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What is this talk about

We study the regularity and the structure of the singular support of
the viscosity solution of the homogeneous Dirichlet problem for the
eikonal equation associated with a system of Hörmander vector
fields.

This is a joint project with Piermarco Cannarsa and Teresa
Scarinci.
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Assumptions

We consider

I Ω ⊂ Rn an open, bounded set with “smooth” boundary, Γ;

I Ω′ ⊂ Rn is a nbd of Ω and let X1, . . . ,XN are N ≥ 2
“smooth” (real) vector fields on Ω′ such that the Lie algebra
generated by the fields Xj as well as by their commutators of
length up to r has dimension n (i.e. we assume the
Hörmander condition).

(For example the commutator [X1, [X1,X2]] has length 3.)

(Smooth = C∞ or Cω.)
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The Subelliptic Eikonal Equation

Let T be the continuous viscosity solution of the Dirichlet problem
∑N

j=1(XjT )2(x) = 1, in Ω,

T (x) = 0, on Γ.

(1)
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The Subelliptic Eikonal Equation (cont’d)

Remarks:

1. we adopt the notion of viscosity solution compatible with the
elliptic regularization:

−ε(∂2
x1

+ . . .+ ∂2
xn)T (x) +

N∑
j=1

(XjT )2(x) = 1

(i.e. the concavity of the solution is privileged w.r.t. the
convexity);

2. It is well-known that equation (1) admits a unique viscosity
solution (which is not a classical solution).
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Degenerate equations

Typical features of “degenerate” Hamiltonians:

1. the characteristic set

Char{X1, . . . ,XN} =

{(x , p) ∈ Ω′ × (Rn \ {0}) | Xj(x , p) = 0, j = 1, . . . ,N}

is not the empty set. (Here Xj(x , p) is the symbol of the
vector field Xj(x).)

2. There can be characteristic (boundary) points, i.e.
E := {x ∈ Γ | span{X1(x), . . . ,XN(x)} ⊆ TΓx} may be non
empty.
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Degenerate equations (cont’d)

Remarks:

1. ∀x ∈ Ω, span {X1, . . . ,XN}(x) = Rn =⇒ the equation is
nondegenerate, i.e. Char{X1, . . . ,XN} = ∅, T ∈ Liploc(Ω)
and T ∈ SCloc(Ω) (observe that E = ∅).

2. Char{X1, . . . ,XN} = ∅ =⇒ E = ∅ but
E = ∅ ; Char{X1, . . . ,XN} = ∅.

Example: in R2 consider X1 = ∂x1 , X2 = x1∂x2 and
Ω = {(x1 − 1)2 + x2

2 < 1}. Then E = ∅ and

Char{X1,X2} = {(x1, x2; p1, p2) : p1 = x1p2 = 0} =

{(0, x2; 0, p2) : p2 6= 0}.
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The Regularity Problem

Study the regularity of T in Hölder spaces?



Known results

Theorem (Evans-James, 1989)

T is locally Hölder continuous of exponent 1
r (r = the length of

the Lie bracket needed to generate the Lie algebra).

Is this regularity result the best one can hope for?
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Known results (cont’d)

Let M > 0 and let k be a positive integer. Consider the
(unbounded) set

Ω = {(x , y) ∈ Rn × R : y > M|x |k+1}

and the eikonal equation{
|∇xT (x , y)|2 + |x |2k(∂yT (x , y))2 = 1 in Ω,

T = 0 on ∂Ω.

Theorem (A. 2012)

The nonnegative viscosity solution of the Dirichlet problem above
is locally Lipschitz continuous in Ω. Furthermore, T is Hölder
continuous of the exponent 1/(k + 1) at (0, 0). Finally,
T ∈ Cω(Ω \ {(0, y) : y ≥ 0}).
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Known results (cont’d)

In other words, the Evans-James theorem is, in general, optimal at
the characteristic boundary points only.

How to improve the E.-J. result?
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A representation formula

Let us consider the controlled system
y ′(t) =

∑N
j=1 uj(t)Xj(y(t)), t ≥ 0

y(0) = x ∈ Ω

(2)

u = (u1, . . . , uN) : [0,∞[−→ B
N
1 (0) is a measurable function (the

“control”). We denote the solution of Equation (2) by y x ,u(·).

The arrival time to the target Γ is defined as

τ(x , u) = inf{t ≥ 0 : y x ,u(t) ∈ Γ}.
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A representation formula (cont’d)

Then

T (x) = inf
u
τ(x , u),

in other words T is the minimum time function associated with the
system (2) with target Γ.

u is called an optimal control if T (x) = τ(x , u), the corresponding
trajectory y x ,u is an optimal trajectory.

FACT: for every x ∈ Ω there exists an optimal control u(·).
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Singular time-optimal trajectories

Let x ∈ Ω and let u be an optimal control. We say that y x ,u is a
singular time-optimal trajectory if there exists

p(·) ∈ AC ([0,T (x)];Rn \ {0}) s.t.

1. ρ(t) := (y x ,u(t), p(t)) ∈ Char{X1, . . . ,XN}, ∀t ∈ [0,T (x)];

2. ρ′(t) =
∑N

j=1 uj(t)HXj
(ρ(t)), for a.e. t in [0,T (x)];

3. p(T (x)) = λν(y x ,u(T (x))), (ν = unit exterior normal to Γ
and λ > 0).

