Italy) The biharmonic Steklov problem



HINGED BOUNDARY CONDITIONS IN 2D

For hinged boundary conditions the natural setting is the Hilbert
space H2 ∩ H1

0 (Ω). Minimising the energy functional leads to the
weak Euler-Lagrange equation∫

Ω
(∆u∆ϕ+ (1− σ) (2uxyϕxy − uxxϕyy − uyyϕxx)− f ϕ) dxdy = 0

for all ϕ ∈ H2 ∩ H1
0 (Ω). Formally, an integration by parts leads to

0 =

∫
Ω

(
∆2u − f

)
ϕ dxdy −

∫
∂Ω

(
∂

∂ν
∆u

)
ϕ ds

+ (1− σ)

∫
∂Ω

((
ν2

1 − ν2
2

)
uxy − ν1ν2 (uxx − uyy )

) ∂

∂τ
ϕ ds

+

∫
∂Ω

(
∆u + (1− σ)

(
2ν1ν2uxy − ν2

2 uxx − ν2
1 uyy

) ) ∂

∂ν
ϕ ds.

One has u = 0 on ∂Ω and ∆u − (1− σ)κuν = 0 on ∂Ω.

Here κ is the mean curvature of the boundary (κ ≥ 0 for convex
boundaries).
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THE STRONG EULER-LAGRANGE EQUATION

It reads {
∆2u = f in Ω,
u = ∆u − (1− σ)κuν = 0 on ∂Ω.

In this situation, with an integration by parts, the elastic energy
becomes

J(u) =

∫
Ω

(
1
2 (∆u)2 − f u

)
dx − 1− σ

2

∫
∂Ω
κ u2

ν dω.

This functional has to be minimised over the space H2 ∩ H1
0 (Ω).
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CLAMPED BOUNDARY CONDITIONS IN 2D

For clamped boundary conditions the natural setting is the Hilbert
space H2

0 (Ω). Minimising the energy functional leads to the weak
Euler-Lagrange equation∫

Ω
(∆u∆ϕ+ (1− σ) (2uxyϕxy − uxxϕyy − uyyϕxx)− f ϕ) dxdy = 0

for all ϕ ∈ H2
0 (Ω). Formal integration by parts yield∫

Ω
uxyϕxy dxdy = −

∫
Ω

uxϕxyy dxdy =

∫
Ω

uxxϕyy dxdy

∫
Ω

uxyϕxy dxdy = −
∫

Ω
uyϕxxy dxdy =

∫
Ω

uyyϕxx dxdy

so that the weak Euler-Lagrange equation becomes∫
Ω

(
∆2u − f

)
ϕ dxdy = 0 ∀ϕ ∈ H2

0 (Ω).
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THE STRONG EULER-LAGRANGE EQUATION

It reads {
∆2u = f in Ω,
u = uν = 0 on ∂Ω.

In this situation, the elastic energy becomes

J(u) =

∫
Ω

(
1
2 (∆u)2 − f u

)
dx .

This functional has to be minimised over the space H2
0 (Ω).
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BOUNDARY CONDITIONS

Clamped (Dirichlet): u = uν = 0 on ∂Ω.
Hinged (Steklov): u = ∆u − (1− σ)κuν = 0 on ∂Ω.
We may write the fourth order equation as a second order system:{
−∆v = f in Ω,
v = −(1− σ)κuν on ∂Ω,

and

{
−∆u = v in Ω,
u = 0 on ∂Ω.

Hinged (Navier): u = ∆u = 0 on ∂Ω.
We may write the fourth order equation as a second order system:{

−∆v = f in Ω,
v = 0 on ∂Ω,

and

{
−∆u = v in Ω,
u = 0 on ∂Ω.
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Mixed Navier-Neumann: uν = ∆u = 0 on ∂Ω.
We may write the fourth order equation as a second order system:{

−∆v = f in Ω,
v = 0 on ∂Ω,

and

{
−∆u = v in Ω,
uν = 0 on ∂Ω.

No uniqueness, solvability only under the condition
∫

Ω v = 0... too
complicated!

Neumann-Neumann: uν = (∆u)ν = 0 on ∂Ω.
We may write the fourth order equation as a second order system:{

−∆v = f in Ω,
vν = 0 on ∂Ω,

and

{
−∆u = v in Ω,
uν = 0 on ∂Ω.

One first needs
∫

Ω f = 0; among solutions v one should choose the
one satisfying

∫
Ω v = 0; then infinitely many solutions u... too

complicated!
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Even worse: ∆u = (∆u)ν = 0 on ∂Ω do not satisfy the
complementing condition by Agmon-Douglis-Nirenberg.
Well-posedness and elliptic regularity fail!

To see this, consider the problem{
∆2u = 0 in Ω,
∆u = (∆u)ν = 0 on ∂Ω.

Any harmonic function is a solution so that the space of solutions
does not have finite dimension.

If we take any point x0 ∈ Rn \ Ω, the fundamental solution u0 of
−∆ having pole in x0 (namely, u0(x) = log |x − x0| if n = 2 and
u0(x) = |x − x0|2−n if n ≥ 3) is a solution. This shows that it is
not possible to obtain uniform a priori bounds in any norm.

Indeed, as x0 approaches the boundary ∂Ω it is clear that (for
instance!) the H1-norm of the solution cannot be bounded
uniformly in terms of its L2-norm.
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Summarising... we consider the following boundary conditions for a
bounded domain Ω ⊂ Rn, with n ≥ 2 and a ∈ C 0(∂Ω):
Steklov: u = ∆u − auν = 0 on ∂Ω.
Dirichlet: u = uν = 0 on ∂Ω (case a ≡ −∞).
Navier: u = ∆u = 0 on ∂Ω (case a ≡ 0).

