Uniqueness and non-uniqueness in Mean-Field Games systems of PDEs

Martino Bardi

Dipartimento di Matematica "Tullio Levi-Civita" Università di Padova

INdAM workshop "New Trends in Control Theory and PDEs"

Dedicated to Piermarco Cannarsa on his 60th birthday

Roma, July 3-7, 2017

4 3 5 4 3 5

Plan

- A review of uniqueness of solutions for evolutive MFG PDEs:
 - the "monotonicity" regime, as in Lasry-Lions
 - the "small time-horizon" regime, as in a lecture of Lions (2009) revisited by M.B. and M. Fischer
- Non-uniqueness of solutions for evolutive MFG PDEs: explicit examples for
 - **)** any time horizon T > 0, non-smooth Hamiltonian H
 - T not too small, smooth H

joint work with Markus Fischer (Padova)

 MFGs with several populations joint work with Marco Cirant (Padova)

Mean Field differential games

Consider a large population of identical players, a representative agent has dynamics

$$dX_s = \alpha_s \, ds + \sigma \, dW_s, \quad X_t = x \in \mathbf{R}^d$$

with W_s a Brownian motion, $\alpha_s = \text{control}, \sigma > 0$ volatility.

We are given running and terminal costs $F, G : \mathbf{R}^d \times \mathcal{P}(\mathbf{R}^d) \to \mathbf{R}$ and the finite horizon cost functional is

$$E\left[\int_{t}^{T} L(X_{s}, \alpha_{s}) + F(X_{s}, m(s, \cdot))ds + G(X_{T}, m(T, \cdot))\right]$$

with $L(x, \alpha)$ a convex Lagrangian superlinear in α , and $m(s, \cdot)$ is the density of the whole population of players at time *s*.

MFGs describe the equilibrium configuration where all players behave optimally and then the overall density m coincides with the density of a representative agent using an optimal feedback.

Martino Bardi (Università di Padova)

Mean-Field Games

The backward-forward HJB - KFP system of PDEs

$$\begin{aligned} -\mathbf{v}_t + H(x, \mathbf{D}\mathbf{v}) &= \frac{\sigma^2(x)}{2} \Delta \mathbf{v} + F(x, \mathbf{m}(t, \cdot)) &\text{in } (0, T) \times \mathbf{R}^d, \\ \mathbf{v}(T, x) &= G(x, \mathbf{m}(T, \cdot)) \\ m_t - di\mathbf{v}(D_p H(x, \mathbf{D}\mathbf{v})\mathbf{m}) &= \Delta\left(\frac{\sigma^2(x)}{2}\mathbf{m}\right) &\text{in } (0, T) \times \mathbf{R}^d, \\ m(0, x) &= \nu(x), \end{aligned}$$

where

- v is the value function of a representative agent,
- $m(\cdot, t) \in \mathcal{P}(\mathbf{R}^d)$ is the density of the population of agents,
- the Hamiltonian H is the convex conjugate of the Lagrangian L,
- $D_p H(x, Dv)$ is the optimal feedback for the representative agent.

- Boundary conditions:
 - most theory deals with periodic B.C.,

we are more interested in

- problem in all \mathbf{R}^d with growth conditions or integrability conditions at infinity, or

- Neumann boundary conditions in a bounded smooth domain.
- Existence results and regularity:
 - Lasry Lions (2006 -...),
 - Cardaliaguet, Porretta,
 - Gomes and coworkers

B N A **B** N

- Boundary conditions:
 - most theory deals with periodic B.C.,

we are more interested in

- problem in all \mathbf{R}^d with growth conditions or integrability conditions at infinity, or

- Neumann boundary conditions in a bounded smooth domain.
- Existence results and regularity:
 - Lasry Lions (2006 -...),
 - Cardaliaguet, Porretta,
 - Gomes and coworkers

The Lasry-Lions monotonicity condition

A sufficient condition for uniqueness of classical solutions is

 $p \rightarrow H(x,p)$ convex

$$\int_{\mathbf{R}^n} [F(x,m) - F(x,\bar{m})] d(m-\bar{m})(x) > 0, \ \forall \ m \neq \bar{m} \in \mathcal{P}(\mathbf{R}^d)$$
$$\int_{\mathbf{R}^n} [G(x,m) - G(x,\bar{m})] d(m-\bar{m})(x) \ge 0, \ \forall \ m,\bar{m} \in \mathcal{P}(\mathbf{R}^d)$$

the costs are "increasing with the density" in L^2 . (See Cardaliaguet's notes for the proof)

Example

F is "local", i.e., $F(\cdot, m)(x) = f(x, m(x))$ and *f* is increasing in m(x): the more is crowded the place where I am, the more I pay.

