On the Solution of the Dirichlet Problem for the Subelliptic Eikonal Equation

Paolo Albano

Dipartimento di Matematica, Università di Bologna

$$
\text { July 7, } 2017
$$

What is this talk about

We study the regularity and the structure of the singular support of the viscosity solution of the homogeneous Dirichlet problem for the eikonal equation associated with a system of Hörmander vector fields.

This is a joint project with Piermarco Cannarsa and Teresa Scarinci.

What is this talk about

We study the regularity and the structure of the singular support of the viscosity solution of the homogeneous Dirichlet problem for the eikonal equation associated with a system of Hörmander vector fields.

This is a joint project with Piermarco Cannarsa and Teresa Scarinci.

Assumptions

We consider

- $\Omega \subset \mathbb{R}^{n}$ an open, bounded set with "smooth" boundary, Γ;
- $\Omega^{\prime} \subset \mathbb{R}^{n}$ is a nbd of Ω and let X_{1}, \ldots, X_{N} are $N \geq 2$ "smooth" (real) vector fields on Ω^{\prime} such that the Lie algebra generated by the fields X_{j} as well as by their commutators of length up to r has dimension n (i.e. we assume the Hörmander condition)
(For example the commutator $\left[X_{1},\left[X_{1}, X_{2}\right]\right]$ has length 3.)
(Smooth $=C^{\infty}$ or C^{ω}.)

Assumptions

We consider

- $\Omega \subset \mathbb{R}^{n}$ an open, bounded set with "smooth" boundary, Γ;
- $\Omega^{\prime} \subset \mathbb{R}^{n}$ is a nbd of Ω and let X_{1}, \ldots, X_{N} are $N \geq 2$ "smooth" (real) vector fields on Ω^{\prime} such that the Lie algebra generated by the fields X_{j} as well as by their commutators of length up to r has dimension n (i.e. we assume the Hörmander condition).
(For example the commutator $\left[X_{1},\left[X_{1}, X_{2}\right]\right]$ has length 3.)
(Smooth $=C^{\infty}$ or C^{ω}.)

Assumptions

We consider

- $\Omega \subset \mathbb{R}^{n}$ an open, bounded set with "smooth" boundary, Γ;
- $\Omega^{\prime} \subset \mathbb{R}^{n}$ is a $n b d$ of Ω and let X_{1}, \ldots, X_{N} are $N \geq 2$ "smooth" (real) vector fields on Ω^{\prime} such that the Lie algebra generated by the fields X_{j} as well as by their commutators of length up to r has dimension n (i.e. we assume the Hörmander condition).
(For example the commutator $\left[X_{1},\left[X_{1}, X_{2}\right]\right]$ has length 3.)

Assumptions

We consider

- $\Omega \subset \mathbb{R}^{n}$ an open, bounded set with "smooth" boundary, Γ;
- $\Omega^{\prime} \subset \mathbb{R}^{n}$ is a $n b d$ of Ω and let X_{1}, \ldots, X_{N} are $N \geq 2$ "smooth" (real) vector fields on Ω^{\prime} such that the Lie algebra generated by the fields X_{j} as well as by their commutators of length up to r has dimension n (i.e. we assume the Hörmander condition).
(For example the commutator $\left[X_{1},\left[X_{1}, X_{2}\right]\right]$ has length 3.)
(Smooth $=C^{\infty}$ or $\left.C^{\omega}.\right)$

The Subelliptic Eikonal Equation

Let T be the continuous viscosity solution of the Dirichlet problem

$$
\begin{cases}\sum_{j=1}^{N}\left(X_{j} T\right)^{2}(x)=1, & \text { in } \quad \Omega \tag{1}\\ T(x)=0,\end{cases}
$$

The Subelliptic Eikonal Equation

Let T be the continuous viscosity solution of the Dirichlet problem

$$
\begin{cases}\sum_{j=1}^{N}\left(X_{j} T\right)^{2}(x)=1, & \text { in } \quad \Omega \tag{1}\\ T(x)=0, & \text { on } \Gamma .\end{cases}
$$

The Subelliptic Eikonal Equation (cont'd)

Remarks:

1. we adopt the notion of viscosity solution compatible with the elliptic regularization:

$$
-\varepsilon\left(\partial_{x_{1}}^{2}+\ldots+\partial_{x_{n}}^{2}\right) T(x)+\sum_{j=1}^{N}\left(X_{j} T\right)^{2}(x)=1
$$

(i.e. the concavity of the solution is privileged w.r.t. the convexity);
2. It is well-known that equation (1) admits a unique viscosity
solution (which is not a classical solution).

