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THE KIRCHHOFF-LOVE MODEL FOR A THIN PLATE

Consider a plate, the vertical projection of which is the planar
region Q C R?. A simple model for its elastic energy is

J(u) = /Q (% (Au)? + (1 —0) (uﬁy — Ugxliyy) — u> dxdy,

where f = external vertical load, u = vertical deflection.

o is the Poisson ratio: o = ﬁ with the Lamé constants A > 0,

1 > 0 that depend on the material, hence 0 < o < % Usually
o > —1 and some exotic materials have a negative Poisson ratio.

For —1 < o < 1, the quadratic part of the functional is positive.
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BOUNDARY CONDITIONS: ONE DIMENSIONAL BEAM

S

Figure: The depicted boundary condition for the left endpoint of the
beam is clamped whereas for the right endpoint it is hinged.

Clamped: u(a) = ¢/(a) =0, also known as homogeneous
Dirichlet boundary conditions.

Hinged: u(b) = uv”(b) =0, also known as homogeneous Navier
boundary conditions. This is not the real hinged situation in 2D,
due to the boundary curvature!
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HINGED BOUNDARY CONDITIONS IN 2D

For hinged boundary conditions the natural setting is the Hilbert
space H’ N H&(Q). Minimising the energy functional leads to the
weak Euler-Lagrange equation

/Q (Auhp + (1 = 0) (2uxypxy — txxtpyy — UyyPxx) — fp) dxdy =0
for all ¢ € H? N H}(R2). Formally, an integration by parts leads to
0
0 = / (A%u —f) ¢ dxdy —/ <Au> © ds
Q aq \Ov
0
1-— 2 _ 2 xy — XX T - d.
+ (1-o0) /89 ((Vl V3) txy — 102 (U ”yy)> 9P P
—i—/ <Au +(1-0) (21/1V2uX — szuxx — 1/12U ) ) ggo ds.
o y w) ) &
One has u=00n 92 and Au— (1 —0)ku, =0 on Q.

Here  is the mean curvature of the boundary (x > 0 for convex
boundaries).
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THE STRONG EULER-LAGRANGE EQUATION

It reads
A2u=f in Q,
u=Au—(1-0)ku, =0 on 0N.
In this situation, with an integration by parts, the elastic energy
becomes

J(u):/ﬂ(é(Au)z—fu) d _1_TJ kU2 dw.

o0

This functional has to be minimised over the space H? N HZ(Q).
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CLAMPED BOUNDARY CONDITIONS IN 2D

For clamped boundary conditions the natural setting is the Hilbert
space HS(Q). Minimising the energy functional leads to the weak
Euler-Lagrange equation

/Q (Aulp + (1 = 0) (2uxy pxy — txxtpyy — tyypxx) — fp) dxdy =0

for all ¢ € H3(Q2). Formal integration by parts yield

/ Uxy pxy dxdy = —/ UxPxyy dxdy = / Uxx Pyy dxdy
Q Q Q

/Q Uyy Pxy dXxdy = —/Q Uy Pxxy dXdy = /Q Uyy Psx dxdy

so that the weak Euler-Lagrange equation becomes

/Q(Azu—f) pdxdy = 0 Ve H3(Q).
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THE STRONG EULER-LAGRANGE EQUATION

It reads
N’y =f in Q,
u=u,=0 on 0.

In this situation, the elastic energy becomes

J(u) = /Q (32w £ u) o

This functional has to be minimised over the space H3 ().
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BOUNDARY CONDITIONS

Clamped (Dirichlet): v = u, =0 on 0.
Hinged (Steklov): u= Au— (1 —o0)ku, =0 on 99Q.
We may write the fourth order equation as a second order system:

—Av="f in Q, and —Au=v in{Q,
v=—(1-o0)ku, ondQ, u=0 on 0.

Hinged (Navier): u = Au =0 on 0Q.
We may write the fourth order equation as a second order system:

—Av=1Ff inQ, d —Au=v in{Q,
v=0 on 02, an u=20 on 0.
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Mixed Navier-Neumann: u, = Au = 0 on 9f).
We may write the fourth order equation as a second order system:

—Av=1Ff inQQ, q —Au=v in{Q,
v=20 on 09, an u, =0 on 0Q.

No uniqueness, solvability only under the condition [, v =0... too
complicated!