Martino Bardi (Università di Padova)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

A non-local example

Notation: Mean of $\mu \in \mathcal{P}_1(\mathbb{R}^n)$, $M(\mu) := \int_{\mathbb{R}} y \,\mu(dy)$. Variant of the L-L uniqueness result: replace the strict monotonicity of *F* with: *F* and *G* depend on *m* only via M(m) and

$$\int_{\mathbf{R}^n} [F(x,m) - F(x,\bar{m})] d(m-\bar{m})(x) > 0, \ \forall \ M(m) \neq M(\bar{m})$$

Example

$$F(x,\mu) = \beta x M(\mu), \quad G(x,\mu) = \gamma x M(\mu)$$

 $\beta, \gamma \in \mathbf{R}$. Then

 $\int_{\mathbf{R}^{n}} [F(x,m) - F(x,\bar{m})] d(m-\bar{m})(x) = \beta (M(m) - M(\bar{m}))^{2} \ge 0,$

and the condition above is satisfied if $\beta > 0, \gamma \ge 0$.

Martino Bardi (Università di Padova)

A non-local example

Notation: Mean of $\mu \in \mathcal{P}_1(\mathbb{R}^n)$, $M(\mu) := \int_{\mathbb{R}} y \,\mu(dy)$. Variant of the L-L uniqueness result: replace the strict monotonicity of *F* with: *F* and *G* depend on *m* only via M(m) and

$$\int_{\mathbf{R}^n} [F(x,m) - F(x,\bar{m})] d(m-\bar{m})(x) > 0, \ \forall \ M(m) \neq M(\bar{m})$$

Example

$$F(x,\mu) = \beta x M(\mu), \quad G(x,\mu) = \gamma x M(\mu)$$

 $\beta, \gamma \in \mathbf{R}$. Then

$$\int_{\mathbf{R}^n} [F(x,m) - F(x,\bar{m})] d(m-\bar{m})(x) = \beta (M(m) - M(\bar{m}))^2 \ge 0,$$

and the condition above is satisfied if $\beta > 0, \gamma \ge 0$.

Short time uniqueness, Lions at C.d.F. 1.9.2009

Assume for simplicity H = H(p) only. For two solutions $(v_1, m_1), (v_2, m_2)$ take $v := v_1 - v_2$, $m := m_1 - m_2$, write the PDEs for (v, m): the 1st is

$$\begin{cases} -v_t + B(t, x) \cdot Dv = \Delta v + F(x, m_1) - F(x, m_2) & \text{in } (0, T) \times \mathbf{R}^d, \\ v(T, x) = G(x, m_1(T)) - G(x, m_2(T)). \end{cases}$$

with $B(t,x) := \int_0^1 DH(Dv_2 + s(Dv_1 - Dv_2))ds \in L^{\infty}((0, T) \times \mathbf{R}^d)$. Then by parabolic estimates one can get

$$\begin{split} \| Dv(t, \cdot) \|_{L^p_x} &\leq C_1 \int_t^T \| F(\cdot, m_1(s)) - F(\cdot, m_2(s)) \|_{L^r_x} ds + \\ & C_2 \| DG(\cdot, m_1(T)) - DG(\cdot, m_2(T)) \|_{L^r_x}. \end{split}$$

Similarly, from the 2nd equation can estimate

$$\|m(t,\cdot)\|_{L^q_x}\leq C_3 {\displaystyle\int_0^t}\|Dv(s,\cdot)\|_{L^p_x}ds$$