PPP = POSITIVITY PRESERVING PROPERTY

Consider the boundary value problem{
∆2u = f in Ω,
boundary conditions on ∂Ω.

After defining what is meant by weak solution u ∈ H2(Ω) (∩...)
we address the following

QUESTION: Under which conditions the assumption f ≥ 0
implies that the solution u exists and is positive?
Does upwards pushing of a plate yield upwards bending?

Remark: Elliptic regularity yields f ∈ L2(Ω)⇒ u ∈ H4(Ω).

Filippo Gazzola - Politecnico di Milano (Italy) The biharmonic Steklov problem



Before tackling the PPP...

DEFINITION A bounded domain Ω ⊂ Rn satisfies a outer ball
condition if ∀y ∈ ∂Ω ∃ a ball B ⊂ Rn \ Ω s.t. y ∈ ∂B. It satisfies
a uniform outer ball condition if the radius B can be taken
independently of y ∈ ∂Ω.

In particular, convex domains or domains with smooth boundary
are Lipschitz domains which satisfy a uniform outer ball condition.

THEOREM 1 Assume that Ω ⊂ Rn is a Lipschitz bounded
domain which satisfies a uniform outer ball condition. Then the
space H2 ∩ H1

0 (Ω) is a Hilbert space when endowed with the scalar
product

(u, v) 7→
∫

Ω
∆u∆v dx for all u, v ∈ H2 ∩ H1

0 (Ω).

This scalar product induces a norm equivalent to ‖ . ‖H2 .
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Proof: Under the above assumptions, Adolfsson (Math. Scand.
1992) proved that ∃C > 0 independent of u, such that

‖u‖H2 ≤ C‖∆u‖L2 for all u ∈ H2 ∩ H1
0 (Ω).

For all u ∈ H2 ∩ H1
0 (Ω) we also have

|D2u|2 =
n∑

i ,j=1

(∂iju)2 ≥
n∑

i=1

(∂iiu)2 ≥ 1

n
|∆u|2 a.e. in Ω.

This shows that the two norms are equivalent. �
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If the domain has a reentrant corner then u 7→ ‖∆u‖2 is not a
norm in H2 ∩ H1

0 (Ω).

For α ∈
(

1
2π, π

)
fix the domain

Ωα =
{

(r cosϕ, r sinϕ) ∈ R2; 0 < r < 1 and |ϕ| < α
}
.

For ρ = π
2α ∈

(
1
2 , 1
)

the function

vα(r , ϕ) =
(
r−ρ − rρ

)
cos (ρϕ)

satisfies −∆vα = 0 in Ωα, vα = 0 on ∂Ωα\{0} and vα ∈ L2(Ωα).
Then ∃!bα ∈ H1

0 (Ωα) solving

−∆bα = vα in Ωα, bα = 0 on ∂Ωα.

One has ∆bα 6∈ H1
0 (Ωα) and bα 6∈ H2(Ωα).
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PPP: Navier boundary conditions : u = ∆u = 0 on ∂Ω.
The problem may be decomposed into a system.{

−∆v = f in Ω,
v = 0 on ∂Ω,

and

{
−∆u = v in Ω,
u = 0 on ∂Ω.

Regardless of the regularity of the boundary ∂Ω, we may apply
twice the Lax-Milgram Theorem:

∀f ∈ H−1(Ω) ∃!v ∈ H1
0 (Ω) =⇒ ∃!u ∈ H1

0 (Ω) (∆u ∈ H1
0 (Ω)).

Applying twice the maximum principle for −∆ we obtain that

L2(Ω) 3 f 	 0 =⇒ v 	 0 =⇒ u 	 0.

The solution u so found is called the system solution. Hence, ∃!
system solution and PPP holds.

If Ω satisfies a uniform outer ball condition then u has finite
energy: u ∈ H2(Ω).
However,... if Ω has a reentrant corner (nonsmooth) the problem
may also admit a finite energy sign changing solution.
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For α ∈
(

1
2π, π

)
consider again Ωα. Let f ∈ L2(Ωα) and consider

the homogeneous Navier problem

∆2u = f in Ωα, u = 0 on ∂Ωα, ∆u = 0 on ∂Ωα \ {0}.

Let u be the system solution obtained by applying twice the
Lax-Milgram Theorem and, ∀c ∈ R let uc = u + cbα.

We know that:

• ∀c ∈ R we have uc ∈ H1
0 (Ωα) and ∆uc ∈ L2(Ωα).

• ∀c ∈ R uc is a solution and uc ∈ C 0(Ωα), ∆uc ∈ C 0(Ωα \ {0}).

• ∆uc ∈ H1
0 (Ωα) iff c = 0.

• ∀f ∈ L2(Ωα) ∃!cα(f ) ∈ R s.t. uc ∈ H2 ∩ H1
0 (Ωα)⇔ c = cα(f ).

Hence, u 6∈ H2(Ωα) whenever cα(f ) 6= 0.

See Kondratiev (Trudy Moskovskogo Matematičeskogo Obščestva,
1967) and Nazarov-Plamenevsky (de Gruyter, 1994).
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Now let f be positive. Nazarov-Sweers (JDE, 2007) show that
ucα(f ) ∈ H2(Ωα) but ucα(f ) � 0 when α > 3

4π and cα(f ) 6= 0.