Neumann-Neumann: u, = (Au), = 0 on 0.
We may write the fourth order equation as a second order system:

—Av=1Ff inQQ, and —Au=v in{Q,

v, =0 on 02, u, =0 on 092.
One first needs [, f = 0; among solutions v one should choose the
one satisfying fQ v = 0; then infinitely many solutions u... too
complicated!
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Even worse: Au = (Au), =0 on 99 do not satisfy the
complementing condition by Agmon-Douglis-Nirenberg.
Well-posedness and elliptic regularity fail!

To see this, consider the problem

A2u=0 in Q,
Au=(Au),=0  on 9.

Any harmonic function is a solution so that the space of solutions
does not have finite dimension.

If we take any point xo € R"\ Q, the fundamental solution ug of
—A having pole in xp (namely, up(x) = log|x — xo| if n =2 and
up(x) = |x — x0|?>~™ if n > 3) is a solution. This shows that it is
not possible to obtain uniform a priori bounds in any norm.
Indeed, as xp approaches the boundary 0 it is clear that (for

instance!) the H-norm of the solution cannot be bounded
uniformly in terms of its L?-norm.
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Summarising... we consider the following boundary conditions for a
bounded domain Q C R”, with n > 2 and a € C°(99):

Steklov: u = Au — au, = 0 on 012.

Dirichlet: u = u, =0 on 09 (case a = —o0).

Navier: u = Au =0 on 99 (case a = 0).

PPP = POSITIVITY PRESERVING PROPERTY
Consider the boundary value problem

N2y=f in Q,
boundary conditions on 09Q2.

After defining what is meant by weak solution v € H?(Q) (N...)
we address the following

QUESTION: Under which conditions the assumption £ > 0
implies that the solution u exists and is positive?
Does upwards pushing of a plate yield upwards bending?

Remark: Elliptic regularity yields f € L?(Q) = u € H*().
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Before tackling the PPP...

DEFINITION A bounded domain  C R” satisfies a outer ball
condition if Yy € 0Q J a ball BC R"\ Q s.t. y € 0B. It satisfies
a uniform outer ball condition if the radius B can be taken
independently of y € 0f2.

In particular, convex domains or domains with smooth boundary
are Lipschitz domains which satisfy a uniform outer ball condition.

THEOREM 1 Assume that Q C R" is a bounded
domain which satisfies a . Then the
space H2 N H3(Q) is a Hilbert space when endowed with the scalar
product

(u,v) —~ / Aulv dx for all u,v € H?> N H3 ().
Q

This scalar product induces a norm equivalent to || . || y2.
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Proof: Under the above assumptions, Adolfsson (Math. Scand.
1992) proved that 3C > 0 independent of u, such that

ullpe < C||Aul| 2 for all u € H? N H(Q).
0

For all u € H2 N H} () we also have

n n
1 .
|D?u|? = 'Zl(ﬁijuf > ;(8,-;u)2 > ;|Au|2 a.e. in Q.
1= 1=

This shows that the two norms are equivalent. [J
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If the domain has a reentrant corner then v+ ||Aul|z is not a
norm in H2 N HE(Q).

For o € (%77,77) fix the domain
Qo = {(rcosep,rsing) e R%0 < r<1land |p| <a}.
For p= 4, € (%, 1) the function
Va(r, ) = (r " = r”) cos (py)

satisfies —Av, = 0 in Qq, vy = 0 on 92, \{0} and v, € L%(Q,).
Then J!b, € H}(Q4,) solving

—Aby = vy in Qn, by =0 o0n 9Q,.

One has Ab, & H}(Q4) and b, & H?(Q,).
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PPP: Navier boundary conditions : v = Au = 0 on 0.
The problem may be decomposed into a system.

—Av="Ff inQ, d —Au=v in{Q,
v=0 on 02, an u=20 on 0.

Regardless of the regularity of the boundary 02, we may apply
twice the Lax-Milgram Theorem:

VFe HY(Q)3lve H}(Q) = 3Fluec H}(Q) (Au € H3(Q)).
Applying twice the maximum principle for —A we obtain that
[2(Q)3f20 =—=v20 = ux0.

The solution u so found is called the system solution. Hence, 3!
system solution and PPP holds.

If Q satisfies a uniform outer ball condition then u has finite
energy: u € H*(Q).

However,... if Q has a reentrant corner (nonsmooth) the problem
may also admit a finite energy sign changing solution.
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For o € (37, 7) consider again Q,. Let f € L?(Q,) and consider
the homogeneous Navier problem

A2u=FfinQ, wu=00n0Q, Au=0ondQ,\{0}.