A Lipschitz assumption on F and $DG : L^q \to L^r$ implies

$$\|Dv(t,\cdot)\|_{L^p_x} \le C_1 L_F \int_t^T \|m(s,\cdot)\|_{L^q_x} ds + C_2 L_G \|m(T,\cdot)\|_{L^q_x}$$

Now set $\phi(t) := \|Dv(t, \cdot)\|_{L^p_x}$ and combine the inequalities to get

$$\phi(t) \leq C_4 \int_t^T \int_0^\tau \phi(s) ds \, d\tau + C_5 \int_0^T \phi(s) ds$$

and $\Phi := \sup_{0 \le t \le T} \phi(t)$ satisfies

$$\Phi \leq \Phi(C_4 T^2/2 + C_5 T)$$

so $\Phi = 0$ for T small enough.

Question: which are good *L^p* norms to do this? with which precise assumptions on the data?

Martino Bardi (Università di Padova)

Similarly, from the 2nd equation can estimate

$$\|m(t,\cdot)\|_{L^q_x}\leq C_3 {\int_0^t}\|Dv(s,\cdot)\|_{L^p_x}ds$$

A Lipschitz assumption on F and $DG : L^q \rightarrow L^r$ implies

$$\|Dv(t,\cdot)\|_{L^p_x} \le C_1 L_F \int_t^T \|m(s,\cdot)\|_{L^q_x} ds + C_2 L_G \|m(T,\cdot)\|_{L^q_x}$$

Now set $\phi(t) := \|Dv(t, \cdot)\|_{L^p_x}$ and combine the inequalities to get

$$\phi(t) \leq C_4 \int_t^T \int_0^\tau \phi(s) ds \, d\tau + C_5 \int_0^T \phi(s) ds$$

and $\Phi := \sup_{0 \le t \le T} \phi(t)$ satisfies

$$\Phi \leq \Phi(C_4 T^2/2 + C_5 T)$$

so $\Phi = 0$ for T small enough.

Question: which are good L^p norms to do this? with which precise assumptions on the data?

Martino Bardi (Università di Padova)

Question: which are good L^p norms to do this? with which precise assumptions on the data?

Lions chooses $\|Dv(t,\cdot)\|_{L^{\infty}_{x}}$ and $\|m(t,\cdot)\|_{L^{1}_{y}}$,

works with periodic BC and assumes

- G = G(x) independent of m,
- *F* "regularizing", i.e., Lipschitz $L^1 \rightarrow C^1$.

Our choice is simpler: work in L^2 by energy estimates.

BA 4 BA

Question: which are good L^p norms to do this? with which precise assumptions on the data?

Lions chooses $\|Dv(t,\cdot)\|_{L^{\infty}_{x}}$ and $\|m(t,\cdot)\|_{L^{1}_{y}}$,

works with periodic BC and assumes

- G = G(x) independent of m,
- *F* "regularizing", i.e., Lipschitz $L^1 \rightarrow C^1$.

Our choice is simpler: work in L^2 by energy estimates.

Theorem [B.-Fischer]: uniqueness for short horizon

Assume $H \in C^2(\mathbf{R}^d)$, $\nu \in \mathcal{P} \cap \underline{L}^{\infty}(\mathbf{R}^d)$,

$$\|F(\cdot,\mu)-F(\cdot,\bar{\mu})\|_{2}\leq L_{F}\|\mu-\bar{\mu}\|_{2},$$

 $\|DG(\cdot,\mu) - DG(\cdot,\bar{\mu})\|_2 \le L_G \|\mu - \bar{\mu}\|_2$

 $(v_1, m_1), (v_2, m_2)$ two classical solutions of the MFG PDEs with $v_1 - v_2, m_1, m_2$ and their derivatives in $L^2([0, T] \times \mathbf{R}^d)$, and

 $|DH(Dv_i)|, |D^2H(Dv_i)| \leq C_H.$

Then $\exists \ ar{\mathcal{T}} = ar{\mathcal{T}}(d, L_{F}, L_{G}, \|
u\|_{\infty}, C_{H}) > 0$ such that $\forall \ \mathcal{T} < ar{\mathcal{T}}$,

 $v_1(\cdot, t) = v_2(\cdot, t)$ and $m_1(\cdot, t) = m_2(\cdot, t)$ for all $t \in [0, T]$.