For α ∈ ( 1
2π,

3
4π) there is only numerical evidence of sign-changing

energy solutions:

Figure: The level lines of u and ucα(f ) for f ≥ 0 having a small support

near the left top of the domain. Grey region = {x : ucα(f )(x) < 0};
here, a different scale is used for the level lines.
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PPP: Dirichlet boundary conditions : u = uν = 0 on ∂Ω.
Consider the boundary value problem{

∆2u = f in Ω,
u = uν = 0 on ∂Ω,

where Ω ⊂ Rn is a bounded smooth domain, f a datum in a
suitable functional space and u denotes the unknown solution.

If Ω is smooth, a unique Green function GΩ exists and

u(x) =

∫
Ω

GΩ(x , y)f (y) dy ∀x ∈ Ω.

PPP ⇐⇒ GΩ ≥ 0.
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For x , y ∈ B we write

[XY ] :=

√
|x |2 |y |2 − 2x · y + 1 =

∣∣∣∣|x |y − x

|x |

∣∣∣∣ =

∣∣∣∣|y |x − y

|y |

∣∣∣∣ .
Then

GB(x , y) = kn |x − y |4−n
[XY ]

/
|x−y |∫

1

(σ2 − 1)σ1−n dσ > 0 .

• T. Boggio, Rend. Circ. Mat. Palermo, 1905

Hence, the implication f 	 0 =⇒ u 	 0 is true in balls.

A more general formula is available for the polyharmonic Dirichlet
Green function.
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Boggio conjectured that the Green function is always positive (in
any domain!).

In 1908, Hadamard already knew that this conjecture fails in annuli
with small inner radius. He writes that Boggio had mentioned to
him that the conjecture was meant for simply connected domains.
In the same publication he writes:

Malgré l’absence de démonstration rigoureuse,

l’exactitude de cette proposition

ne parâıt pas douteuse pour les aires convexes.

The Boggio-Hadamard conjecture may be formulated as follows:

The Green function GΩ for the clamped plate boundary
value problem on convex domains is positive.

However, this conjecture is wrong.

Filippo Gazzola - Politecnico di Milano (Italy) The biharmonic Steklov problem



Duffin (J. Math. Phys. 1949, Bull. AMS 1974) showed that the
Green function changes sign on a long rectangle.

Garabedian (Pacific J. Math. 1951) showed change of sign of
Green’s function in ellipses with ratio of half axes ≈ 1.6.
Hedenmalm-Jakobsson-Shimorin (J. Reine Angew. Math. 2002)
mention that sign change occurs already in ellipses with ratio of
half axes ≈ 1.2.
Nakai-Sario (J. Reine Angew. Math. 1977) give a construction
how to extend Garabedian’s example also to higher dimensions.
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Sign change is also proved by Coffman-Duffin (Adv. Appl. Math.
1980) in any bounded domain containing a corner, the angle of
which is not too large; in particular, squares.

Conclusion: neither in arbitrarily smooth uniformly convex
nor in rather symmetric domains Green’s function needs to
be positive.
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The Green’s function is positive in suitable perturbations of a
planar disc (Grunau-Sweers, Math. Nachr. 1996 & Sassone, Ann.
Mat. Pura Appl. 2007).

Using the explicit formula from for the limaçons de Pascal,
Hadamard also claimed to have proven positivity of the Green
function GΩ when Ω is such a limaçon.
However, Dall’Acqua-Sweers (Ann. Mat. Pura Appl. 2005) showed
that this is not the case.

Figure: Limaçons vary from circle to cardioid. The fifth limaçon from the
left is critical for a positive Green function.
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PPP: Steklov boundary conditions : u = ∆u − auν = 0 on ∂Ω.

Let Ω be a bounded domain of Rn (n ≥ 2) with ∂Ω ∈ C 2 and
consider the boundary value problem{

∆2u = f in Ω,
u = ∆u − auν = 0 on ∂Ω,

where a ∈ C 0(∂Ω), f ∈ L2(Ω).

We say that u is a weak solution if u ∈ H2 ∩ H1
0 (Ω) and∫

Ω
∆u∆v dx −

∫
∂Ω

a uνvν dω =

∫
Ω

fv dx ∀v ∈ H2 ∩ H1
0 (Ω).
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SUPERHARMONICITY

Let Ω ⊂ Rn (n ≥ 2) with ∂Ω ∈ C 2, H := [H2 ∩ H1
0 ] \ H2

0 (Ω) and

d1(Ω) := min
u∈H

∫
Ω
|∆u|2∫
∂Ω

u2
ν

.

The minimum is achieved and d
−1/2
1 is the norm of the compact

linear operator

H2 ∩ H1
0 (Ω)→ L2(∂Ω) u 7→ uν |∂Ω.

THEOREM 2 Let a ∈ C 0(∂Ω), f ∈ L2(Ω), and consider{
∆2u = f in Ω,
u = ∆u − auν = 0 on ∂Ω.

