
PDE Models of Controlled Growth

Alberto Bressan

Department of Mathematics, Penn State University

Center for Interdisciplinary Mathematics

bressan@math.psu.edu

Alberto Bressan (Penn State) growth models 1 / 41



Growing into the right shape
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Controlling the growth of living tissues

For higher living forms (plants, animals), growing into the right shape is
essential for survival

How can Nature control growth, sometimes in an amazingly precise way?

Can we write PDEs describing this feedback control mechanism?

What is the simplest system of PDEs generating the shapes found in nature?

“With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk” (John von Neumann)
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Two main settings

One-dimensional curves, growing in R3 (tree stems, vines)

Two-dimensional sets, growing in R2 (leaves)

numerical simulations + analytical proofs
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Stabilizing stem growth

what kind of stabilizing feedback is used here?
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Growth in the presence of obstacles

Are the growth equations still well posed, when an obstacle is present?

What additional feedback produces curling around other branches?
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A simple model of stem growth (F. Ancona, A.B., O. Glass)

New cells are born at the tip of the stem

Length of the stem grows in time at unit rate

(t,s)

γ (t,t)

k

γ (t,s)

γ(t, s) = position at time t of the cell born at time s

Unit tangent vector to the stem: k(t, s) = γs(t, s)

Alberto Bressan (Penn State) growth models 7 / 41



Stabilizing growth in the vertical direction

stem not vertical =⇒ local change in curvature

∂

∂t
γ(t, s) =

∫ s

0

e−β(t−σ) (k(t, σ)× e3)×
(
γ(t, s)− γ(t, σ)

)
dσ

ω(σ) = k(t, σ)× e3 = local angular velocity

e−β(t−σ) = stiffness factor

0

e
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k

k(t,s)

ω

(t,  )σ

γ(t,s)
e
3 e

2

γ( ,σ)t


γ(t0, s) = γ(s) s ∈ [0, t0]

γss(t, s)

∣∣∣∣
s=t

= 0
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We say that the growth equation is stable in the vertical direction if for any
initial time t0 > 0 and every ε > 0 there exists δ > 0 such that

|πhor k(t0, s)| ≤ δ for all s ∈ [0, t0]

implies
∣∣πhor γ(t, σ)

∣∣ ≤ ε for all t > t0, σ ∈ [0, t]
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Numerical simulations (Wen Shen, 2016)

β = 0.1 β = 1.0 β = 2.5

stability is always achieved

increasing the stiffness reduces oscillations
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Analytical results (F. Ancona, A.B., O. Glass, 2017)

β = stiffening constant

If β4 − β3 − 4 ≥ 0, then the growth is stable in the vertical direction

(non-oscillatory regime: β ≥ β1 ≈ 1.7485)

If 3
5β + 9

32β < 1 then the growth is still stable in the vertical direction

(oscillatory regime: β ≥ β0 ≈ 0.9093)

What happens for β > 0 small ?
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Growth with obstacles

P(s)

P

P(s) ~

Ω Ω

(σ)

ω(σ) = additional bending of the stem caused the obstacle, at the point P(σ)

P̃(s)− P(s) =

∫ s

0

ω(σ)× (P(s)− P(σ))dσ s ∈ [0, t]

Among all infinitesimal deformations that push the stem outside the obstacle,

minimize the deformation energy: E =
1

2

∫ t

0

eβ(t−σ)|ω(σ)|2 dσ
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An evolution problem with unilateral constraints

εγ(t+  )

Ω Ω

γ(t)

γt(t, s) =

∫ s

0

[
Ψ
(
t, σ, γ(t, σ), γs(t, σ)

)
+ ω(t, s)

]
×
(
γ(t, s)− γ(t, σ)

)
dσ

Ψ =⇒ bending as a feedback response to gravity or other external objects

ω =⇒ bending produced by the constraint (minimizing the deformation
energy)
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Vines clinging to tree branches (A.B., M.Palladino, W.Shen, 2016)

In addition to the upward bending, one can assume that the stem “feels” an
obstacle within a distance δ > 0.