The Subelliptic Eikonal Equation (cont'd)

Remarks:

1. we adopt the notion of viscosity solution compatible with the elliptic regularization:

$$
-\varepsilon\left(\partial_{x_{1}}^{2}+\ldots+\partial_{X_{n}}^{2}\right) T(x)+\sum_{j=1}^{N}\left(X_{j} T\right)^{2}(x)=1
$$

(i.e. the concavity of the solution is privileged w.r.t. the convexity);
2. It is well-known that equation (1) admits a unique viscosity solution (which is not a classical solution).

Degenerate equations

Typical features of "degenerate" Hamiltonians:

1. the characteristic set

is not the empty set. (Here $X_{j}(x, p)$ is the symbol of the vector field $X_{j}(x)$.)
2. There can be characteristic (boundary) points, i.e. $E:=\left\{x \in \Gamma \mid \operatorname{span}\left\{X_{1}(x), \ldots, X_{N}(x)\right\} \subseteq T \Gamma_{x}\right\}$ may be non empty.

Degenerate equations

Typical features of "degenerate" Hamiltonians:

1. the characteristic set

$$
\begin{aligned}
& \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}= \\
& \quad\left\{(x, p) \in \Omega^{\prime} \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid X_{j}(x, p)=0, j=1, \ldots, N\right\}
\end{aligned}
$$

is not the empty set. (Here $X_{j}(x, p)$ is the symbol of the vector field $X_{j}(x)$.)
2. There can be characteristic (boundary) points, i.e.
$E:=\left\{x \in \Gamma \mid \operatorname{span}\left\{X_{1}(x), \ldots, X_{N}(x)\right\} \subseteq T \Gamma_{x}\right\}$ may be non empty.

Degenerate equations

Typical features of "degenerate" Hamiltonians:

1. the characteristic set

$$
\begin{aligned}
& \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}= \\
& \quad\left\{(x, p) \in \Omega^{\prime} \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid X_{j}(x, p)=0, j=1, \ldots, N\right\}
\end{aligned}
$$

is not the empty set. (Here $X_{j}(x, p)$ is the symbol of the vector field $X_{j}(x)$.)
2. There can be characteristic (boundary) points, i.e. $E:=\left\{x \in \Gamma \mid \operatorname{span}\left\{X_{1}(x), \ldots, X_{N}(x)\right\} \subseteq T \Gamma_{x}\right\}$ may be non empty.

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Liploc}(\Omega)$ and $T \in S C_{\text {loc }}(\bar{\Omega})$ (observe that $E=\varnothing$).
2. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing \Longrightarrow E=\varnothing$ but $E=\varnothing \nRightarrow \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing$.

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{X_{1}}, X_{2}=x_{1} \partial_{X_{2}}$ and $\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and
\square

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Liploc}(\Omega)$
and $T \in S C_{\text {loc }}(\Omega)$ (observe that $E=\varnothing$)
2. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing \Longrightarrow E=\varnothing$ but $E=\varnothing \nRightarrow \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing$.

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{X_{1}}, X_{2}=x_{1} \partial_{X_{2}}$ and $\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Lip}{ }_{\text {loc }}(\bar{\Omega})$

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{x_{1}}, X_{2}=x_{1} \partial_{x_{2}}$ and $\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Lip}{ }_{\text {loc }}(\bar{\Omega})$ and $T \in S C_{l o c}(\bar{\Omega})$ (observe that $E=\varnothing$)

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{x_{1}}, X_{2}=x_{1} \partial_{x_{2}}$ and $\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Lip}{ }_{\text {loc }}(\bar{\Omega})$ and $T \in S C_{l o c}(\bar{\Omega})$ (observe that $E=\varnothing$).
2. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing \Longrightarrow E=\varnothing$ but $E=\varnothing \nRightarrow \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing$.