Let u be the system solution obtained by applying twice the
Lax-Milgram Theorem and, Vc € R let u. = u + cb,.

We know that:

e Vc € R we have u. € H}(Q,) and Auc € L2(Q,).

e Vc € R u, is a solution and u. € C%(Qy,), Auc € CO(Q, \ {0}).
e Auc € H}(Qy) iff c = 0.

o Vf € [2(Qy) Fcalf) ER s.t. uc € H2N HF () & ¢ = calf).
Hence, u & H?(Q,) whenever c,(f) # 0.

See Kondratiev (Trudy Moskovskogo Matematiteskogo Ob%testva,
1967) and Nazarov-Plamenevsky (de Gruyter, 1994).
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Now let f be positive. Nazarov-Sweers (JDE, 2007) show that
Ue () € H?(Q,) but Ue, () # 0 when a > %TF and c,(f) # 0.
For a € (%77, %77) there is only numerical evidence of sign-changing

energy solutions:

Figure: The level lines of u and u._(f) for f > 0 having a small support

near the left top of the domain. _ = {x: uc,(r)(x) <0}
here, a different scale is used for the level lines.
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PPP: Dirichlet boundary conditions : v = u, = 0 on 0f0.
Consider the boundary value problem

Nu=f in Q,
u=u,=0 on 012,

where 2 C R" is a bounded smooth domain, f a datum in a
suitable functional space and u denotes the unknown solution.

If Q is smooth, a unique Green function Gq exists and

u(x) = /Q Ga(x,y)f(y) dy Vx € Q.

PPP <— Gq > 0.
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For x,y € B we write

XY] =\ IxP y 2 —2xy + 1= y|‘.

x|y — ‘ ‘!y\

Then

Ga(x,y) = kn|x — y|*" / (62— 1)ot"do > 0.
1

e T. Boggio, Rend. Circ. Mat. Palermo, 1905
Hence, the implication f 2 0 == u 2 0 is true in balls.

A more general formula is available for the
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Boggio conjectured that the Green function is always positive (in
any domain!).

In 1908, Hadamard already knew that this conjecture fails in annuli
with small inner radius. He writes that Boggio had mentioned to
him that the conjecture was meant for simply connected domains.
In the same publication he writes:

Malgré I'absence de démonstration rigoureuse,

'exactitude de cette proposition

ne parait pas douteuse pour les aires convexes.

The Boggio-Hadamard conjecture may be formulated as follows:

The Green function Gg for the clamped plate boundary
value problem on convex domains is positive.

However, this conjecture is wrong.
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Duffin (J. Math. Phys. 1949, Bull. AMS 1974) showed that the
Green function changes sign on a long rectangle.

min (1)
-0.000947585 =
max (u)

>0 u<(

Garabedian (Pacific J. Math. 1951) showed change of sign of
Green’s function in ellipses with ratio of half axes ~ 1.6.
Hedenmalm-Jakobsson-Shimorin (J. Reine Angew. Math. 2002)
mention that sign change occurs already in ellipses with ratio of
half axes ~ 1.2.

Nakai-Sario (J. Reine Angew. Math. 1977) give a construction
how to extend Garabedian’s example also to higher, dimensions.
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Sign change is also proved by Coffman-Duffin (Adv. Appl. Math.
1980) in any bounded domain containing a corner, the angle of
which is not too large; in particular, squares.

Conclusion: neither in arbitrarily smooth uniformly convex
nor in rather symmetric domains Green’s function needs to
be positive.
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The Green's function is positive in suitable perturbations of a
planar disc (Grunau-Sweers, Math. Nachr. 1996 & Sassone, Ann.
Mat. Pura Appl. 2007).

Using the explicit formula from for the limacons de Pascal,
Hadamard also claimed to have proven positivity of the Green
function Gq when  is such a limacon.

However, Dall’Acqua-Sweers (Ann. Mat. Pura Appl. 2005) showed
that this is not the case.

Figure: Limacons vary from circle to cardioid. The fifth limagon from the
left is critical for a positive Green function.
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PPP: Steklov boundary conditions : v = Au — au, = 0 on 0.

Let Q be a bounded domain of R” (n > 2) with and
consider the boundary value problem
Nu=f in Q,
u=A~Au—au, =0 on 012,

where a € CO(0Q), f € L2(Q).
We say that u is a weak solution if u € H2 N H}(Q) and

/ AulAv dx —/ a uyv, dw :/ fv dx Vv € H? N H (Q).
Q o Q
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SUPERHARMONICITY

Let Q C R” (n > 2) with ,H = [H?> N HE\ H3(R2) and
[ 1au?
di(Q2) := min
ueH
e
1/2

The minimum is achieved and d;
linear operator

is the norm of the compact

H> N HF(Q) = L2(09Q)  u— ulsq.