This triggers an additional bending in the direction of the obstacle.

Ω

γ
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Numerical simulations (Wen Shen, 2016)
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Well-posedness of the stem growth model with obstacle
(A.B. - M.Palladino)

Rewrite as a differential inclusion (upper semicontinuous, with convex values)

d

dt
γ(t, ·) ∈ Φ + Γ γ(t, ·) ∈ H2([0,T ] ; R3)

Γ = cone of admissible reactions produced by the obstacle

Solutions exist and are unique except if a (highly non-generic) breakdown
configuration is reached

Φ

2

good good bad

Φ
γ

ΩΩΩ

γ γ γ
1 2 3

Γ
1

Γ
3

Γ
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Continuous dependence

d

dt
z(t) ∈ f (z) + Γ(z), z /∈ S

If we could show:
d

dt

∥∥z1(t)− z2(t)
∥∥
H2 ≤ C

∥∥z1(t)− z2(t)
∥∥
H2 (1)

Gronwall =⇒ uniqueness, continuous dependence

Here (1) fails because the cones are not perpendicular to the boundary of S

f

2

v
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1 1 v
1
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z

Γ

Γ(z)

S S
S

z

z

z
z

Γ

Possible approach: introduce a Riemann-type metric on the Hilbert space H2

which renders each Γ a normal cone to the boundary of the admissible set.Alberto Bressan (Penn State) growth models 17 / 41



Theorem (A.B. - M.Palladino, 2017)

The equations for the growing stem with obstacles have a unique solution

t 7→ γ(t, ·) ∈ H2([0,T ];R3)

defined up to the first time where a ”breakdown configuration” is reached.

badgood good

Ω

bad

Ω

Ω
Ω

γ(t,s)

Ω

γ (t,t)

γ(t,T)
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Tree-like structures

To model growth of a tree one needs:

(I) A rule specifying when new branches are formed

(II) An equation describing the growth rate of each branch

(III) An equation describing how the orientation of each branch can
change, responding to gravity and to sunlight

(IV) A rule determining when one or more branches die out, because of
lack of sunlight
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The shading function

A point P on a branch produces shade to all lower points in space

Shade produced at y = (y1, y2, y3) by a point located at the origin:

ϕ(y)
.

= 2|y|−2〈y, e3〉− =
|y3| − y3

y 2
1 + y 2

2 + y 2
3

≈ (ε+ y 2
3 )1/2 − y3

ε+ y 2
1 + y 2

2 + y 2
3

y
e

y

y
x 1

3

e
2

e
1

3

Total shade produced at point y ∈ R3 by all branches of a tree T :

Φ(y) =

∫
x∈T

ϕ(y − x) d`(x)

Sunlight received by point y in space: Ψ(y) = e−αΦ(y)
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Modeling assumptions

Growth speed ≈ sunlight received by the tip of the branch

Branches bifurcate when they reach a threshold length Lb

A group of branches dies out when

[total amount of sunlight received]

[total length]
≤ δ0
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Bending of branches

Model 1. Once created, branches are rigid. The curvature of the tip is
determined in response to gravity and the gradient of sunlight.

Model 2. The curvature at the tip vanishes. Branches are elastic, and
modify their orientation in response to gravity and the gradient of sunlight.
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Numerical simulations (Wenrui Hao, 2017) - model 1
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Numerical simulations - model 2

Random branching: the probability that a branch bifurcates is
proportional to the length of the branch.
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Next steps:

Compare:

shapes generated by a growth algorithm

shapes of real trees

“optimal tree shapes” defined by a variational problem
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Optimization problems for tree-like structures

maximize:

∫
x∈T

Ψ(x) d`(x)

total amount of sunshine captured by all branches

subject to:

∫
x∈T

K (x) d`(x) = C

a constraint on the total length
(or the cost to transport nutrients from the root to all branches)
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A system of PDEs modeling controlled growth in Rn

To grow into a specific shape, different portions of the living tissue must
expand at different rates. This can be achieved by a chemical gradient.

