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The problem we deal with is an optimal con-
trol problem governed by the state equation

_Au=fin u € H3(Q);

the state variable is u € H}(RY) (extended by
zero outside 2), while the control variable is
the domain €2. The cost function is of the
form

(2,0) d
/Q](a: w) dx
and the class of admissible controls is
F(u,Q) ={QC D, |Q| <mf,

where D is a fixed bounded domain of R?.
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Problems of this kind have been studied a
lot from the point of view of the existence
of an optimal domain; the standard situation
IS a competition:

homogenization vs shape optimization

In general homogenization wins and no opti-
mal domain exists, since minimizing sequences
tend to create fine perforations (Cioranescu-
Murat example) and optimal solution exist
only in a suitable relaxed sense (capacitary
measures introduced by Dal Maso-Mosco 1987).
However, in some cases optimal shapes exist.
7



A first situation in which optimal shapes ex-
ist is when geometrical constraints are added
to admissible controls, as for instance:

convexity, equi-Lipschitz condition, equi-bounded
perimeter, uniform exterior cone condition,
uniform capacity condition, uniform Wiener
estimates, topological conditions (in dim. 2). ..

that rule out the homogenization. In our
case we only have the Lebesgue measure
constraint {|2| < m} which is not sufficient
to provide enough compactness to enforce
the existence of an optimal €2.



Another case in which the existence of an op-
timal domain occurs is when the cost func-
tional verifies a monotonicity condition.

Theorem [Buttazzo-Dal Maso (ARMA 1993)]
Let F'(Q2) be such that:

e I is v-lower semicontinuous;

e ' is decreasing for set inclusion.

T hen the shape optimization problem

min {F(Q) ; |Q|§m}

admits a solution Qopt, and |Qppt| = m.



et us stress that the monotonicity condition
above is rather restrictive and, even if some
interesting problems (spectral optimization)
verify it, in the linear quadratic case

F(u,Q2) = /Q lu — ug|? dx

homogenization wins (i.e. no existence of ;).

We consider the case when the cost inte-
grand j is linear; if Ro is the resolvent op-
erator of the Dirichlet Laplacian in €2, our
problem can be rewritten as

min{/Qh(a:)RQ(f)d:U e gm}.
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We are interested in the case when the da-
tum f is only known only up to some degree
of uncertainty; nevertheless, we still want to
find an optimal solution in some sense.

A possibility is to assume that f is known

with a given probability P on the space of

data; we are then in the framework of stochas-
tic optimization and we have to minimize the

average cost functional

Fave() = [ | [ h(@)Ro(f) dz| P(df)

in the admissible class {|2| < m}.
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Another possibility to handle problems with
uncertainty in the data is the so called worst
case analysis, in which we optimize the worst
possible situation, assuming that the right-
hand side f is known up to an error ¢. In
our case this amounts to minimize the worst
case functional

Fue(Q) = sup [ | M@ Ro(f +g) da),

gl Lp<d

Roughly speaking we are replacing the P-
average by a supremum.
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Stochastic shape optimization

We want to determine the shape of a thermic
conductor of a given measure m which mini-
mizes the energy, but we only know the heat
sources f up to a probability P on L2(R%).
We have then the problem

min{/E(Q,f) dP(f) : 19| < m}

where

1
E(Q, )= min / (—|Vu|2—fu) dz.
uw€HE () /2 \2
T his problems admits an optimal shape.

13



Since the Sobolev spaces are monotonically
included as

Q1 C QU == H(Q) C H5(20)

the energy E(£2, f) is decreasing for the set
inclusion, so is also its average

[ B2, 1) dP(h)

and the existence theorem above applies.

Note that in this case, an integration by parts
gives the cost functional in the form

B, ) =~ [ fRo(f)dr
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A more interesting (and realistic) situation
iIs when the cost functional is perfectly de-
termined and the uncertainty occurs only in
the PDE. the problem is then

min /[/Q h(:r;)uQ,fda:] dP(f)

|2[<m
where the function h is perfectly known, while

the heat source f is only known up the prob-
ability P.

For instance, we want to maximize the av-
erage temperature (i.e. h = 1) varying the
domain €2, under only a partial information
about the heat sources f.
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Using the fact that the resolvent operator
Rgo is self-adjoint, we have, denoting by Bp
the barycenter of P

[ ap(s) [ nRo(f)dz = [aP(f) | Ro(h)fda
— /Q RQ(h)( / £dp( f))d:p — /Q Re(h)Bp dz.