Corollary (Uniqueness for "small data")

Uniqueness remains true for all T > 0 if either L_F, L_G are small, or sup $|D^2H(Dv_i)|$ is small.

Theorem [B.-Fischer]: uniqueness for short horizon

Assume $H \in C^2(\mathbf{R}^d)$, $\nu \in \mathcal{P} \cap \underline{L}^{\infty}(\mathbf{R}^d)$,

$$\|F(\cdot,\mu)-F(\cdot,\bar{\mu})\|_{2}\leq L_{F}\|\mu-\bar{\mu}\|_{2},$$

 $\|DG(\cdot,\mu) - DG(\cdot,\bar{\mu})\|_2 \le L_G \|\mu - \bar{\mu}\|_2$

 $(v_1, m_1), (v_2, m_2)$ two classical solutions of the MFG PDEs with $v_1 - v_2, m_1, m_2$ and their derivatives in $L^2([0, T] \times \mathbf{R}^d)$, and

 $|DH(Dv_i)|, |D^2H(Dv_i)| \leq C_H.$

Then $\exists \overline{T} = \overline{T}(d, L_F, L_G, \|\nu\|_{\infty}, C_H) > 0$ such that $\forall T < \overline{T}$,

 $v_1(\cdot, t) = v_2(\cdot, t)$ and $m_1(\cdot, t) = m_2(\cdot, t)$ for all $t \in [0, T]$.

Corollary (Uniqueness for "small data")

Uniqueness remains true for all T > 0 if either L_F, L_G are small, or sup $|D^2H(Dv_i)|$ is small.

Theorem [B.-Fischer]: uniqueness for short horizon

Assume $H \in C^2(\mathbf{R}^d)$, $\nu \in \mathcal{P} \cap \underline{L}^{\infty}(\mathbf{R}^d)$,

$$\|F(\cdot,\mu)-F(\cdot,\bar{\mu})\|_{2}\leq L_{F}\|\mu-\bar{\mu}\|_{2},$$

 $\|DG(\cdot,\mu) - DG(\cdot,\bar{\mu})\|_2 \le L_G \|\mu - \bar{\mu}\|_2$

 $(v_1, m_1), (v_2, m_2)$ two classical solutions of the MFG PDEs with $v_1 - v_2, m_1, m_2$ and their derivatives in $L^2([0, T] \times \mathbf{R}^d)$, and

 $|DH(Dv_i)|, |D^2H(Dv_i)| \leq C_H.$

Then $\exists \overline{T} = \overline{T}(d, L_F, L_G, \|\nu\|_{\infty}, C_H) > 0$ such that $\forall T < \overline{T}$,

 $v_1(\cdot, t) = v_2(\cdot, t)$ and $m_1(\cdot, t) = m_2(\cdot, t)$ for all $t \in [0, T]$.

Corollary (Uniqueness for "small data")

Uniqueness remains true for all T > 0 if either L_F, L_G are small, or $\sup |D^2 H(Dv_i)|$ is small.

Remark: a crucial estimate is

 $\|m_i(t,\cdot)\|_{\infty} \leq C(T,\|DH(Dv_i)\|_{\infty})\|\nu\|_{\infty}, \quad i=1,2, \ \forall \ t\in[0,T],$

that we prove by probabilistic methods.

Example (Regularizing costs)

$$F(x,\mu) = F_1\left(x, \int_{\mathbf{R}^d} k_1(x,y)\mu(y)dy\right),$$

with $k_1 \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$, $|F_1(x,r) - F_1(x,s)| \le L_1|r-s|$;

$$G(x,\mu) = g_1(x) \int_{\mathbf{R}^d} k_2(x,y)\mu(y)dy + g_2(x)$$

with $g_1, g_2 \in C^1(\mathbb{R}^d)$, Dg_1 bounded, $k_2, D_x k_2 \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$.

Martino Bardi (Università di Padova)

Remark: a crucial estimate is

 $\|m_i(t,\cdot)\|_{\infty} \leq C(T,\|DH(Dv_i)\|_{\infty})\|\nu\|_{\infty}, \quad i=1,2, \ \forall \ t\in[0,T],$

that we prove by probabilistic methods.