THEOREM 2 Let a € C°(09), f € L%(Q), and consider

A2u=f in Q,
u=Au—au,=0 on 092.

If a < dy it admits a unique solution u € H2N H}(Q). If also a >0
and f = 0, then the solution u is strictly superharmonic in .

Filippo Gazzola - Politecnico di Milano (ltaly) The biharmonic Steklov problem



Sketch of the proof: On the space H2 N H(Q) the functional

I(u) := E |Aul? — E au’ — [ fu
2 Ja 2Joa " Ja

is strictly convex because a < dj. The solution is the unique
minimiser of /.

If a>0and f =0, then for all u € H? N H}(Q) \ {0} the solution
w € H? N H}(Q) to the problem

—Aw = |Au| in Q
w=20 on 092

satisfies w > 0 in Q, w, < 0 on 99, and /(w) < I(u). O
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POSITIVITY
THEOREM 3 Let a € C°(09), f € L?(Q), and consider

A2u=f in Q,
u=A~Au—au,=0 on 09.

There exists a number d. := §.(Q2) € [—00,0) such that:
1. Ifa>d;and if 0 S f € L?(Q), then A positive solutions.

2. If a = di, then 3 a positive eigenfunction u; > 0in Q for f = 0.
Moreover, uq is unique up to multiples.

3. If a < dy, then Vf € L2(Q) 3! solution u.

4. 1f 6. <as< di, then 05 f € L%(Q) implies u 2 0in Q.

5. 1f 6o < a< di, then 0 S f € L?(Q) implies u > cr dypq > 0in Q
for some ¢ > 0.

6. If a < &, then there are 0 S f € L2(Q) with 0 £ u.
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Flavour of the proof:
A2u=finQ, u=Au—au,=0onodQ.
EQUIVALENT SYSTEM

—Av=1f inQQ, d —Au=v in{Q,
v =—au, on 0%, an u=~0 on 0N.

OPERATOR FORMULATION
Consider the Green operator G and the Poisson kernel I, formally:

“Aw=f inQ,
w_gf+ICg<:>{W:g on 90
Let (Pw)(x) := —v - Vw(x) = —w,(x) for x € 9.

u=Gv=G(Ggf + KaPu) = GGf + GKaPu,

u=(IZ-GKaP) 'ggf. O
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BACK TO THE HINGED PLATE

Recall the physical bounds for the Poisson ratio: —1 < o < 1.

COROLLARY 1 Let Q C R? be a bounded convex domain with
00 © C? and assume —1 < o < 1; Vf € L2(Q) Jlu € H> N H(Q)
minimiser of the elastic energy functional

2 _
J(u)=/(M—fu> dx—l—a kU2 dw.
o\ 2 2 Joa

The minimiser u is the unique weak solution to

A2uy=f in Q,
u=Au—(1-0)ku, =0 on Q.

Moreover, f 2 0 implies that there exists ¢s > 0 such that
u > c¢r dgq and u is superharmonic in Q.
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A%u=finQ, u=Au— au, =0 on 9.
We saw that 36, € [—o0,0) such that:

I Z0withu?0 | VF20: Juanduz0 VFZ0ifJuthenu 20

(55 0 dr a—
QUESTIONS:
- What happens if a — di changes sign on 9Q7?
- Are there cases where 6. = —00, d. > —00?

For the first question: the function

2x1
+
I+24+e+x

satisfies a € C°(0B), a — n changes sign, f = 0 implies u = 0.
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THEOREM 4 Let a € C%(09Q), f € L?(Q2), and consider

Nu=f in Q,
u=A~Au—au,=0 on 0.

If for every m € N and 0 < f € L2(Q) the solution with a= —m is
positive, then for every 0 S f € L?(R) the solution u € H3() of
the Dirichlet problem (v = u, = 0 on 0Q) satisfies u = 0.

