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The problem we deal with is an optimal con-
trol problem governed by the state equation

−∆u = f in Ω, u ∈ H1
0(Ω);

the state variable is u ∈ H1
0(Rd) (extended by

zero outside Ω), while the control variable is
the domain Ω. The cost function is of the
form ∫

Ω
j(x, u) dx

and the class of admissible controls is

F (u,Ω) =
{

Ω ⊂ D, |Ω| ≤ m
}
,

where D is a fixed bounded domain of Rd.
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Problems of this kind have been studied a

lot from the point of view of the existence

of an optimal domain; the standard situation

is a competition:

homogenization vs shape optimization

In general homogenization wins and no opti-

mal domain exists, since minimizing sequences

tend to create fine perforations (Cioranescu-

Murat example) and optimal solution exist

only in a suitable relaxed sense (capacitary

measures introduced by Dal Maso-Mosco 1987).

However, in some cases optimal shapes exist.
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A first situation in which optimal shapes ex-
ist is when geometrical constraints are added
to admissible controls, as for instance:

convexity, equi-Lipschitz condition, equi-bounded
perimeter, uniform exterior cone condition,
uniform capacity condition, uniform Wiener
estimates, topological conditions (in dim. 2). . .

that rule out the homogenization. In our
case we only have the Lebesgue measure
constraint {|Ω| ≤ m} which is not sufficient
to provide enough compactness to enforce
the existence of an optimal Ω.
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Another case in which the existence of an op-

timal domain occurs is when the cost func-

tional verifies a monotonicity condition.

Theorem [Buttazzo-Dal Maso (ARMA 1993)]

Let F (Ω) be such that:

• F is γ-lower semicontinuous;

• F is decreasing for set inclusion.

Then the shape optimization problem

min
{
F (Ω) : |Ω| ≤ m

}
admits a solution Ωopt, and |Ωopt| = m.
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Let us stress that the monotonicity condition
above is rather restrictive and, even if some
interesting problems (spectral optimization)
verify it, in the linear quadratic case

F (u,Ω) =
∫

Ω
|u− u0|2 dx

homogenization wins (i.e. no existence of Ωopt).

We consider the case when the cost inte-
grand j is linear; if RΩ is the resolvent op-
erator of the Dirichlet Laplacian in Ω, our
problem can be rewritten as

min
{ ∫

Ω
h(x)RΩ(f) dx : |Ω| ≤ m

}
.
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We are interested in the case when the da-
tum f is only known only up to some degree
of uncertainty; nevertheless, we still want to
find an optimal solution in some sense.

A possibility is to assume that f is known
with a given probability P on the space of
data; we are then in the framework of stochas-
tic optimization and we have to minimize the
average cost functional

Fave(Ω) =
∫ [ ∫

Ω
h(x)RΩ(f) dx

]
P (df)

in the admissible class {|Ω| ≤ m}.
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Another possibility to handle problems with

uncertainty in the data is the so called worst

case analysis, in which we optimize the worst

possible situation, assuming that the right-

hand side f is known up to an error δ. In

our case this amounts to minimize the worst

case functional

Fwc(Ω) = sup
‖g‖Lp≤δ

[ ∫
Ω
h(x)RΩ(f + g) dx

]
,

Roughly speaking we are replacing the P -

average by a supremum.
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Stochastic shape optimization

We want to determine the shape of a thermic
conductor of a given measure m which mini-
mizes the energy, but we only know the heat
sources f up to a probability P on L2(Rd).
We have then the problem

min
{ ∫

E(Ω, f) dP (f) : |Ω| ≤ m
}

where

E(Ω, f) = min
u∈H1

0(Ω)

∫
Ω

(
1

2
|∇u|2 − fu

)
dx.

This problems admits an optimal shape.
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Since the Sobolev spaces are monotonically
included as

Ω1 ⊂ Ω2 =⇒ H1
0(Ω1) ⊂ H1

0(Ω2)

the energy E(Ω, f) is decreasing for the set
inclusion, so is also its average∫

E(Ω, f) dP (f)

and the existence theorem above applies.

Note that in this case, an integration by parts
gives the cost functional in the form

E(Ω, f) = −
1

2

∫
Ω
fRΩ(f) dx.
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A more interesting (and realistic) situation
is when the cost functional is perfectly de-
termined and the uncertainty occurs only in
the PDE. the problem is then

min
|Ω|≤m

∫ [ ∫
Ω
h(x)uΩ,f dx

]
dP (f)

where the function h is perfectly known, while
the heat source f is only known up the prob-
ability P .

For instance, we want to maximize the av-
erage temperature (i.e. h = 1) varying the
domain Ω, under only a partial information
about the heat sources f .
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Using the fact that the resolvent operator

RΩ is self-adjoint, we have, denoting by BP
the barycenter of P∫
dP (f)

∫
Ω
hRΩ(f) dx =

∫
dP (f)

∫
Ω
RΩ(h)f dx

=
∫

Ω
RΩ(h)

( ∫
fdP (f)

)
dx =

∫
Ω
RΩ(h)BP dx.

Notice that, by the maximum principle, the

monotonicity occurs when

BP ≥ 0 and h ≤ 0 or BP ≤ 0 and h ≥ 0.
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Handling this case is rather more difficult
(Buttazzo-Velichkov arxiv 2017), when the
functions h and BP may change sign. Never-
theless the existence of an optimal shape still
holds, together with some necessary condi-
tions of optimality.