Example (Regularizing costs)

$$F(x,\mu) = F_1\left(x,\int_{\mathbf{R}^d}k_1(x,y)\mu(y)dy
ight),$$

with $k_1 \in L^2(\mathbf{R}^d \times \mathbf{R}^d), \ |F_1(x,r) - F_1(x,s)| \le L_1|r-s|$;

$$G(x,\mu)=g_1(x)\int_{\mathbf{R}^d}k_2(x,y)\mu(y)dy+g_2(x)$$

with $g_1, g_2 \in C^1(\mathbb{R}^d)$, Dg_1 bounded, $k_2, D_x k_2 \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$.

Martino Bardi (Università di Padova)

Example (Local costs) G = G(x) independent of m(T) and F of the form

$$F(\mathbf{x},\mu) = f(\mathbf{x},\mu(\mathbf{x}))$$

with $f : \mathbf{R}^d \times [0, +\infty) \to \mathbf{R}$ such that

$$|f(x,r)-f(x,s)| \leq L_f|r-s| \quad \forall x \in \mathbf{R}^d, r,s \geq 0.$$

Then *F* is Lipschitz in L^2 with $L_F = L_f$.

Examples of non-uniqueness

The stationary MFG PDEs:

(MFE)

$$\begin{cases} -\Delta v + H(x, \nabla v) + \lambda = F(x, m) & \text{in } \mathbb{T}^d, \\ \Delta m + div(\nabla_p H(x, \nabla v)m) = 0 & \text{in } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} m(x) dx = 1, \quad m > 0, \quad \int_{\mathbb{T}^d} v(x) dx = 0, \end{cases}$$

has uniqueness for F monotone increasing and H convex. Otherwise:

- Lasry-Lions for H(x, p) = |p|² via a Hartree equation of Quantum Mechanics,
- Gueant 2009 for (local) logarithmic utility $F = -\log m$
- M.B. 2012 and M.B. F. Priuli 2014 for LQG models in R^d
- M. Cirant 2015 and Y. Achdou M.B. M. Cirant 2016 for systems of two populations with Neumann boundary conditions.

Question: counter-examples for the evolutive case?

How far from the monotonicity condition? Also for T small?

Martino Bardi (Università di Padova)

Mean-Field Games

Existence of two solutions

Theorem (Any T > 0)

Assume d = 1, H(p) = |p|, $F, G \in C^1$, $\sigma > 0$ and C^2 , $M(\nu) = 0$, and

$$\frac{\partial F}{\partial x}(x,\mu) \begin{cases} \leq 0 & \text{if } M(\mu) > 0, \\ \geq 0 & \text{if } M(\mu) < 0. \end{cases}$$

$$\frac{\partial G}{\partial x}(x,\mu) \left\{ \begin{array}{ll} \leq 0 & \text{ and not } \equiv 0 & \text{ if } M(\mu) > 0, \\ \geq 0 & \text{ and not } \equiv 0 & \text{ if } M(\mu) < 0, \end{array} \right.$$

 \implies \exists solutions (v, m) , ($ar{v}, ar{m}$) with

 $v_x(t,x) < 0, \quad \bar{v}_x(t,x) > 0 \quad \text{ for all } 0 < t < T.$

• T > 0 can also be small: H convex but not C^1 .

• No assumption on the monotonicity of F, G w.r.t. μ .

We have also a probabilistic formulation and proof of

non-uniqueness under less assumption

Martino Bardi (Università di Padova)

Existence of two solutions

Theorem (Any T > 0)

Assume d = 1, H(p) = |p|, $F, G \in C^1$, $\sigma > 0$ and C^2 , $M(\nu) = 0$, and

$$\frac{\partial F}{\partial x}(x,\mu) \begin{cases} \leq 0 & \text{if } M(\mu) > 0, \\ \geq 0 & \text{if } M(\mu) < 0. \end{cases}$$

$$\frac{\partial G}{\partial x}(x,\mu) \left\{ \begin{array}{ll} \leq 0 & \text{ and not } \equiv 0 & \text{ if } M(\mu) > 0, \\ \geq 0 & \text{ and not } \equiv 0 & \text{ if } M(\mu) < 0, \end{array} \right.$$

 \implies \exists solutions (v, m) , ($ar{v}, ar{m}$) with

 $v_x(t,x) < 0$, $\bar{v}_x(t,x) > 0$ for all 0 < t < T.