This shows that

The full converse statement is not known: only under additional
assumptions on the behaviour of the Green function of the
Dirichlet problem.
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THEOREM 5 If Q = B, the unit ball in R” (n > 2), then d; = n.
Moreover, for all 0 S f € L?(B) and all a € C°(0B) such that

a S n, there exists ¢ > 0 such that the weak solution u satisfies
u> Cdag in B.
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Sketch of the proof: Assume first that f € C°(B) so that

u € W2P(B) for all p> 1. In turn, u € C}(B) and hence

Au = au, € C%(OB). Therefore, u € C(B) N C?(B).
Consider the auxiliary function ¢ € C>°(B) N C°(B) defined by

d(x) = (Ix|* — 1)Au(x) — 4x - Vu(x) — 2(n — 4)u(x).
Then ¢ satisfies the second order Steklov boundary value problem

—A¢p=(1—|x>)f >0 in B,
{ ¢y + 3(n—2a)p=0 on 0B.

As a < n, by the maximum principle (for this second order
problem!) we infer that ¢ > 0 in B and u, < 0 on 9B. Therefore,
—Au > 0in B whenever 0 < f € C2°(B).

Assume now 0 S f € L2(B) and let u € H? N H}(B) be the unique
weak solution. A density argument shows that v = 0 in B and
therefore 6. = —oo. Finally, the lower bound u > cdyq in B
follows by comparison with the solutions for smaller a. [J
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STEKLOV EIGENVALUES

Let Q C R" (n > 2) be a bounded domain with , let
d € R and consider the

A%u=0 in Q

u=20 on 00

Au = du, on 0N .

A value of d for which the problem admits
nontrivial solutions, the corresponding
u € H2 N H}(Q) which satisfies

/ Aulvdx = d/ u,v,ds  forall v e H> N H(Q).
Q oQ

By taking v = u: all the eigenvalues are strictly positive.
The least eigenvalue is the threshold for positivity:

[ 18P
= min 2 (@) = [0 HAQ)]\ HE(Q).
ueH(R) 2

o
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THE SPECTRUM OF THE BIHARMONIC STEKLOV
PROBLEM

We endow the Hilbert space H? N H}(2) with the scalar product

(u,v) = / Aulvdx .
Q
Consider the space
Z={veC®Q):A%u=0, u=0o0n0Q}

and denote by V the completion of Z with respect to the norm
associated to the scalar product (-, ).
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THEOREM 6 Assume that Q C R" (n > 2) is an open bounded
domain with . Then:

e there exist infinitely many (countable) eigenvalues;

e the set of eigenfunctions is a complete orthonormal system in V/;
e the only eigenfunction of fixed sign is the one corresponding to
the first eigenvalue;

e the space H2 N H}(Q) admits the orthogonal decomposition

H> N HY(Q) = V @ H3(Q).

eif ve H2N H&(Q) and if v = v; + v is the decomposition, then
vi € V and v, € H3(Q) solve

A%vi=0 inQ A%vy = A%y in Q
vi=0 on 00 and vw=2~0 on 002
(v1)y =w, on 0Q (), =0 on 0N .
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When Q = B, much more can be said.
Consider the spaces of harmonic homogeneous polynomials:

Dk = {Pe€ C®R"); AP=0inR",
P is an homogeneous polynomial of degree k — 1}.

Denote by puy the dimension of Dy. In particular, we have

D; = span{l}, w =1,

Dy =span{x;; (i =1,...,n)}, f2 =n,
D3 = span{x;x;; x2—x2 (i, j=1,..,ni#j, h=2,.,n)},
n?>+n—2

H3 = 5
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THEOREM 7 If n> 2 and Q = B, then for all k =1,2,3,...:
() the Steklov eigenvalues are dx = n+2(k — 1);

(ii) the multiplicity of dk equals fig;

(iii) for all 15 € Dy, the function ¢y (x) := (1 — |x|2)1k(x) is an
eigenfunction corresponding to dy.

REMARK If n =1, the problem

u¥ =0 in(-1,1)

u(xl) = uv"(-1) + dv/(-1) = u"(1) — du'(1) = 0,

admits only eigenvalues, d; = 1 and dy = 3, each one of
multiplicity 1. The reason of this striking difference is that the
“boundary space” has dimension 2, one for each endpoint of the

interval (—1,1). This result is consistent with Theorem 7 since
w1 = p2 =1 and u3 = 0 whenever n = 1.
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Proof: An eigenfunction u satisfies u € C°°(B) and may be
written as

u(x) = (1~ [x1*)é(x)
with ¢ € C°(B) (this is a nontrivial step!).
Some computations show that the number d is an eigenvalue with

corresponding eigenfunction u if and only if ¢ is an eigenfunction
of the boundary eigenvalue problem

Ap=0 in B
o, = ag on 0B,

d—n

where a = >

The problem reduces to study the eigenvalues of this second order
Steklov problem for which a € N. [J
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A PRIORI ESTIMATES FOR HARMONIC FUNCTIONS

Let 2 C R" be a bounded domain with . Let
g € L2(09) and consider the problem

Av =0 in Q
v=g on 0Q2 .