If a < d1 it admits a unique solution u ∈ H2 ∩H1
0 (Ω). If also a ≥ 0

and f 	 0, then the solution u is strictly superharmonic in Ω.
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Sketch of the proof: On the space H2 ∩ H1
0 (Ω) the functional

I (u) :=
1

2

∫
Ω
|∆u|2 − 1

2

∫
∂Ω

au2
ν −

∫
Ω

fu

is strictly convex because a < d1. The solution is the unique
minimiser of I .
If a ≥ 0 and f 	 0, then for all u ∈ H2 ∩ H1

0 (Ω) \ {0} the solution
w ∈ H2 ∩ H1

0 (Ω) to the problem{
−∆w = |∆u| in Ω
w = 0 on ∂Ω

satisfies w > 0 in Ω, wν < 0 on ∂Ω, and I (w) ≤ I (u). �
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POSITIVITY

THEOREM 3 Let a ∈ C 0(∂Ω), f ∈ L2(Ω), and consider{
∆2u = f in Ω,
u = ∆u − auν = 0 on ∂Ω.

There exists a number δc := δc(Ω) ∈ [−∞, 0) such that:

1. If a ≥ d1 and if 0 � f ∈ L2(Ω), then 6 ∃ positive solutions.

2. If a = d1, then ∃ a positive eigenfunction u1 > 0 in Ω for f = 0.
Moreover, u1 is unique up to multiples.

3. If a � d1, then ∀f ∈ L2(Ω) ∃! solution u.

4. If δc ≤ a � d1, then 0 � f ∈ L2(Ω) implies u 	 0 in Ω.

5. If δc < a � d1, then 0 � f ∈ L2(Ω) implies u ≥ cf d∂Ω > 0 in Ω
for some cf > 0.

6. If a < δc , then there are 0 � f ∈ L2(Ω) with 0 � u.
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Flavour of the proof:
∆2u = f in Ω , u = ∆u − auν = 0 on ∂Ω.
EQUIVALENT SYSTEM{

−∆v = f in Ω,
v = −auν on ∂Ω,

and

{
−∆u = v in Ω,
u = 0 on ∂Ω.

OPERATOR FORMULATION
Consider the Green operator G and the Poisson kernel K, formally:

w = Gf +Kg ⇐⇒
{
−∆w = f in Ω,
w = g on ∂Ω.

Let (Pw)(x) := −ν · ∇w(x) = −wν(x) for x ∈ ∂Ω.

u = Gv = G(Gf +KaPu) = GGf + GKaPu,

u = (I − GKaP)−1 GGf . �
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BACK TO THE HINGED PLATE

Positivity preserving property for the hinged plate in planar domains.
Recall the physical bounds for the Poisson ratio: −1 < σ < 1.

COROLLARY 1 Let Ω ⊂ R2 be a bounded convex domain with
∂Ω ∈ C 2 and assume −1 < σ < 1; ∀f ∈ L2(Ω) ∃!u ∈ H2 ∩ H1

0 (Ω)
minimiser of the elastic energy functional

J(u) =

∫
Ω

(
|∆u|2

2
− f u

)
dx − 1− σ

2

∫
∂Ω
κ u2

ν dω.

The minimiser u is the unique weak solution to{
∆2u = f in Ω,
u = ∆u − (1− σ)κuν = 0 on ∂Ω.

Moreover, f 	 0 implies that there exists cf > 0 such that
u ≥ cf d∂Ω and u is superharmonic in Ω.
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∆2u = f in Ω, u = ∆u − auν = 0 on ∂Ω.
We saw that ∃δc ∈ [−∞, 0) such that:

∃f 	 0 with u � 0 ∀f 	 0 : ∃u and u 	 0 ∀f 	 0 if ∃u then u � 0

0δc d1 a −→

QUESTIONS:
- What happens if a− d1 changes sign on ∂Ω?
- Are there cases where δc = −∞, δc > −∞?

For the first question: the function

a(x) = n +
2x1

1 + 2
n + ε+ x1

satisfies a ∈ C 0(∂B), a− n changes sign, f 	 0 implies u 	 0.
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THEOREM 4 Let a ∈ C 0(∂Ω), f ∈ L2(Ω), and consider{
∆2u = f in Ω,
u = ∆u − auν = 0 on ∂Ω.

If for every m ∈ N and 0 � f ∈ L2(Ω) the solution with a ≡ −m is
positive, then for every 0 � f ∈ L2(Ω) the solution u ∈ H2

0 (Ω) of
the Dirichlet problem (u = uν = 0 on ∂Ω) satisfies u 	 0.

This shows that
If the Dirichlet problem is not positivity preserving then δc > −∞.

The full converse statement is not known: only under additional
assumptions on the behaviour of the Green function of the
Dirichlet problem.
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THEOREM 5 If Ω = B, the unit ball in Rn (n ≥ 2), then d1 = n.
Moreover, for all 0 � f ∈ L2(B) and all a ∈ C 0(∂B) such that
a � n, there exists c > 0 such that the weak solution u satisfies
u ≥ cd∂Ω in B.
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Sketch of the proof: Assume first that f ∈ C∞c (B) so that
u ∈W 2,p(B) for all p > 1. In turn, u ∈ C 1(B) and hence
∆u = auν ∈ C 0(∂B). Therefore, u ∈ C∞(B) ∩ C 2(B).
Consider the auxiliary function φ ∈ C∞(B) ∩ C 0(B) defined by

φ(x) = (|x |2 − 1)∆u(x)− 4x · ∇u(x)− 2(n − 4)u(x).

Then φ satisfies the second order Steklov boundary value problem{
−∆φ = (1− |x |2)f ≥ 0 in B,
φν + 1

2 (n − a)φ = 0 on ∂B.