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{x_{1}}, x_{2}=x_{1} \partial_{x_{2}}$ and $\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Lip}$ loc $(\bar{\Omega})$ and $T \in S C_{l o c}(\bar{\Omega})$ (observe that $E=\varnothing$).
2. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing \Longrightarrow E=\varnothing$ but

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{X_{1}}, X_{2}=x_{1} \partial_{X_{2}}$ and
$\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

$\operatorname{Char}\left\{X_{1}, X_{2}\right\}=\left\{\left(x_{1}, x_{2} ; p_{1}, p_{2}\right): p_{1}=x_{1} p_{2}=0\right\}=$

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Lip}$ loc $(\bar{\Omega})$ and $T \in S C_{l o c}(\bar{\Omega})$ (observe that $E=\varnothing$).
2. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing \Longrightarrow E=\varnothing$ but $E=\varnothing \nRightarrow \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing$.

Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{X_{1}}, X_{2}=x_{1} \partial_{X_{2}}$ and $\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

Degenerate equations (cont'd)

Remarks:

1. $\forall x \in \Omega$, span $\left\{X_{1}, \ldots, X_{N}\right\}(x)=\mathbb{R}^{n} \Longrightarrow$ the equation is nondegenerate, i.e. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing, T \in \operatorname{Lip}{ }_{\text {loc }}(\bar{\Omega})$ and $T \in S C_{l o c}(\bar{\Omega})$ (observe that $E=\varnothing$).
2. $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing \Longrightarrow E=\varnothing$ but $E=\varnothing \nRightarrow \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}=\varnothing$.
Example: in \mathbb{R}^{2} consider $X_{1}=\partial_{x_{1}}, X_{2}=x_{1} \partial_{x_{2}}$ and
$\Omega=\left\{\left(x_{1}-1\right)^{2}+x_{2}^{2}<1\right\}$. Then $E=\varnothing$ and

$$
\begin{aligned}
& \operatorname{Char}\left\{X_{1}, X_{2}\right\}=\left\{\left(x_{1}, x_{2} ; p_{1}, p_{2}\right): p_{1}=x_{1} p_{2}=0\right\}= \\
& \left\{\left(0, x_{2} ; 0, p_{2}\right): p_{2} \neq 0\right\}
\end{aligned}
$$

The Regularity Problem

Study the regularity of T in Hölder spaces?

Known results

Theorem (Evans-James, 1989)
T is locally Hölder continuous of exponent $\frac{1}{r}$ ($r=$ the length of the Lie bracket needed to generate the Lie algebra).

Is this regularity result the best one can hope for?

Known results

Theorem (Evans-James, 1989)

T is locally Hölder continuous of exponent $\frac{1}{r}$ ($r=$ the length of the Lie bracket needed to generate the Lie algebra).

Is this regularity result the best one can hope for?

Known results (cont'd)

Let $M>0$ and let k be a positive integer. Consider the (unbounded) set

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: y>M|x|^{k+1}\right\}
$$

and the eikonal equation

$$
\left\{\begin{array}{l}
\left|\nabla_{x} T(x, y)\right|^{2}+|x|^{2 k}\left(\partial_{y} T(x, y)\right)^{2}=1 \quad \text { in } \Omega \\
T=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Theorem (A. 2012)
The nonnegative viscosity solution of the Dirichlet problem above is locally Lipschitz continuous in Ω. Furthermore, T is Hölder continuous of the exponent $1 /(k+1)$ at $(0,0)$. Finally, $T \in C^{\omega}(\Omega \backslash\{(0, y)$

Known results (cont'd)

Let $M>0$ and let k be a positive integer. Consider the (unbounded) set

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: y>M|x|^{k+1}\right\}
$$

and the eikonal equation

$$
\left\{\begin{array}{l}
\left|\nabla_{x} T(x, y)\right|^{2}+|x|^{2 k}\left(\partial_{y} T(x, y)\right)^{2}=1 \quad \text { in } \Omega \\
T=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Theorem (A. 2012)

The nonnegative viscosity solution of the Dirichlet problem above is locally Lipschitz continuous in Ω. Furthermore, T is Hölder continuous of the exponent $1 /(k+1)$ at (0,0). Finally, $T \in C^{\omega}(\Omega \backslash\{(0, y): y \geq 0\})$.