- T > 0 can also be small: H convex but not C^1 .
- No assumption on the monotonicity of F, G w.r.t. μ .
- We have also a probabilistic formulation and proof of non-uniqueness under less assumptions on *σ*.

Martino Bardi (Università di Padova)

Mean-Field Games

Explicit example of non-uniqueness

 $F(x,\mu) = \beta x M(\mu) + f(\mu), \quad G(x,\mu) = \gamma x M(\mu) + g(\mu),$ with $\beta, \gamma \in \mathbf{R}$, $f, g : \mathcal{P}_1(\mathbb{R}) \to \mathbf{R}$, e.g., f, g depend only on the

moments of μ .

There are two different solutions if

 $\beta \leq \mathbf{0}, \quad \gamma < \mathbf{0},$

By the L-L monotonicity result there is uniqueness if $f = g \equiv 0$ and

 $\beta > 0, \quad \gamma \ge 0.$

If $\beta < 0, \gamma < 0$ *F* and *G* are not decreasing in $M(\mu)$, but an agents has a negative cost, i.e., a reward, for having a position *x* with the same sign as the average position M(m) of the whole population. Conversely, the conditions for uniqueness express aversion to crowd.

Martino Bardi (Università di Padova)

Explicit example of non-uniqueness

 $F(x,\mu) = \beta x M(\mu) + f(\mu), \quad G(x,\mu) = \gamma x M(\mu) + g(\mu),$ with $\beta, \gamma \in \mathbb{R}$, $f, g : \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}$, e.g., f, g depend only on the

moments of μ .

There are two different solutions if

 $\beta \leq \mathbf{0}, \quad \gamma < \mathbf{0},$

By the L-L monotonicity result there is uniqueness if $f = g \equiv 0$ and

 $\beta > 0, \quad \gamma \ge 0.$

If $\beta < 0, \gamma < 0$ *F* and *G* are not decreasing in $M(\mu)$, but an agents has a negative cost, i.e., a reward, for having a position *x* with the same sign as the average position M(m) of the whole population. Conversely, the conditions for uniqueness express aversion to crowd.

Martino Bardi (Università di Padova)

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Explicit example of non-uniqueness

 $F(x,\mu) = \beta x M(\mu) + f(\mu), \quad G(x,\mu) = \gamma x M(\mu) + g(\mu),$ with $\beta, \gamma \in \mathbf{R}$, $f, g : \mathcal{P}_1(\mathbb{R}) \to \mathbf{R}$, e.g., f, g depend only on the

moments of μ .

There are two different solutions if

 $\beta \leq \mathbf{0}, \quad \gamma < \mathbf{0},$

By the L-L monotonicity result there is uniqueness if $f = g \equiv 0$ and

 $\beta > 0, \quad \gamma \ge 0.$

If $\beta < 0, \gamma < 0$ *F* and *G* are not decreasing in $M(\mu)$, but an agents has a negative cost, i.e., a reward, for having a position *x* with the same sign as the average position M(m) of the whole population. Conversely, the conditions for uniqueness express aversion to crowd.

Martino Bardi (Università di Padova)

Theorem (*H* smooth and $T > \varepsilon$)

Same assumptions as previous Thm., BUT, for some $\delta, \varepsilon > 0$,

 $H(p) = |p|, \text{ for } |p| \ge \delta$

 $\frac{\partial G}{\partial x}(x,\mu) \left\{ \begin{array}{ll} \leq -\delta & \text{if } M(\mu) \geq \varepsilon, \\ \geq \delta & \text{if } M(\mu) \leq -\varepsilon, \end{array} \right.$

 \implies for $T \ge \varepsilon \exists$ solutions (v, m) , (\bar{v}, \bar{m}) with

 $v_x(t,x) \leq -\delta, \quad ar v_x(t,x) \geq \delta \quad ext{ for all } 0 < t < T.$