As a � n, by the maximum principle (for this second order
problem!) we infer that φ > 0 in B and uν < 0 on ∂B. Therefore,
−∆u > 0 in B whenever 0 � f ∈ C∞c (B).
Assume now 0 � f ∈ L2(B) and let u ∈ H2 ∩ H1

0 (B) be the unique
weak solution. A density argument shows that u 	 0 in B and
therefore δc = −∞. Finally, the lower bound u ≥ cd∂Ω in B
follows by comparison with the solutions for smaller a. �
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STEKLOV EIGENVALUES
Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C 2, let
d ∈ R and consider the boundary eigenvalue problem

∆2u = 0 in Ω
u = 0 on ∂Ω
∆u = duν on ∂Ω .

EIGENVALUE: A value of d for which the problem admits
nontrivial solutions, the corresponding EIGENFUNCTION
u ∈ H2 ∩ H1

0 (Ω) which satisfies∫
Ω

∆u∆v dx = d

∫
∂Ω

uνvν ds for all v ∈ H2 ∩ H1
0 (Ω).

By taking v = u: all the eigenvalues are strictly positive.
The least eigenvalue is the threshold for positivity:

d1 = min
u∈H(Ω)

∫
Ω
|∆u|2∫
∂Ω

u2
ν

, H(Ω) := [H2 ∩ H1
0 (Ω)] \ H2

0 (Ω).
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THE SPECTRUM OF THE BIHARMONIC STEKLOV
PROBLEM

We endow the Hilbert space H2 ∩ H1
0 (Ω) with the scalar product

(u, v) =

∫
Ω

∆u∆v dx .

Consider the space

Z =
{

v ∈ C∞(Ω) : ∆2u = 0, u = 0 on ∂Ω
}

and denote by V the completion of Z with respect to the norm
associated to the scalar product (·, ·).

Filippo Gazzola - Politecnico di Milano (Italy) The biharmonic Steklov problem



THEOREM 6 Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded
domain with ∂Ω ∈ C 2. Then:
• there exist infinitely many (countable) eigenvalues;
• the set of eigenfunctions is a complete orthonormal system in V ;
• the only eigenfunction of fixed sign is the one corresponding to
the first eigenvalue;
• the space H2 ∩ H1

0 (Ω) admits the orthogonal decomposition

H2 ∩ H1
0 (Ω) = V ⊕ H2

0 (Ω).

• if v ∈ H2 ∩ H1
0 (Ω) and if v = v1 + v2 is the decomposition, then

v1 ∈ V and v2 ∈ H2
0 (Ω) solve

∆2v1 = 0 in Ω
v1 = 0 on ∂Ω
(v1)ν = vν on ∂Ω

and


∆2v2 = ∆2v in Ω
v2 = 0 on ∂Ω
(v2)ν = 0 on ∂Ω .
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When Ω = B, much more can be said.

Consider the spaces of harmonic homogeneous polynomials:

Dk := {P ∈ C∞(Rn); ∆P = 0 in Rn,
P is an homogeneous polynomial of degree k − 1}.

Denote by µk the dimension of Dk . In particular, we have

D1 = span{1} , µ1 = 1 ,

D2 = span{xi ; (i = 1, ..., n)} , µ2 = n ,

D3 = span{xixj ; x2
1 − x2

h ; (i , j = 1, ..., n, i 6= j , h = 2, ..., n)} ,

µ3 =
n2 + n − 2

2
.
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THEOREM 7 If n ≥ 2 and Ω = B, then for all k = 1, 2, 3, ...:
(i) the Steklov eigenvalues are dk = n + 2(k − 1);
(ii) the multiplicity of dk equals µk ;
(iii) for all ψk ∈ Dk , the function φk(x) := (1− |x |2)ψk(x) is an
eigenfunction corresponding to dk .

REMARK If n = 1, the problem

uiv = 0 in (−1, 1)

u(±1) = u′′(−1) + du′(−1) = u′′(1)− du′(1) = 0,

admits only two eigenvalues, d1 = 1 and d2 = 3, each one of
multiplicity 1. The reason of this striking difference is that the
“boundary space” has dimension 2, one for each endpoint of the
interval (−1, 1). This result is consistent with Theorem 7 since
µ1 = µ2 = 1 and µ3 = 0 whenever n = 1.
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Proof: An eigenfunction u satisfies u ∈ C∞(B) and may be
written as

u(x) = (1− |x |2)φ(x)

with φ ∈ C∞(B) (this is a nontrivial step!).

Some computations show that the number d is an eigenvalue with
corresponding eigenfunction u if and only if φ is an eigenfunction
of the boundary eigenvalue problem{

∆φ = 0 in B
φν = aφ on ∂B,

where a = d−n
2 .

The problem reduces to study the eigenvalues of this second order
Steklov problem for which a ∈ N. �
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A PRIORI ESTIMATES FOR HARMONIC FUNCTIONS

Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let
g ∈ L2(∂Ω) and consider the problem{

∆v = 0 in Ω
v = g on ∂Ω .

Which is the optimal constant δ1(Ω) for the a priori estimate

δ1(Ω) · ‖v‖2
L2(Ω) ≤ ‖g‖

2
L2(∂Ω) ?
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VARIATIONAL CHARACTERISATION OF δ1

Let H := closure of {v ∈ C 2(Ω); ∆v = 0 in Ω} with respect to
the norm ‖ · ‖H := ‖ · ‖L2(∂Ω). Let

δ1 = δ1(Ω) := min
h∈H\{0}

∫
∂Ω

h2∫
Ω

h2
.