Known results (cont'd)

In other words, the Evans-James theorem is, in general, optimal at the characteristic boundary points only.

How to improve the E.-J. result?

Known results (cont'd)

In other words, the Evans-James theorem is, in general, optimal at the characteristic boundary points only.

How to improve the E.-J. result?

A representation formula

Let us consider the controlled system

$$
\left\{\begin{array}{l}
y^{\prime}(t)=\sum_{j=1}^{N} u_{j}(t) X_{j}(y(t)), \quad t \geq 0 \tag{2}\\
y(0)=x \in \Omega
\end{array}\right.
$$

$u=\left(u_{1}, \ldots, u_{N}\right):\left[0, \infty\left[\longrightarrow \bar{B}_{1}^{N}(0)\right.\right.$ is a measurable function (the "control"). We denote the solution of Equation (2) by $y^{x, u}(\cdot)$.

The arrival time to the target Γ is defined as

A representation formula

Let us consider the controlled system

$$
\left\{\begin{array}{l}
y^{\prime}(t)=\sum_{j=1}^{N} u_{j}(t) X_{j}(y(t)), \quad t \geq 0 \tag{2}\\
y(0)=x \in \Omega
\end{array}\right.
$$

$u=\left(u_{1}, \ldots, u_{N}\right):\left[0, \infty\left[\longrightarrow \bar{B}_{1}^{N}(0)\right.\right.$ is a measurable function (the "control"). We denote the solution of Equation (2) by $y^{x, u}(\cdot)$.

The arrival time to the target Γ is defined as

$$
\tau(x, u)=\inf \left\{t \geq 0: y^{x, u}(t) \in \Gamma\right\}
$$

A representation formula (cont'd)

Then

$$
T(x)=\inf _{u} \tau(x, u)
$$

in other words T is the minimum time function associated with the system (2) with target Γ.
u is called an optimal control if $T(x)=\tau(x, u)$, the corresponding trajectory $y^{x, u}$ is an optimal trajectory.

FACT: for every $x \in \Omega$ there exists an optimal control $u(\cdot)$.

A representation formula (cont'd)

Then

$$
T(x)=\inf _{u} \tau(x, u)
$$

in other words T is the minimum time function associated with the system (2) with target Γ.
u is called an optimal control if $T(x)=\tau(x, u)$, the corresponding trajectory $y^{x, u}$ is an optimal trajectory.

FACT: for every $x \in \Omega$ there exists an optimal control $u(\cdot)$.

A representation formula (cont'd)

Then

$$
T(x)=\inf _{u} \tau(x, u)
$$

in other words T is the minimum time function associated with the system (2) with target Γ.
u is called an optimal control if $T(x)=\tau(x, u)$, the corresponding trajectory $y^{x, u}$ is an optimal trajectory.

FACT: for every $x \in \Omega$ there exists an optimal control $u(\cdot)$.

Singular time-optimal trajectories

Let $x \in \Omega$ and let u be an optimal control. We say that $y^{x, u}$ is a singular time-optimal trajectory if there exists

$$
p(\cdot) \in \mathrm{AC}\left([0, T(x)] ; \mathbb{R}^{n} \backslash\{0\}\right) \text { s.t. }
$$

1. $\rho(t):=\left(y^{x, u}(t), p(t)\right) \in \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}, \forall t \in[0, T(x)]$;
2. $p(T(x))=\lambda \nu\left(y^{x, u}(T(x))\right)$, $(\nu=$ unit exterior normal to Γ
(Here $H_{X_{j}}=\left(\nabla_{p} X_{j}(x, p),-\nabla_{x} X_{j}(x, p)\right)$.)