Example

$$H(\boldsymbol{p}) := \max_{|\gamma| \le 1} \left\{ -\boldsymbol{p}\gamma + \frac{1}{2}\delta(1-\gamma^2) \right\} = \left\{ \begin{array}{ll} \frac{\boldsymbol{p}^2}{2\delta} + \frac{\delta}{2}, & \text{if } |\boldsymbol{p}| \le \delta, \\ |\boldsymbol{p}|, & \text{if } |\boldsymbol{p}| \ge \delta, \end{array} \right.$$

Martino Bardi (Università di Padova)

Idea of proof

$$\begin{cases} -v_t + |v_x| = \frac{\sigma^2(x)}{2}v_{xx} + F(x, m(t, \cdot)), & v(T, x) = G(x, M(m(T))), \\ m_t - (sign(v_x)m)_x = \left(\frac{\sigma^2(x)}{2}m\right)_{xx}, & m(0, x) = \nu(x). \end{cases}$$

Ansatz: $sign(v_x) = -1$ and *m* solves

$$m_t + m_x = \left(\frac{\sigma^2(x)}{2}m\right)_{xx}, \quad m(0,x) = \nu(x).$$

Then *m* is the law of the process

$$X(t) = X(0) + t + \int_0^t \sigma(X(s)) dW(s)$$

with $X(0) \sim \nu$, so $M(m(t)) = \mathbf{E}[X(t)] = M(\nu) + t = t > 0 \quad \forall t$.

(E-)
$$-v_t - v_x = \frac{\sigma^2(x)}{2}v_{xx} + F(x,m), \quad v(T,x) = G(x,m(T)).$$

イロト 不得 トイヨト イヨト 二日

Then $w = v_x$ satifies

$$-w_t - w_x - \sigma \sigma_x w_x - \frac{\sigma^2}{2} w_{xx} = \frac{\partial F}{\partial x}(x, m) \le 0$$
$$w(T, x) = \frac{\partial G}{\partial x}(x, m(T)) \le 0 \text{ and not } \equiv 0,$$

Similarly we can build a solution with $sign(\bar{v}_x) = 1$ and \bar{m} solving

$$\bar{m}_t-\bar{m}_x=\frac{\sigma^2(x)}{2}\bar{m}_{xx},\quad \bar{m}(0,x)=\nu(x),$$

so that $M(\bar{m}(t,\cdot)) = -t < 0$ and $\frac{\partial F}{\partial x}(x,\bar{m}(t,\cdot)), \frac{\partial G}{\partial x}(x,\bar{m}(T)) \ge 0$.

Martino Bardi (Università di Padova)

Other examples of non-uniqueness in finite horizon MFGs

All very recent:

- A. Briani, P. Cardaliaguet 2016: for a potential MFG
- M. Cirant, D. Tonon 2017: for a focusing MFG

Motivation for 2 population: models of segregation phenomena in urban settlements, inspired by the Nobel laureate T. Schelling: Y. Achdou - M. B. - M. Cirant , M³AS 2017.

For Ω bounded and smooth, k = 1, 2

$$\left\{ \begin{array}{l} -\partial_t v_k + H^k(x, Dv_k) = \Delta v_k + F^k(x, m_1(t, \cdot), m_2(t, \cdot)) & \text{in } (0, T) \times \Omega, \\ v_k(T, x) = G^k(x, m_1(T, \cdot), m_2(T, \cdot)), & \partial_n v_k = 0 & \text{on } \partial\Omega \times (0, T), \\ \partial_t m_k - div(D_p H^k(x, Dv_k)m_k) = \Delta m_k & \text{in } (0, T) \times \Omega, \\ m_k(0, x) = \nu_k(x), & \partial_n m_k + m_k D_p H^k(x, Du_k) \cdot n = 0 & \text{on } \partial\Omega \times (0, T), \end{array} \right.$$

Martino Bardi (Università di Padova)

Some sufficient conditions for existence:

- F^k , G^k continuous in $\overline{\Omega} \times \mathcal{P}(\overline{\Omega})^2$.
- *F^k*, *G^k* bounded, respectively, in C^{1,β}(Ω), C^{2,β}(Ω) uniformly w.r.t. *m* ∈ P(Ω)².
- $H^k \in C^1(\overline{\Omega} \times \mathbf{R}^d)$ and $D_p H^k(x, p) \cdot p \ge -C_0(1 + |p|^2)$.
- $\nu_k \in C^{2,\beta}(\overline{\Omega}).$
- Compatibility conditions on boundary data
- The L-L monotonicity condition on F^k for uniqueness becomes: $\exists \lambda_i > 0 : \forall (m_1, m_2) \neq (\bar{m}_1, \bar{m}_2)$

$$\int_{\mathbf{R}^{d}}\sum_{i=1}^{2}\lambda_{i}[F^{i}(x,m_{1},m_{2})-F^{i}(x,\bar{m}_{1},\bar{m}_{2}]d(m_{i}-\bar{m}_{i})(x)>0$$

But in the simplest models $F^1 = F^1(x, m_2), F^2 = F^2(x, m_1)$, so, e.g.,

$$[F^{1}(x,m_{2})-F^{1}(x,\bar{m}_{2})](m_{1}-\bar{m}_{1})(x)$$

cannot have a sign!

Martino Bardi (Università di Padova)

Theorem [M.B. - M. Cirant]: uniqueness for small data

Assume $H^k \in C(\Omega \times \mathbf{R}^d)$, C^2 in $p, \nu_k \in \mathcal{P} \cap L^{\infty}(\Omega)$, $\|F^{k}(\cdot,\mu_{1},\mu_{2})-F^{k}(\cdot,\nu_{1},\nu_{2})\|_{2}\leq L_{F}(\|\mu_{1}-\nu_{1}\|_{2}+\|\mu_{2}-\nu_{2}\|_{2}),$ $\|DG^{k}(\cdot, \mu_{1}, \mu_{2}) - DG(\cdot, \mu_{1}, \mu_{2})\|_{2} < L_{G}(\|\mu_{1} - \nu_{1}\|_{2} + \|\mu_{2} - \nu_{2}\|_{2})$ $(v_1, v_2, m_1, m_2), (\bar{v}_1, \bar{v}_2, \bar{m}_1, \bar{m}_2)$ two classical solutions with $v_k - \bar{v}_k$, m_k , \bar{m}_k and their derivatives in $L^2([0, T] \times \Omega)$, and $|D_{\mathcal{D}}H^k(x, Dv_k)|, |D_{\mathcal{D}}H^k(x, D\bar{v}_k)| \leq C_1,$ $|D_{p}^{2}H^{k}(x, Dv_{k})|, |D_{p}^{2}H^{k}(x, D\bar{v}_{k})| \leq C_{2}.$ If either T is small, or L_F and L_G are small, or C_2 is small, then $v_k(\cdot, t) = \overline{v}_k(\cdot, t)$ and $m_k(\cdot, t) = \overline{m}_k(\cdot, t) \ \forall t \in [0, T], k = 1, 2.$

Remarks and perspectives

• Can build examples of non-uniqueness, as for 1 population, e.g., $H^{i}(x, p) = |p|, M(\nu_{i}) = 0,$

$$F_i(x, \mu_1 \mu_2) = \alpha_i x M(\mu_1) + \beta_i x M(\mu_2) + \frac{f_i(\mu_1, \mu_2)}{i}, \quad i = 1, 2,$$

$$G_i(x, \mu_1, \mu_2) = \gamma_i x M(\mu_1) + \delta_i x M(\mu_2) + g_i(\mu_1, \mu_2), \quad i = 1, 2,$$

with $\alpha_i, \beta_i, \gamma_i, \delta_i \leq 0$, $\gamma_i + \delta_i < 0$, i = 1, 2, $f_i, g_i : \mathcal{P}_1(\mathbb{R})^2 \to \mathbb{R}$.

- The proof of uniqueness for small data is flexible: can use other assumptions with different norms, a hard point is the L[∞] estimate for m(t, ·),
- it can be used if H(x, p) F(x, m) is replaced by $\mathcal{H}(x, p, m)$, under smoothness conditions on \mathcal{H} ,
- in principle it can be used for mean-field control, i.e., control of McKean-Vlasov stochastic differential equations.