THEOREM 8 If Ω ⊂ Rn is open bounded with Lipschitz
boundary, then δ1(Ω) admits a minimiser h ∈ H\{0}.

The regularity of the boundary plays a crucial role in the
previous statement and in what follows.
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Proof: Let {hm} ⊂ H\ {0} be a minimising sequence for δ1 (Ω)
with ‖hm‖L2(∂Ω) = 1. Hence, ∃h ∈ H s.t. (up to a subsequence)

hm ⇀ h in L2(∂Ω).

By elliptic estimates (due to Jerison-Kenig), we infer that

∃C > 0 s.t. ‖w‖H1/2(Ω) ≤ C ‖w‖L2(∂Ω) ∀w ∈ H.

Hence, {hm} is bounded in H1/2 (Ω), hm ⇀ h in H1/2 (Ω) up to a
subsequence and, by compact embedding, also hm → h in L2 (Ω).
Therefore, since {hm} is a minimising sequence, ‖hm‖L2(∂Ω) = 1
and ‖hm‖L2(Ω) is bounded then δ1 (Ω) > 0, h ∈ H\ {0} and

‖h‖−2
L2(Ω) = lim

m→∞
‖hm‖−2

L2(Ω) = δ1 (Ω) .

Moreover, by weak lower semicontinuity of ‖·‖L2(∂Ω) we also have

‖h‖2
L2(∂Ω) ≤ lim inf

m→∞
‖hm‖2

L2(∂Ω) = 1

and hence h ∈ H\ {0} satisfies ‖h‖2
L2(∂Ω) ≤ δ1 (Ω) ‖h‖2

L2(Ω).
This proves that h is a minimiser for δ1 (Ω). �

Filippo Gazzola - Politecnico di Milano (Italy) The biharmonic Steklov problem



THEOREM 9 (FICHERA’S PRINCIPLE OF DUALITY)
Assume that ∂Ω is Lipschitz and that Ω satisfies a uniform outer
ball condition.
Let H := closure of {v ∈ C 2(Ω); ∆v = 0 in Ω} with respect to
the norm ‖ · ‖H := ‖ · ‖L2(∂Ω).

Let H := [H2 ∩ H1
0 (Ω)] \ H2

0 (Ω).

δ1(Ω) = min
h∈H\{0}

∫
∂Ω

h2∫
Ω

h2
= min

u∈H

∫
Ω
|∆u|2∫
∂Ω

u2
ν

= d1(Ω).

The already mentioned results by Nazarov-Sweers (JDE, 2007)
suggest that this result might become false in domains with a
concave corner.
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Proof: (assuming that ∂Ω ∈ C 2).

We say that δ is an eigenvalue relative to the minimisation problem

min
h∈H\{0}

∫
∂Ω

h2∫
Ω

h2

if ∃g ∈ H such that

δ

∫
Ω

gv dx =

∫
∂Ω

gv ds ∀v ∈ H.

Note that the Euler equation contains no derivatives !

Clearly, δ1 is the least eigenvalue.

We show that both δ1 ≥ d1 and δ1 ≤ d1.
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Let h ∈ H \ {0} be a minimiser for δ1, then

δ1

∫
Ω

hv =

∫
∂Ω

hv ∀v ∈ H . (1)

Let u ∈ H solve ∆u = h in Ω, u = 0 on ∂Ω. By integrating∫
Ω

hv =

∫
Ω

v∆u =

∫
∂Ω

vuν ∀v ∈ H ∩ C 2(Ω).

By density, this holds ∀v ∈ H. Inserting into (1) gives

δ1

∫
∂Ω

vuν =

∫
∂Ω

v∆u for all v ∈ H .

This yields ∆u = δ1uν on ∂Ω. Therefore,

δ1 =

∫
∂Ω h2∫
Ω h2

=

∫
∂Ω |∆u|2∫
Ω |∆u|2

= δ2
1

∫
∂Ω u2

ν∫
Ω |∆u|2

.

In turn, this implies that

δ1 =

∫
Ω |∆u|2∫
∂Ω u2

ν

≥ min
v∈H

∫
Ω |∆v |2∫
∂Ω v 2

ν

= d1 .
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Let u be a minimiser for d1, then ∆u = d1uν on ∂Ω so that
∆u ∈ H1/2(∂Ω) ⊂ L2(∂Ω) and∫

∂Ω
v∆u = d1

∫
∂Ω

vuν for all v ∈ H . (2)

Let h := ∆u so that h ∈ L2(Ω) ∩ L2(∂Ω). Moreover,
∆h = ∆2u = 0 (in distributional sense) and hence h ∈ H. Two
integrations by parts (and a density argument) yield∫

Ω
hv =

∫
Ω

∆uv =

∫
∂Ω

vuν for all v ∈ H .

Replacing this into (2) gives∫
∂Ω

hv = d1

∫
Ω

hv for all v ∈ H .

This proves that h is an eigenfunction relative to the harmonic
problem with corresponding eigenvalue d1. Since δ1 is the least
eigenvalue, we obtain d1 ≥ δ1. �
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As a byproduct of the proof, we see that the minimisers are related
by h = ∆φ, up to a multiple.

δ1 =

∫
∂Ω

h2∫
Ω

h2
=

∫
∂Ω
|∆φ|2∫

Ω
|∆φ|2

=

d2
1

∫
∂Ω
φ2
ν∫

Ω
|∆φ|2

= d1.
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MINIMISATION OF THE LEAST EIGENVALUE

For the second order Steklov problem

∆u = 0 in Ω , uν = λu on ∂Ω ,

the first (nontrivial) eigenvalue satisfies λ1(Ω) ≤ λ1(Ω∗).
• F. Brock, ZAMM 2001

But the fourth order Steklov problem appears completely different!