Singular time-optimal trajectories

Let $x \in \Omega$ and let u be an optimal control. We say that $y^{x, u}$ is a singular time-optimal trajectory if there exists

$$
p(\cdot) \in \mathrm{AC}\left([0, T(x)] ; \mathbb{R}^{n} \backslash\{0\}\right) \text { s.t. }
$$

1. $\rho(t):=\left(y^{x, u}(t), p(t)\right) \in \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}, \forall t \in[0, T(x)]$;
2. $\rho^{\prime}(t)=\sum_{j=1}^{N} u_{j}(t) H_{X_{j}}(\rho(t))$, for a.e. t in $[0, T(x)]$;
3. $p(T(x))=\lambda \nu\left(y^{x, u}(T(x))\right)$, $(\nu=$ unit exterior normal to Γ
$\left(\right.$ Here $\left.H_{X_{j}}=\left(\nabla_{p} X_{j}(x, p),-\nabla_{x} X_{j}(x, p)\right).\right)$

Singular time-optimal trajectories

Let $x \in \Omega$ and let u be an optimal control. We say that $y^{x, u}$ is a singular time-optimal trajectory if there exists

$$
p(\cdot) \in \mathrm{AC}\left([0, T(x)] ; \mathbb{R}^{n} \backslash\{0\}\right) \text { s.t. }
$$

1. $\rho(t):=\left(y^{x, u}(t), p(t)\right) \in \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}, \forall t \in[0, T(x)]$;
2. $\rho^{\prime}(t)=\sum_{j=1}^{N} u_{j}(t) H_{X_{j}}(\rho(t))$, for a.e. t in $[0, T(x)]$;
3. $p(T(x))=\lambda \nu\left(y^{x, u}(T(x))\right),(\nu=$ unit exterior normal to Γ and $\lambda>0)$.
(Here $H_{X_{j}}=\left(\nabla_{p} X_{j}(x, p),-\nabla_{x} X_{j}(x, p)\right)$.)

Singular time-optimal trajectories

Let $x \in \Omega$ and let u be an optimal control. We say that $y^{x, u}$ is a singular time-optimal trajectory if there exists

$$
p(\cdot) \in \mathrm{AC}\left([0, T(x)] ; \mathbb{R}^{n} \backslash\{0\}\right) \text { s.t. }
$$

1. $\rho(t):=\left(y^{x, u}(t), p(t)\right) \in \operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}, \forall t \in[0, T(x)]$;
2. $\rho^{\prime}(t)=\sum_{j=1}^{N} u_{j}(t) H_{X_{j}}(\rho(t))$, for a.e. t in $[0, T(x)]$;
3. $p(T(x))=\lambda \nu\left(y^{x, u}(T(x))\right),(\nu=$ unit exterior normal to Γ and $\lambda>0)$.
$\left(\right.$ Here $\left.H_{X_{j}}=\left(\nabla_{p} X_{j}(x, p),-\nabla_{x} X_{j}(x, p)\right).\right)$

Singular time-optimal trajectories (cont'd)

Theorem (A., Cannarsa and Scarinci)

Let $x \in \Omega$ and let $y^{x, u}$ be a time-optimal trajectory. Then $y^{x, u}$ is a singular time-optimal trajectory $\Longleftrightarrow y^{x, u}(T(x)) \in E$.

In particular, a singular time-optimal trajectory is tangent to Γ at
the terminal point.
Thaorem (Darrid; 1972)
$E \subset \Gamma$ is a closed set of measure zero.

Singular time-optimal trajectories (cont'd)

Theorem (A., Cannarsa and Scarinci)

Let $x \in \Omega$ and let $y^{x, u}$ be a time-optimal trajectory. Then $y^{x, u}$ is a singular time-optimal trajectory $\Longleftrightarrow y^{x, u}(T(x)) \in E$.

In particular, a singular time-optimal trajectory is tangent to Γ at the terminal point.

Theorem (Derridj, 1972)
$E \subset \Gamma$ is a closed set of measure zero.

Singular time-optimal trajectories (cont'd)

Theorem (A., Cannarsa and Scarinci)

Let $x \in \Omega$ and let $y^{x, u}$ be a time-optimal trajectory. Then $y^{x, u}$ is a singular time-optimal trajectory $\Longleftrightarrow y^{x, u}(T(x)) \in E$.

In particular, a singular time-optimal trajectory is tangent to Γ at the terminal point.

Theorem (Derridj, 1972)
$E \subset \Gamma$ is a closed set of measure zero.