Which is the optimal constant §1(2) for the a priori estimate

61(Q2) - HVH%?(Q) < HgH%2(8§2) ?
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VARIATIONAL CHARACTERISATION OF §;

Let H := closure of {v € C2(Q); Av =0 in Q} with respect to
the norm || - [|n := || - | 2(00)- Let

f"
0 =01(Q):= min —22%2

heH\ {0} / B2
Q

THEOREM 8 If Q C R" is open bounded with
, then 61(€2) admits a minimiser h € H\{0}.

The regularity of the boundary plays a crucial role in the
previous statement and in what follows.
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Proof: Let {h,} C H\ {0} be a minimising sequence for d; (Q2)
with [[Aim|| 2(9q) = 1. Hence, 3h € H s.t. (up to a subsequence)

hm — hin L2(09).
By elliptic estimates (due to Jerison-Kenig), we infer that

ElC > 0 s.t. HW||H1/2(Q) S C HWHLZ(aQ) \V/W S H

Hence, {hn} is bounded in H/2(Q), h,, — hin HY/2(Q) up to a
subsequence and, by compact embedding, also h,, — h in L2 ().
Therefore, since {hp} is a minimising sequence, || Am|| 2(50) =1
and ||hm|| 2(q) is bounded then 41 (Q2) > 0, h € H\ {0} and

1Ay = tim [l 2g) = b1(2).
Moreover, by weak lower semicontinuity of ||~||L2(BQ) we also have
1Al 7200y < lim inf 1amlf2(00) = 1

and hence h € H\ {0} satisfies HhH%z(aQ) <01 () ||h||f2(ﬂ).
This proves that h is a minimiser for 61 (2). O
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THEOREM 9 (FICHERA'’S PRINCIPLE OF DUALITY)
Assume that 9 is Lipschitz and that €2 satisfies a uniform outer
ball condition.

Let H := closure of {v € C2(Q); Av =0 in Q} with respect to

the norm [ - |ln == [| - [[12(50)-
Let H := [H? N HY(Q)] \ H3(Q).
/ h? / |Aul?
61(Q) = min —292 ___ — min 82— 4)(Q).

heH\{0} /hz uer / 2
Q oQ g

The already mentioned results by Nazarov-Sweers (JDE, 2007)
suggest that this result might become false in domains with a
concave corner.
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Proof: (assuming that )-

We say that § is an eigenvalue relative to the minimisation problem

min —20%2
heH\{0} / B2
Q

if 3g € H such that

6/gvdx:/ gvds Vv € H.
Q [2}9]

Note that the Euler equation contains !
Clearly, 61 is the least eigenvalue.

We show that both d; > di and §;1 < d;.
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Let h € H\ {0} be a minimiser for ¢, then

(51/hv_/ hv VveH.
Q o

Let u € H solve Au= hin Q, u=0 on 0. By integrating

/hv—/vAu—/ vu, Vv e HN C3(Q).
Q Q o0

By density, this holds Vv € H. Inserting into (1) gives

(51/ vul,—/ vAu forallve H.
[2)9] o0

This yields Au = d1u, on 9Q. Therefore,
5y = Joa I _ Jog |Bul? — 2 Jog U0
Jo ? Jo |Aul? Jo [Aul?
In turn, this implies that
fQ |Au|2 > min fQ |Av|2
Joq U2 veH [y V2

—
—
~

01 = =d .
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Let u be a minimiser for di, then Au = diu, on 0f2 so that
Au € HY2(0Q) c 1?(0Q) and

/ vAu = dl/ vuy, forallveH. (2)
o o

Let h:= Au so that h € [?(Q) N L?(0RQ). Moreover,
Ah = Ay =0 (in distributional sense) and hence h € H. Two
integrations by parts (and a density argument) yield

/hv—/Auv—/ vu, forallveH.
Q Q oQ

Replacing this into (2) gives

/hv:dl/hv forallveH.
o0 Q

This proves that h is an eigenfunction relative to the harmonic
problem with corresponding eigenvalue d;. Since ¢; is the least
eigenvalue, we obtain di > ;. O
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As a byproduct of the proof, we see that the minimisers are related
by h = A¢, up to a multiple.