Smith conjectures (and proves!) that for any domain Ω, one has
d1(Ω) ≥ d1(Ω∗).
• J. Smith, SIAM J. Numer. Anal. 1968

In particular, for planar domains Ω of measure π (as the unit disk),
this means that d1(Ω) ≥ 2.

As noticed by Kuttler and Sigillito, this proof contains a gap. In a
“Note added in proof” Smith writes:

Although the result is probably true, a correct proof has
not yet been found.

• J. Smith, SIAM J. Numer. Anal. 1970
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Kuttler also shows that for the square Q√π = (0,
√
π)2 one has

d1(Q√π) < 1.9889 .

• J.R. Kuttler, SIAM J. Numer. Anal. 1972

This estimate may be improved to d1(Q√π) < 1.96256.

Proof: Let h(x , y) := x4 + y 4 − 6x2y 2 + 2.69, then ∆h = 0 and∫
∂Q√

π

h2

∫
Q√

π

h2
< 1.96256 . �

• A. Ferrero, F. Gazzola, T. Weth, Analysis 2005

Kuttler suggests a new and weaker conjecture. Let Ω ⊂ Rn be a
smooth bounded domain such that |∂Ω| = |∂B|. Then,
n = d1(B) ≤ d1(Ω).
His numerical results on some rectangles support this conjecture.
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THEOREM 10 Let Dε = {x ∈ R2; ε < |x | < 1} and let
Ωε = Dε × (0, 1)n−2. Then lim

ε→0
d1(Ωε) = 0.

This Theorem disproves the conjecture by Kuttler: there is no
minimiser to d1 among all regions having the same perimeter.
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Proof: For any ε ∈ (0, 1) let wε(x) =
1− |x |2

4
− 1− ε2

4 log ε
log |x |

∀x ∈ Dε. Then wε ∈ H2 ∩ H1
0 (Dε) and∫

Ωε

|∆wε|2 dx = π
(
1− ε2

)
,

∫
∂Ωε

(wε)
2
ν ds =

π

8

1

ε log2 ε
+ o

(
1

ε log2 ε

)
→ +∞ as ε→ 0.

Hence,

lim
ε→0

d1(Ωε) ≤ lim
ε→0

∫
Ωε

|∆wε|2 dx∫
∂Ωε

(wε)
2
ν ds

= 0.

For n ≥ 3, let

uε (x) =

(
n∏

i=3

xi (1− xi )

)
wε (x1, x2) ∀x ∈ Ωε

and compute as above. �
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BOUNDS IN CONVEX DOMAINS

THEOREM 11 Let Ω ⊂ Rn (n ≥ 2) be a bounded convex domain
with ∂Ω ∈ C 2.
• For all x ∈ ∂Ω, let κ(x) denote the mean curvature at x and let

K := min
x∈∂Ω

κ(x) ;

then d1(Ω) ≥ nK with equality if and only if Ω is a ball.
• The following isoperimetric bound holds

d1(Ω) ≤ |∂Ω|
|Ω|

with equality if and only if Ω is a ball.
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Proof: For the lower bound, let φ be a first Steklov eigenfunction
such that φ > 0 in Ω and φν < 0 on ∂Ω. The boundary condition
∆φ = d1φν on ∂Ω also reads φνν + (n − 1)κφν = d1φν on ∂Ω.
Hence, (

φ2
ν

)
ν

= 2φννφν = 2 [d1 − (n − 1)κ]φ2
ν

so that if we put D2φD2φ =
n∑

i ,j=1
(∂ijφ)2 and integrate by parts

2

∫
∂Ω

[d1 − (n − 1)κ]φ2
ν ds =

∫
∂Ω

(φ2
ν)ν ds =

∫
∂Ω

(
|∇φ|2

)
ν

ds

=

∫
Ω

∆
(
|∇φ|2

)
dx = 2

∫
Ω
∇∆φ · ∇φ dx + 2

∫
Ω

D2φD2φ dx

= −2

∫
Ω
φ∆2φ dx + 2

∫
∂Ω
φ(∆φ)ν ds + 2

∫
Ω

D2φD2φ dx

= 2

∫
Ω

D2φD2φ dx ≥ 2

n

∫
Ω
|∆φ|2 dx =

2d1

n

∫
∂Ω
φ2
ν ds

the latter since φ is the first eigenfunction. Hence, d1 ≥ nK .
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We prove that equality holds if and only if Ω is a ball. If d1 = nK ,
then d1 ≤ nκ(x) for x ∈ ∂Ω and since φν < 0 on ∂Ω, from∫

∂Ω

(
d1

n
− κ
)
φ2
ν ds ≥ 0,

we infer that κ(x) ≡ d1
n . Hence, Ω is a ball by Alexandrov’s

characterisation of spheres (Ann. Mat. Pura Appl. 1962).

The upper bound is obtained by taking h ≡ 1 as harmonic test
function in Fichera’s characterisation:

d1 |Ω| = d1

∫
Ω

12 dx ≤
∫
∂Ω

12 ds = |∂Ω|.