Pointwise Lipschitz regularity

Definition

$f: \bar{\Omega} \longrightarrow \mathbb{R}$ is not Lipschitz continuous at $x_{0} \in \bar{\Omega}$ if

$$
\limsup _{\bar{\Omega} \ni x \rightarrow x_{0}} \frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|x-x_{0}\right|}=\infty
$$

Theorem (A., Cannarsa and Scarinci)
Let $x_{0} \in \Omega$. Then T is not l inschitz continuous at x_{0} if and only if there exists a singular-time optimal trajectory $y^{x_{0}, u}$.

Pointwise Lipschitz regularity

Definition

$f: \bar{\Omega} \longrightarrow \mathbb{R}$ is not Lipschitz continuous at $x_{0} \in \bar{\Omega}$ if

$$
\limsup _{\bar{\Omega} \ni x \rightarrow x_{0}} \frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|x-x_{0}\right|}=\infty
$$

Theorem (A., Cannarsa and Scarinci)

Let $x_{0} \in \Omega$. Then T is not Lipschitz continuous at x_{0} if and only if there exists a singular-time optimal trajectory $y^{x_{0}, u}$.

Pointwise Lipschitz regularity (cont'd)

Theorem (A., Cannarsa and Scarinci)
Let $x_{0} \in \Omega$ and let $y^{x_{0}, u}$ be a singular time-optimal trajectory. Then, T is not Lipschitz continuous at $y^{x_{0}, u}(t)$, for every $t \in[0, T(x)]$.

Singular time-optimal trajectories and regularity

The fact that the presence of singular time-optimal trajectories may destroy the regularity of T is not a new idea:

Sussmann, Agrachev, Trélat, Cannarsa and Rifford,

Singular time-optimal trajectories and regularity

The fact that the presence of singular time-optimal trajectories may destroy the regularity of T is not a new idea:

Sussmann, Agrachev, Trélat, Cannarsa and Rifford, ...

Interior regularity

Theorem (A., Cannarsa and Scarinci)
The following assertions are equivalent

- the minimum time problem admits no singular time-optimal trajectories;
- T is locally semiconcave in Ω;
- T is locally Lipschitz continuous in Ω.

Is there a minimum time function T which is not better than
Hölder continuous somewhere?

Interior regularity

Theorem (A., Cannarsa and Scarinci)

The following assertions are equivalent

- the minimum time problem admits no singular time-optimal trajectories;
- T is locally semiconcave in Ω;
- T is locally Lipschitz continuous in Ω.
\square Hölder continuous somewhere?

Interior regularity

Theorem (A., Cannarsa and Scarinci)

The following assertions are equivalent

- the minimum time problem admits no singular time-optimal trajectories;
- T is locally semiconcave in Ω;
- T is locally Lipschitz continuous in Ω.
\square Hölder continuous somewhere?

Interior regularity

Theorem (A., Cannarsa and Scarinci)

The following assertions are equivalent

- the minimum time problem admits no singular time-optimal trajectories;
- T is locally semiconcave in Ω;
- T is locally Lipschitz continuous in Ω.

Is there a minimum time function T which is not better than Hölder continuous somewhere?

A model of Liu-Sussmann, 1994

In \mathbb{R}^{3} consider the vector fields

$$
X_{1}=\partial_{x_{1}}, \quad X_{2}=\left(1-x_{1}\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}} .
$$

Theorem (A., Cannarsa and Scarinci)
There exists an open bounded set with C^{∞} boundary s.t. the solution of the equation

$$
\left\{\begin{array}{l}
\left(X_{1} T\right)^{2}+\left(X_{2} T\right)^{2}=1 \quad \text { in } \Omega, \\
\left.T\right|_{\Gamma}=0,
\end{array}\right.
$$

is not locally Lipschitz continuous in Ω.

A model of Liu-Sussmann, 1994

In \mathbb{R}^{3} consider the vector fields

$$
X_{1}=\partial_{x_{1}}, \quad X_{2}=\left(1-x_{1}\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}}
$$

Theorem (A., Cannarsa and Scarinci)

There exists an open bounded set with C^{∞} boundary s.t. the solution of the equation

$$
\left\{\begin{array}{l}
\left(X_{1} T\right)^{2}+\left(X_{2} T\right)^{2}=1 \quad \text { in } \Omega \\
\left.T\right|_{\Gamma}=0
\end{array}\right.
$$

is not locally Lipschitz continuous in Ω.