In this case, if the admissible class of do-
mains is {|Ω| ≤ m}, in general we should
not expect the optimal domain Ωopt satu-
rates the constraint. In fact, one of the op-
timality conditions gives

either |Ωopt| = m or Ωopt ⊃ {hBP ≤ 0}.
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Worst-case shape optimization

We deal here with the case when the control
is a domain; other cases of worst case op-
timization problems can be found in Allaire-
Dapogny (M3AS 2014). We want to show
the existence of an optimal domain for

min
{
Fwc(Ω) : Ω ⊂ D, |Ω| ≤ m

}
where Fwc is the worst-case functional

Fwc(Ω) = sup
‖g‖Lp≤δ

[ ∫
Ω
h(x)RΩ(f + g) dx

]
,

Again, in general the cost Fwc(Ω) is not de-
creasing with respect to the set inclusion.
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We start by considering as F the energy func-
tional

E(Ω, f) = inf
u∈H1

0(Ω)

∫
Ω

(
1

2
|∇u|2 − fu

)
dx.

The worst-case functional Fwc is:

Fwc(Ω) = sup
‖g‖Lp(D)≤δ

E(Ω, f + g)

= inf
u∈H1

0(Ω)

∫
D

(
1

2
|∇u|2 − fu

)
dx+ δ‖u‖

Lp
′(D)

and the worst-case shape optimization prob-
lem becomes

min
{
Fwc(Ω) : Ω ⊂ D, |Ω| ≤ m

}
.
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The monotonicity assumptions of the exis-

tence theorem are verified in the worst-case

shape optimization problem, and so we have

that for every δ and m there exists an optimal

domain Ωδ,m solving

min
{
Fδ(Ω) : Ω ⊂ D, |Ω| ≤ m

}
where

Fδ(Ω) = inf
u∈H1

0(Ω)

∫
D

(
1

2
|∇u|2−fu

)
dx+δ‖u‖

Lp
′(D)

.
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Radial case

We consider the case of a right-hand side

f of radial type; more precisely, we assume

f = f(|x|) with f(r) decreasing.

Theorem If D is large enough (to contain

a ball of measure m) the optimal domain

Ωδ,m is a ball of measure m (centered at the

origin).
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Uncertainty only in the state equation

We consider the case of a shape optimal con-
trol problem

max
|Ω|≤m

∫
Ω
h(x)uΩ dx

where h ≥ 0 and uΩ is the solution of

−∆u = f in Ω, u ∈ H1
0(Ω).

We assume that h is perfectly known, while
f is uncertain.

Example: best shape for the average tem-
perature under partially known heat sources.
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Again, by the fact that the resolvent opera-

tor RΩ is self-adjoint, we can write the worst

case functional as

Fδ(Ω) = sup
‖g‖p≤δ

−
∫
D
hR(f + g) dx

= sup
‖g‖p≤δ

−
∫
D

(
fR(h) + gR(h)

)
dx

=
∫
D
−f(x)wΩ dx+ δ‖wΩ‖Lp′(D)

where

−∆wΩ = h in Ω, wΩ ∈ H1
0(Ω).
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Notice that Fδ is still γ-lower semicontinu-

ous but it is not monotone decreasing. Then

the Buttazzo-Dal Maso theorem for the ex-

istence of an optimal shape cannot be used.

Nevertheless, the following result holds.

Theorem Assume:

• h ≥ 0 and h ∈ Ld(D);

• f ∈ Lp(D) with p ≥ 2d/(d+ 2);

• f ≥ c > 0 on D.

Then, there exists δ̄ > 0 such that for every

0 < δ ≤ δ̄, there exists a solution Ωδ to the

worst-case shape optimal control problem.
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A numerical example

D = [0,1]× [0,1], p = 2, δ = 0.25

f =

1 on [0, 1
2]× [0,1]

2 on [1
2,1]× [0,1]

It is numerically convenient to simulate a do-

main Ω by a potential V (x) taking the value

0 in Ω and +∞ outside. The measure |Ω| is

then simulated through the quantity∫
D
e−αV (x) dx with α small.
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More precisely this approximation has to be

stated in terms on Γ-convergence, proved in

[BGRV, JEP 2014].

The simulation has been made by J.C. Bel-

lido using:

• FreeFEM++

• the Method of Moving Asymptotes (a kind

of gradient method widely used for Topology

and Structural Optimization problems)

• a mesh of 50× 50 elements.
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0

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8

1
0

500

0

200

400

600

800

Optimal potential (3D view) for the case with δ = 0.25



In progress: It would be very interesting
to make an asymptotic analysis (often called
Γ development) of the sets Ωδ for δ small.

the sets Ω (black) and Ωδ (red)
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The expected result is that Ωδ is (asymptot-

ically) equal to Ω with a boundary layer Σδ

of local thickness δh(σ)

Σδ =
{
x = tν(σ), σ ∈ ∂Ω, −δh−(σ) < t < δh+(σ)

}
for a suitable function h to be characterized,

with
∫
∂Ω h dσ = 0.
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Happy birthday Piermarco

and

welcome among seniors...