(Here HXj
= (∇pXj(x , p),−∇xXj(x , p)).)
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Singular time-optimal trajectories (cont’d)

Theorem (A., Cannarsa and Scarinci)

Let x ∈ Ω and let y x ,u be a time-optimal trajectory. Then
y x ,u is a singular time-optimal trajectory ⇐⇒ y x ,u(T (x)) ∈ E.

In particular, a singular time-optimal trajectory is tangent to Γ at
the terminal point.

Theorem (Derridj, 1972)

E ⊂ Γ is a closed set of measure zero.
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Pointwise Lipschitz regularity

Definition

f : Ω −→ R is not Lipschitz continuous at x0 ∈ Ω if

lim sup
Ω3x→x0

|f (x)− f (x0)|
|x − x0|

=∞.

Theorem (A., Cannarsa and Scarinci)

Let x0 ∈ Ω. Then T is not Lipschitz continuous at x0 if and only if
there exists a singular-time optimal trajectory y x0,u.
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Pointwise Lipschitz regularity (cont’d)

Theorem (A., Cannarsa and Scarinci)

Let x0 ∈ Ω and let y x0,u be a singular time-optimal trajectory.
Then, T is not Lipschitz continuous at y x0,u(t), for every
t ∈ [0,T (x)].



Singular time-optimal trajectories and regularity

The fact that the presence of singular time-optimal trajectories
may destroy the regularity of T is not a new idea:

Sussmann, Agrachev, Trélat, Cannarsa and Rifford, ...
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Interior regularity

Theorem (A., Cannarsa and Scarinci)

The following assertions are equivalent

I the minimum time problem admits no singular time-optimal
trajectories;

I T is locally semiconcave in Ω;

I T is locally Lipschitz continuous in Ω.

Is there a minimum time function T which is not better than
Hölder continuous somewhere?
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A model of Liu-Sussmann, 1994

In R3 consider the vector fields

X1 = ∂x1 , X2 = (1− x1)∂x2 + x2
1∂x3 .

Theorem (A., Cannarsa and Scarinci)

There exists an open bounded set with C∞ boundary s.t. the
solution of the equation

(X1T )2 + (X2T )2 = 1 in Ω,

T |Γ = 0,

is not locally Lipschitz continuous in Ω.
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A model of Liu-Sussmann, 1994 (cont’d)

Theorem (A., Cannarsa and Scarinci)

Let Ω be a bounded convex open set with smooth boundary. Then
the solution of the equation

(X1T )2 + (X2T )2 = 1 in Ω,

T |Γ = 0,

is locally Lipschitz continuous in Ω.

In other words, the geometry of the boundary Γ may exclude the
presence of singular time-optimal trajectories.
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Boundary regularity

Theorem

I for every x ∈ Γ \ E, T is smooth on a nbd of x;

I for every x ∈ E, T is Hölder continuous of exponent 1/r(x).

r(x) is the length of the commutators of X1, . . . ,XN needed to
generate Rn.
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Sufficient conditions for the regularity of T

Theorem (A., Cannarsa and Scarinci)

If E = ∅ or Char{X1, . . . ,XN} is a symplectic manifold then T is
locally Lipschitz continuous in Ω.

Some finer conditions can be given in the analytic category.
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Sufficient conditions for the regularity of T (cont’d)

In some cases, even if the characteristic set is not a symplectic
manifold but it can be splitted into a disjoint union of symplectic
submanifolds, our approach can be applied.

Example

Let Ω ⊂ R3 be a bounded open set with smooth boundary and let
k be a positive integer. In R3, consider vector fields

X1 = ∂x1 − x2k+1
2 ∂x3 and X2 = ∂x2 + x2k+1

1 ∂x3 .

Then no singular time-optimal trajectories exists.



Sufficient conditions for the regularity of T (cont’d)

In some cases, even if the characteristic set is not a symplectic
manifold but it can be splitted into a disjoint union of symplectic
submanifolds, our approach can be applied.

Example

Let Ω ⊂ R3 be a bounded open set with smooth boundary and let
k be a positive integer. In R3, consider vector fields

X1 = ∂x1 − x2k+1
2 ∂x3 and X2 = ∂x2 + x2k+1

1 ∂x3 .

Then no singular time-optimal trajectories exists.



Sufficient conditions for the regularity of T (cont’d)

Indeed

Char(X1,X2)

=
{

(x1, x2, x3, x
2k+1
2 p3,−x2k+1

1 p3, p3) : x1, x2, x3 ∈ R, p3 6= 0
}
.

Char(X1,X2) can be split into the connected submanifolds

Σ1,± =
{

(x1, x2, x3, x
2k+1
2 p3,−x2k+1

1 p3, p3) :

x1, x2, x3 ∈ R, (x1, x2) 6= (0, 0), ±p3 > 0
}

and
Σ2,± =

{
(0, 0, x3, 0, 0, p3) : x3 ∈ R, ±p3 > 0

}
.

All these submanifolds are symplectic (the rank of the symplectic
form is constant and the symplectic form is nondegenerate on
these sets) =⇒ there are no singular time-optimal trajectories.
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The singular support

We say that a point x is not in sing suppT if T is smooth on a
nbd of x .

Theorem (A., Cannarsa and Scarinci)

If T is locally semiconcave in Ω, then sing suppT has the same
homotopy type as the set Ω.
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A partial regularity result

Theorem (A., Cannarsa and Scarinci)

sing suppT is a closed set of measure zero.

In other words, in the complement of a closed set of measure zero
T has the same regularity of the data of the Dirichlet problem.
No condition is required on the time-optimal trajectories.
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Happy Birthday Piermarco!

Figure: Piermarco liked to ”control” not only odes and pdes but...