A model of Liu-Sussmann, 1994 (cont'd)

Theorem (A., Cannarsa and Scarinci)

Let Ω be a bounded convex open set with smooth boundary. Then the solution of the equation

$$
\left\{\begin{array}{l}
\left(X_{1} T\right)^{2}+\left(X_{2} T\right)^{2}=1 \quad \text { in } \Omega \\
\left.T\right|_{\Gamma}=0
\end{array}\right.
$$

is locally Lipschitz continuous in Ω.
In other words, the geometry of the boundary 「 may exclude the presence of singular time-optimal trajectories.

A model of Liu-Sussmann, 1994 (cont'd)

Theorem (A., Cannarsa and Scarinci)

Let Ω be a bounded convex open set with smooth boundary. Then the solution of the equation

$$
\left\{\begin{array}{l}
\left(X_{1} T\right)^{2}+\left(X_{2} T\right)^{2}=1 \quad \text { in } \Omega \\
\left.T\right|_{\Gamma}=0
\end{array}\right.
$$

is locally Lipschitz continuous in Ω.
In other words, the geometry of the boundary Γ may exclude the presence of singular time-optimal trajectories.

Boundary regularity

Theorem

- for every $x \in \Gamma \backslash E, T$ is smooth on a nbd of x;
- for every $x \in E, T$ is Hölder continuous of exponent $1 / r(x)$.
$r(x)$ is the length of the commutators of X_{1}, \ldots, X_{N} needed to generate \mathbb{R}^{n}.

Boundary regularity

Theorem

- for every $x \in \Gamma \backslash E, T$ is smooth on a nbd of x;
- for every $x \in E, T$ is Hölder continuous of exponent $1 / r(x)$. $r(x)$ is the length of the commutators of X_{1}, \ldots, X_{N} needed to generate \mathbb{R}^{n}.

Sufficient conditions for the regularity of T

Theorem (A., Cannarsa and Scarinci)
If $E=\varnothing$ or $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}$ is a symplectic manifold then T is locally Lipschitz continuous in Ω.

Some finer conditions can be given in the analytic category.

Sufficient conditions for the regularity of T

Theorem (A., Cannarsa and Scarinci)
If $E=\varnothing$ or $\operatorname{Char}\left\{X_{1}, \ldots, X_{N}\right\}$ is a symplectic manifold then T is locally Lipschitz continuous in Ω.

Some finer conditions can be given in the analytic category.

Sufficient conditions for the regularity of T (cont'd)

In some cases, even if the characteristic set is not a symplectic manifold but it can be splitted into a disjoint union of symplectic submanifolds, our approach can be applied.
\square

Then no singular time-optimal trajectories exists.

Sufficient conditions for the regularity of T (cont'd)

In some cases, even if the characteristic set is not a symplectic manifold but it can be splitted into a disjoint union of symplectic submanifolds, our approach can be applied.

Example

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded open set with smooth boundary and let k be a positive integer. In \mathbb{R}^{3}, consider vector fields

$$
X_{1}=\partial_{x_{1}}-x_{2}^{2 k+1} \partial_{x_{3}} \quad \text { and } \quad X_{2}=\partial_{x_{2}}+x_{1}^{2 k+1} \partial_{x_{3}} .
$$

Then no singular time-optimal trajectories exists.

Sufficient conditions for the regularity of T (cont'd)

Indeed

$$
\begin{aligned}
& \operatorname{Char}\left(X_{1}, X_{2}\right) \\
= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{2}^{2 k+1} p_{3},-x_{1}^{2 k+1} p_{3}, p_{3}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}, p_{3} \neq 0\right\} .
\end{aligned}
$$