The system of PDEs should include:

(1) One or more diffusion equations, describing the density of growth-inducing
nutrients/morphogens inside the living tissue

(2) A dynamic equation, describing how particles on the tissue move, as a result
of bulk growth

v

(t)

v

Ω
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A linear diffusion-adsorption equation

Ω(t) = region occupied by living tissue at time t

w(t, x) density of (morphogen-producing) signaling cells, at time t, at point x ∈ Ω(t)


uτ = w + ∆u − u x ∈ Ω(t)

∇u · n = 0 x ∈ ∂Ω(t)

u = density of growth-inducing chemical. Determined by

production + diffusion + adsorption

Diffusion of chemicals within the living tissue is much faster than the growth of the
tissue itself

By separation of time scales, it is appropriate to consider the steady state
u −∆u = w x ∈ Ω(t)

∇u · n = 0 x ∈ ∂Ω(t)

Alberto Bressan (Penn State) growth models 31 / 41



The growth equations

v(t, x) = velocity determined by bulk growth

Uniquely determined (up to a rigid motion) by the variational problem minimize: E (v)
.

=
1

2

∫
Ω(t)
|sym∇v|2 dx

subject to: div v = u

E (v) = elastic energy of the infinitesimal deformation

sym A
.

=
A + AT

2
, skew A

.
=

A− AT

2
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The growth equations

Finally, we assume that morphogen-producing cells are passively transported
within the tissue, so that

wt + div (wv) = 0 x ∈ Ω(t)

This has to be supplemented by assigning an initial domain and an initial
distribution of morphogen-producing cells:

Ω(0) = Ω0, w(0, ·) = w0

v

(t)

v

Ω
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Summary of the equations

Density of morphogen

u = argmin

∫
Ω

( |∇u|2

2
+

u2

2
−wu

)
dx ⇐⇒

{
u −∆u = w x ∈ Ω

∇u · n = 0 x ∈ ∂Ω

Velocity field determined by bulk growth

v = argmin

∫
Ω

|sym∇v|2 dx

subject to: div v = u

⇐⇒


−∆v + 2∇p = ∇u x ∈ Ω

div v = u x ∈ Ω

(sym∇v − pI)n = 0 x ∈ ∂Ω

Density of morphogen-producing cells

wt + div (v w) = 0
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Construction of solutions

Theorem (A.B., Marta Lewicka, 2016)

Initial domain: Ω(0) = Ω0, with boundary ∂Ω0 ∈ C2,α

Initial density of signaling cells: w0 ∈ Cα(Ω0).

A classical solution exists, locally in time, with ∂Ω(t) ∈ C2,α

w(t, ·) ∈ Cα(Ω(t))

 u(t, ·) ∈ C2,α(Ω(t))

v(t, ·) ∈ C2,α(Ω(t))

The solution is unique, up to rigid motions.

Proof: based on Schauder type regularity estimates, in
Agmon-Douglis-Nirenberg (1964)
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Construction breaks down as the inner or outer curvature radius → 0.

Ω( )

Ω(τ)

Ω
0

t

For Hele-Shaw problems, or models of tumor growth,

at each time t the velocity v(t, ·) minimizes∫
Ω(t)

|v(t, x)|2 dx

=⇒ solution is unique

In the present case, the velocity v(t, ·) minimizes∫
Ω(t)

|sym∇v(t, x)|2 dx

=⇒ solution is unique up to a rigid motion
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Further directions . . .

Controllability. How can the shape of the growing tissue be
controlled by the signaling cells?

Anisotropic diffusion and stress-strain response
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Stratified domains: the growing domain M = M1 ∪ · · · ∪Mn is
the union of manifolds of different dimensions

Ω

Ω
2

Ω
1

3
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Growth of curved surfaces in R3

diffusion of morphogen takes place on a 2D Riemann manifold
immersed in R3

elastic deformation energy must be carefully defined
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Happy  Anniversary  Piermarco !
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