Notice that, by the maximum principle, the
monotonicity occurs when

Bp>0and h<0 or Bp<O0and~h=>0.
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Handling this case is rather more difficult
(Buttazzo-Velichkov arxiv 2017), when the
functions h and Bp may change sign. Never-
theless the existence of an optimal shape still
holds, together with some necessary condi-
tions of optimality.

In this case, if the admissible class of do-
mains is {|2| < m}, in general we should
not expect the optimal domain £2,, satu-
rates the constraint. In fact, one of the op-
timality conditions gives

either |Qopt| =m  or Qo D {hBp < 0}.
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Worst-case shape optimization

We deal here with the case when the control
IS a domain; other cases of worst case op-
timization problems can be found in Allaire-
Dapogny (M3AS 2014). We want to show
the existence of an optimal domain for

min {]-"wc(Q) . QCD, | <L m}
where F,,c IS the worst-case functional
Fuel) = sup_| [ n(@)Ro(f +9) da
gl p<d L/€2

Again, in general the cost Fyuc(2) is not de-
creasing with respect to the set inclusion.
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We start by considering as F' the energy func-
tional

E(Q, f) = inf /Q (%|Vu|2 _ fu> da.

uEH&(Q)
The worst-case functional Fye iS:
Fuwe(2) =  sup  E(Q,f+g9)
9/l Lp(py<d
1
— inf /(—v 2 _ )d 5
weH1 () ID 2| ul® = fu | dz + ollull y py

and the worst-case shape optimization prob-
lem becomes

min {ch(Q) . QC D, |2 < m}.
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The monotonicity assumptions of the exis-
tence theorem are verified in the worst-case
shape optimization problem, and so we have
that for every 6 and m there exists an optimal
domain €25, solving

min{F5(Q) : QC D, [Q <m}

where

_ Lo 2
= inf / (§|Vu| —fu) de+6[ull L, 1y
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Radial case

We consider the case of a right-hand side
f of radial type; more precisely, we assume
f = f(|lz|) with f(r) decreasing.

Theorem If D is large enough (to contain
a ball of measure m) the optimal domain
Qs.m Is a ball of measure m (centered at the
origin).
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Uncertainty only in the state equation

We consider the case of a shape optimal con-
trol problem

max h d
| h@)ug do

Q2[<m
where h > 0 and ug is the solution of
—Au=f in S, uw e H3 ().

We assume that h is perfectly known, while
f is uncertain.

Example: best shape for the average tem-
perature under partially known heat sources.
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Again, by the fact that the resolvent opera-
tor Rq is self-adjoint, we can write the worst
case functional as

Q) = _ d
Fs(€2) \\5@25 /DhR(f+g) T

= sup [ (fR(h)+gR(h)) da

lgllp<é
= | ~f@wede + dllwally, py

where

—Awg =h in €, wq € HA ().

23



Notice that Fs is still v-lower semicontinu-
ous but it is not monotone decreasing. Then
the Buttazzo-Dal Maso theorem for the ex-
istence of an optimal shape cannot be used.
Nevertheless, the following result holds.

Theorem Assume:

e h>0 and h € LYD);

e £ € LP(D) with p > 2d/(d + 2);

e f>c>0o0nD.

Then, there exists § > 0 such that for every

0 < 6 < 4, there exists a solution Q5 to the

worst-case shape optimal control problem.
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A numerical example

D=1[0,1]x[0,1], p=2, &§=0.25
(

1 on [0,3] x [0, 1]

12 on [, 1] x [0, 1]

It is numerically convenient to simulate a do-
main 2 by a potential V(x) taking the value
0 in €2 and 4oo outside. The measure |2| is
then simulated through the quantity

/D e~V () 40 with o small.
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More precisely this approximation has to be
stated in terms on [-convergence, proved in
[BGRV, JEP 2014].

The simulation has been made by J.C. Bel-
lido using:

® FreeFEM++

e the Method of Moving Asymptotes (a kind
of gradient method widely used for Topology
and Structural Optimization problems)

e 2 mesh of 50 x 50 elements.
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In progress: It would be very interesting
to make an asymptotic analysis (often called
[ development) of the sets Q45 for § small.

the sets Q2 (black) and 25 (red)
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The expected result is that 25 is (asymptot-
ically) equal to €2 with a boundary layer
of local thickness dh(o)

5= {a: =tv(o), c € 02, —0h (o) <t < 5h+(0)}

for a suitable function h to be characterized,
with [50 hdo = 0.
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Happy birthday Piermarco

and

welcome among seniors...