$\operatorname{Char}\left(X_{1}, X_{2}\right)$ can be split into the connected submanifolds

$$
\begin{aligned}
& \Sigma_{1, \pm}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{2}^{2 k+1} p_{3},-x_{1}^{2 k+1} p_{3}, p_{3}\right):\right. \\
&\left.x_{1}, x_{2}, x_{3} \in \mathbb{R},\left(x_{1}, x_{2}\right) \neq(0,0), \pm p_{3}>0\right\}
\end{aligned}
$$

and

$$
\Sigma_{2, \pm}=\left\{\left(0,0, x_{3}, 0,0, p_{3}\right): x_{3} \in \mathbb{R}, \pm p_{3}>0\right\}
$$

All these submanifolds are symplectic (the rank of the symplectic form is constant and the symplectic form is nondegenerate on these sets $) \Longrightarrow$ there are no singular time-optimal trajectories;

Sufficient conditions for the regularity of T (cont'd)

Indeed

$$
\begin{aligned}
& \operatorname{Char}\left(X_{1}, X_{2}\right) \\
= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{2}^{2 k+1} p_{3},-x_{1}^{2 k+1} p_{3}, p_{3}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}, p_{3} \neq 0\right\} .
\end{aligned}
$$

Char $\left(X_{1}, X_{2}\right)$ can be split into the connected submanifolds

$$
\begin{aligned}
& \Sigma_{1, \pm}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{2}^{2 k+1} p_{3},-x_{1}^{2 k+1} p_{3}, p_{3}\right):\right. \\
& \\
& \left.x_{1}, x_{2}, x_{3} \in \mathbb{R},\left(x_{1}, x_{2}\right) \neq(0,0), \pm p_{3}>0\right\}
\end{aligned}
$$

and

$$
\Sigma_{2, \pm}=\left\{\left(0,0, x_{3}, 0,0, p_{3}\right): x_{3} \in \mathbb{R}, \pm p_{3}>0\right\}
$$

All these submanifolds are symplectic (the rank of the symplectic form is constant and the symplectic form is nondegenerate on these sets $) \Longrightarrow$ there are no singular time-optimal trajectories.

Sufficient conditions for the regularity of T (cont'd)

Indeed

$$
\begin{aligned}
& \operatorname{Char}\left(X_{1}, X_{2}\right) \\
= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{2}^{2 k+1} p_{3},-x_{1}^{2 k+1} p_{3}, p_{3}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}, p_{3} \neq 0\right\} .
\end{aligned}
$$

$\operatorname{Char}\left(X_{1}, X_{2}\right)$ can be split into the connected submanifolds

$$
\begin{aligned}
& \Sigma_{1, \pm}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{2}^{2 k+1} p_{3},-x_{1}^{2 k+1} p_{3}, p_{3}\right):\right. \\
&\left.x_{1}, x_{2}, x_{3} \in \mathbb{R},\left(x_{1}, x_{2}\right) \neq(0,0), \pm p_{3}>0\right\}
\end{aligned}
$$

and

$$
\Sigma_{2, \pm}=\left\{\left(0,0, x_{3}, 0,0, p_{3}\right): x_{3} \in \mathbb{R}, \pm p_{3}>0\right\}
$$

All these submanifolds are symplectic (the rank of the symplectic form is constant and the symplectic form is nondegenerate on these sets $) \Longrightarrow$ there are no singular time-optimal trajectories.

The singular support

We say that a point x is not in sing supp T if T is smooth on a nbd of x.

Theorem (A., Cannarsa and Scarinci)
If T is locally semiconcave in Ω then sing supp T has the same homotopy type as the set Ω.

The singular support

We say that a point x is not in sing supp T if T is smooth on a nbd of x.

Theorem (A., Cannarsa and Scarinci)

If T is locally semiconcave in Ω, then sing supp T has the same homotopy type as the set Ω.

A partial regularity result

Theorem (A., Cannarsa and Scarinci)
sing supp T is a closed set of measure zero.

In other words, in the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem. No condition is required on the time-optimal trajectories.

A partial regularity result

Theorem (A., Cannarsa and Scarinci)
sing supp T is a closed set of measure zero.

In other words, in the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem. No condition is required on the time-optimal trajectories.

A partial regularity result

Theorem (A., Cannarsa and Scarinci)
sing supp T is a closed set of measure zero.

In other words, in the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem. No condition is required on the time-optimal trajectories.

Happy Birthday Piermarco!

Figure: Piermarco liked to "control" not only odes and pdes but...