. Lo e ) @ [ o .
|7 [ 180 [ 180
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MINIMISATION OF THE LEAST EIGENVALUE
For the Steklov problem

Au=0 inQ, u, = Au on 99 ,
the first (nontrivial) eigenvalue satisfies A1(2) < A1(Q2%).
e F. Brock, ZAMM 2001
But the fourth order Steklov problem appears completely different!
Smith conjectures (and proves!) that for domain €2, one has
di1(Q) > di1(Q%).
e J. Smith, SIAM J. Numer. Anal. 1968
In particular, for planar domains  of measure 7 (as the unit disk),
this means that di(Q2) > 2.
As noticed by Kuttler and Sigillito, this proof contains a gap. In a
“Note added in proof” Smith writes:

Although the result is probably true, a correct proof has
not yet been found.

e J. Smith, SIAM J. Numer. Anal. 1970
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Kuttler also shows that for the square Q 7 = (0, V/7)? one has

d1(Q ) < 1.9889 .

e J.R. Kuttler, SIAM J. Numer. Anal. 1972

This estimate may be improved to di(Q, /) < 1.96256.
Proof: Let h(x,y) := x* + y* — 6x2y? 4 2.69, then Ah = 0 and

/B(;)
VT
/ h
;\ﬁ

e A. Ferrero, F. Gazzola, T. Weth, Analysis 2005

< 1.96256 . O

Kuttler suggests a new and weaker conjecture. Let Q C R" be a
smooth bounded domain such that |0Q| = |0B|. Then,

n = dl(B) < dl(Q)

His numerical results on some rectangles support this conjecture.
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THEOREM 10 Let D, = {x € R?; ¢ < |x| < 1} and let
Q. = D. x (0,1)"2. Then Iirr?) di(9.) =0.
e—

This Theorem disproves the conjecture by Kuttler: there is no
minimiser to d; among all regions having the same perimeter.
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1—|x* 1-¢2
Proof: For any ¢ € (0,1) let w.(x) = X _ c log |x|

4 4loge
Vx € D.. Then w, € H2 N H}(D.) and

/ |Aw.?dx =7 (1- 52) ,

£

2 Y ]. 1 >
w, ds = — + o0 — +oo0 ase — 0.
/895( )y 8 clog?e <5Iog25

/ |Aw.|? dx
lim di(Q) < lim 22—
e—0

! =0.
7 / (Wa)lzl ds
00

For n > 3, let

u: (x) = <H xi(1— x,-)) we (x1,x2) Vx € Q.
i=3

and compute as above. [J
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BOUNDS IN CONVEX DOMAINS

THEOREM 11 Let Q C R" (n > 2) be a bounded convex domain
with :
e For all x € 09, let k(x) denote the mean curvature at x and let

K = mi ;
K= i)

then d1(Q2) > nK with equality if and only if Q is a ball.
e The following isoperimetric bound holds

09
< 270

B =T

with equality if and only if Q is a ball.
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Proof: For the lower bound, let ¢ be a first Steklov eigenfunction
such that ¢ > 0 in Q and ¢, < 0 on 92. The boundary condition
A¢p = dip, on 09 also reads ¢, + (n — 1) kp, = d1¢, on ON.
Hence,

(¢3)V =2¢u¢y = 2[ch — (n — 1) K] ¢§

n
so that if we put D?¢pD?%¢p = > (8,-J-¢)2 and integrate by parts
ij=1

(L 2 go 2 _ 2
2 [ = (n-Drleias= | (@D)ds= [ (90P), as
_/A(|V¢]2) dx_z/VA¢-v¢dx+2/ D?¢pD?¢ dx
Q Q Q
— 2 2 2
= 2/Q¢A ¢dx+2/m¢(A¢)Vds+2/QD $D?p dx

:2/D2¢D2¢dx22/ |A¢|2dx:2d1/ $2 ds
Q nJjq nJaoq

the latter since ¢ is the first eigenfunction. Hence,.d; > nK.
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We prove that equality holds if and only if Q is a ball. If dy = nK,
then di < nk(x) for x € 9Q and since ¢, < 0 on 99, from

/ <dl—/<c)q5l2,d520,
o \n

we infer that k(x) = %. Hence, €2 is a ball by Alexandrov’s

characterisation of spheres (Ann. Mat. Pura Appl. 1962).