If equality holds, then the first eigenfunction φ satisfies

−∆φ = h = 1 in Ω, φ = 0, φν = −d−1
1 on ∂Ω,

and Ω is a ball by a result of J. Serrin (ARMA, 1971). �
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EXISTENCE OF OPTIMAL CONVEX SHAPES

THEOREM 12 Among all convex domains in Rn having the
same measure as the unit ball B, there exists an optimal one,
minimising d1.
Among all convex domains in Rn having the same perimeter as
the unit ball B, there exists an optimal one, minimising d1.

These results should be complemented with the description of the
optimal convex shapes. This appears quite challenging since, with
the measure constraint, the optimal planar domain is not a disk.
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Sketch of the proof:
STEP 1 The map Ω 7→ d1(Ω) is continuous with respect to
Hausdorff convergence of convex domains.
This fact appears nontrivial since there is no monotonicity with
respect to inclusions and no obvious extension operator from
H2 ∩ H1

0 (Ω) to H2(Rn).
Upper semicontinuity of the map Ω 7→ δ1(Ω).
Lower semicontinuity of the map Ω 7→ d1(Ω).
STEP 2 A lower bound for d1 on convex domains.
By comparison with the solution to the torsion problem, Payne
(Indian J. Mech. Math. 1968/69) proved that if ρΩ denotes the
minimal distance between parallel planes which define a strip
containing Ω then d1(Ω) ≥ 2ρ−1

Ω .
STEP 3 Conclusion.
Consider a minimising sequence {Ωm} ⊂ Rn for d1. By STEP 2 we
know that ∃R > 0 such that Ωm ⊂ BR for all m, since otherwise
d1(Ωm)→ +∞. This fact, combined with STEP 1 and with
Blaschke selection Theorem, shows that the infimum is achieved.
�
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NUMERICAL RESEARCH FOR THE OPTIMAL PLANAR
SHAPES

We have no theoretical evidence of what the optimal convex
shapes could be. Recently, Antunes-Gazzola (ESAIM COCV 2012)
performed several numerical experiments.

In the plane, we apply the Method of Fundamental Solutions
(MFS). The MFS is a meshfree numerical method for which the
approximations are linear combinations of fundamental solution
associated to the pde, having pole outside Ω.
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FIXED AREA
Let Ωn be a regular n-polygon of measure π having n sides and let
D be the unit disk.Then

n 3 4 5 6 7 8 9 10
d1(Ωn) 2.02522 1.96179 1.95702 1.96164 1.96733 1.97255 1.97654 1.97974

Remarks.
The equilateral triangle Ω3 is the maximiser.
We saw before that d1(Ω4) < 1.96256 while d1(Ω4) ≈ 1.96179.
The regular pentagon Ω5 is the minimiser.
It seems that n 7→ d1(Ωn) tends monotonically to 2 = d1(D) for
n ≥ 5 and n→∞.
We tested Reuleaux polygons, irregular polygons up to 8 sides,
deformations form regular polygons to the disk, ellipses, stadiums:
Ω5 remains a good candidate to be the absolute minimiser.

Filippo Gazzola - Politecnico di Milano (Italy) The biharmonic Steklov problem



A RELATED PROBLEM? (for a simply supported plate)

∆2u + cu = f in Ω, u = ∆u = 0 on ∂Ω ,

where Ω ⊂ R2 is a bounded domain, c > 0 is the “stiffness of the
resistance to deformation” f ∈ L2(Ω) is the external load, u is the
vertical deformation.

PPP: under which conditions on c > 0 and Ω the assumption
f ≥ 0 implies that the solution u exists and is positive?
• P.J. McKenna, W. Walter, ARMA 1987
• B. Kawohl, G. Sweers, Indiana UMJ 2002

∃ a maximal interval c ∈ (0, c∗(Ω)] where ppp holds. Which is the
largest c∗(Ω) when Ω varies among convex planar domains of
given measure? Numerical results show that, among regular
polygons, the maximum is attained by the pentagon Ω5.
• R.F. Bass, J. Horák, P.J. McKenna, Proc. AMS 2004

Since d1 is the threshold parameter in order to have the ppp for
the Steklov problem, are these results somehow connected?
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FIXED PERIMETER
Let Ω]

n be a regular n-polygon of perimeter 2π having n sides.
Then

n 3 4 5 6 7 8 9 10

d1(Ω]n) 2.60458 2.21364 2.10443 2.05987 2.03791 2.02586 2.01830 2.01336

Remarks.
It seems that now n 7→ d1(Ω]

n) tends monotonically to 2 = d1(D)
for n ≥ 3 and n→∞.
The disk D has d1 smaller than any regular polygon.
We tested Reuleaux polygons, irregular polygons up to 8 sides,
deformations form regular polygons to the disk, ellipses, stadiums:
the disk D is a good candidate to be the absolute minimiser.
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Theorems 3-4-5: F. Gazzola, G. Sweers, ARMA 2008
Corollary 1: E. Parini, A. Stylianou, SIAM J. Math. Anal. 2009
Theorems 6-7: A. Ferrero, F. Gazzola, T. Weth, Analysis 2005
Theorem 8-9-10: D. Bucur, A. Ferrero, F. Gazzola, Calc. Var. 2009
Theorem 9: (smooth version) G. Fichera, Atti A.N. Lincei 1955
Theorem 11: L.E. Payne, SIAM J. Math. Anal. 1970 & J.R.
Kuttler, SIAM J. Numer. Anal. 1972 & A. Ferrero, F. Gazzola, T.
Weth, Analysis 2005
Theorem 12: D. Bucur, F. Gazzola, MJM 2011 & P. Antunes, F.
Gazzola, ESAIM COCV 2012
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