The upper bound is obtained by taking h = 1 as harmonic test
function in Fichera's characterisation:

d Q| =dy / 1% dx < / 12 ds = |09Q).
Q oQ
If equality holds, then the first eigenfunction ¢ satisfies
~Ap=h=1 inQ, ¢=0, ¢, =—d;' ondQ,

and Q is a ball by a result of J. Serrin (ARMA, 1971). O
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EXISTENCE OF OPTIMAL CONVEX SHAPES

THEOREM 12 Among all convex domains in R” having the
same measure as the unit ball B, there exists an optimal one,
minimising dj.

Among all convex domains in R” having the same perimeter as
the unit ball B, there exists an optimal one, minimising dj.

These results should be complemented with the description of the
optimal convex shapes. This appears quite challenging since, with
the measure constraint, the optimal planar domain is not a disk.
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Sketch of the proof:
STEP 1

This fact appears nontrivial since there is no monotonicity with
respect to inclusions and no obvious extension operator from

H? N H(Q) to H?(R™).

Upper semicontinuity of the map Q — 01(9Q).

Lower semicontinuity of the map Q — d1(Q).

STEP 2 .

By comparison with the solution to the torsion problem, Payne
(Indian J. Mech. Math. 1968/69) proved that if pq denotes the
minimal distance between parallel planes which define a strip
containing Q then d1(Q) > 2"

STEP 3 :

Consider a minimising sequence {Q,,} C R" for d;. By STEP 2 we
know that 3R > 0 such that Q,, C Bgr for all m, since otherwise
d1(Q2m) — +oo. This fact, combined with STEP 1 and with
Blaschke selection Theorem, shows that the infimum is achieved.
O
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NUMERICAL RESEARCH FOR THE OPTIMAL PLANAR
SHAPES

We have no theoretical evidence of what the optimal convex
shapes could be. Recently, Antunes-Gazzola (ESAIM COCV 2012)
performed several numerical experiments.

In the plane, we apply the

(MFS). The MFS is a meshfree numerical method for which the
approximations are linear combinations of fundamental solution
associated to the pde, having pole outside Q.
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FIXED AREA
Let 2, be a regular n-polygon of measure 7 having n sides and let
D be the unit disk.Then

[ 3 4 5 | 6 | 7 [ 8 [ 9 [ 10
[ di(,) | 202522 | 1.96179 | 1.95702 | 1.96164 | 1.06733 | 1.07255 | 1.97654 | 1.97974 |

Remarks.

The equilateral triangle Q3 is the maximiser.

We saw before that di(€4) < 1.96256 while di(€24) ~ 1.96179.
The regular pentagon Q5 is the minimiser.

It seems that n — d1(£2,) tends monotonically to 2 = d;(D) for
n>5and n — oco.

We tested Reuleaux polygons, irregular polygons up to 8 sides,
deformations form regular polygons to the disk, ellipses, stadiums:
Qs remains a good candidate to be the absolute minimiser.
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A RELATED PROBLEM? (for a simply supported plate)
Au+cu="f inQ, u=Au=0 ondQ,

where Q € R? is a bounded domain, ¢ > 0 is the “stiffness of the
resistance to deformation” f € L?(Q) is the external load, u is the
vertical deformation.

: under which conditions on ¢ > 0 and Q the assumption
f > 0 implies that the solution u exists and is positive?
e P.J. McKenna, W. Walter, ARMA 1987
e B. Kawohl, G. Sweers, Indiana UMJ 2002

3 a maximal interval ¢ € (0, c*(£2)] where ppp holds. Which is the
largest c*(Q2) when § varies among convex planar domains of
given measure? Numerical results show that, among regular
polygons, the maximum is attained by the pentagon 5.

e R.F. Bass, J. Hordk, P.J. McKenna, Proc. AMS 2004

Since dj is the threshold parameter in order to have the ppp for
the Steklov problem, are these results somehow connected?
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FIXED PERIMETER
Let Q% be a regular n-polygon of perimeter 2 having n sides.
Then

[ »n T 3 [ & [ 5 T 6 [ 7 T 8 [ 9 [ 10 |
| di(QF) | 260458 | 2.21364 | 2.10443 | 2.05987 | 2.03791 | 2.02586 | 2.01830 | 2.01336 |

Remarks.

It seems that now n — dl(Qa) tends monotonically to 2 = di(D)
for n > 3 and n — oo.

The disk D has d; smaller than any regular polygon.

We tested Reuleaux polygons, irregular polygons up to 8 sides,
deformations form regular polygons to the disk, ellipses, stadiums:
the disk D is a good candidate to be the absolute minimiser.
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