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Mean Field Games (MFG) are Nash equilibria in

nonatomic games = infinitely many agents having individually a negligible influence on the
global system (as in Schmeidler (1973), or Mas-Colell (1983, 1984))

in a optimal control framework = each agent acts on his state which evolves in continuous
time and has a payoff depending on the other’s position
(stochastic optimal control)

Pioneering works :

— Models invented by Lasry-Lions (2006)
and Caines-Huang-Malhamé (2006)

— Similar models in the economic literature : heterogeneous agent models
(Aiyagari (’94), Bewley (’86), Krusell-Smith (’98),...)
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The typical MFG system

Given a finite horizon T > 0, we consider the MFG system

(MFG)







−∂t u −∆u + H(x,Du) = f (x, m(t)) in (0, T )× T
d

∂t m −∆m − div(mDpH(x, Du)) = 0 in (0,T )× T
d

u(T , x) = g(x,m(T )), m(0, ·) = m0 in T
d

where

u = u(t, x) is the value function of a typical small player,

m = m(t, ·) is the density of the population at time t.

H = H(x, p) : Td × R
d → R is a smooth, unif. convex in p, Hamiltonian,

f , g : Td ×P(Td ) → R are “smooth" coupling functions,
(P(Td ) = the set of Borel probability measures on T

d )

m0 ∈ P(Td ) is the initial distribution of the players.
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Basic results of the MFG system

For the MFG equilibrium system :

(MFG)







(i) −∂t u −∆u + H(x, Du) = f (x, m(t)) in (0,T )× T
d

(ii) ∂t m −∆m − div(mDpH(x, Du)) = 0 in (0, T )× T
d

(iii) m(0, ·) = m0, u(T , x) = g(x,m(T )) in T
d

Existence of solutions : holds under general conditions (Lasry-Lions)

Uniqueness cannot be expected in general,

but holds under a monotonicity conditions on f and g (Lasry-Lions) :
∫

Td
(f (x, m) − f (x,m′))d(m − m′) ≥ 0,

∫

Td
(g(x,m) − g(x,m′))d(m − m′) ≥ 0.

Link with differential games with finitely many players.

— from the MFG system to the N−player differential games
Many contributions (Huang-Caines-Malahmé, Carmona-Delarue, ...)

— from Nash equilibria of N−player differential games to the MFG system.

LQ differential games (Bardi, Bardi-Priuli)
Open loop NE (Fischer, Lacker),
Closed loop NE (C.-Delarue-Lasry-Lions).
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Standing assumptions

H is C2 on T
d × R

d with

1

C
Id ≤ D2

ppH(x, p) ≤ CId ∀(x, p) ∈ T
d × R

d .

and
〈Dx H(x, p), p〉 ≥ −C

(

|p|2 + 1
)

.

The maps f and g are Lipschitz continuous and regularizing :

The map m → f (·,m) is Lipschitz continuous from P(Td ) to C1(Td ),
while the map m → g(·,m) is Lipschitz continuous from P(Td ) to C3(Td ).

The initial measure m0 has a smooth density.
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Potential MFG

Potential mean field games

Definition

We say that the MFG system is potential if there exists F ,G : P(Td ) → R of class C1 such that

δF

δm
(m, x) = f (x, m),

δG

δm
(m, x) = g(x,m).

Directional derivative : a map U : P(Td ) → R is C1 if there exists a continuous map
δU

δm
: P(Td )× T

d → R such that, for any m,m′ ∈ P(Td ),

U(m′)− U(m) =

∫ 1

0

∫

Td

δU

δm
((1 − s)m + sm′, y)d(m′ − m)(y)ds.

As δU
δm

is defined up to an additive constant, we adopt the normalization convention

∫

Td

δU

δm
(m, y)dm(y) = 0.
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Potential MFG

Potential associated with the MFG system : Let

Φ(m,w) =

∫ T

0

∫

Td
m(t, x)L

(

x,
w(t, x)

m(t, x)

)

dxdt +

∫ T

0

F (m(t))dt + G(m(T )),

where (m, w) solves

∂t m −∆m + div(w) = 0 in (0,T )× T
d m(0) = m0

and L is the “convex conjugate” of H : L(x, q) = sup
p∈Rd

−〈p, q〉 − H(x, p).

Proposition

Φ has a (at least) one minimum.

If (m, w) is a minimum of Φ, then there exists u such that (u,m) is a solution of the MFG
system, with w = −mDpH(x, Du).

If f , g are monotone, then Φ is strictly convex and the minimum is unique.
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The fictitious play in MFG

The Fictitious Play

It runs as follows :

The agents share the same initial guess (m0(t))t∈[0,T ] on the evolution of the population
density.

If the game has been played n times, then :

At the beginning of stage n + 1, the players have observed the same past and share the
same guess (mn(t))t∈[0,T ] on the evolving density of the population.

They compute their corresponding optimal control with value function un+1 accordingly.

When all players actually implement their optimal strategy, the population density evolves
in time and the players observe the resulting evolution (mn+1(t))t∈[0,T ] .

At the end of stage n + 1 the players update their guess according to the rule (the same for
all the players), which consists in computing the average of their observation up to time
n + 1.
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The fictitious play in MFG

This yields to a sequence (un,mn,mn) satisfying :















−∂t u
n+1 −∆un+1 + H(x, Dun+1(t, x)) = f (x, mn(t)),

∂t m
n+1 −∆mn+1 − div(mn+1DpH(x, Dun+1)) = 0,

mn+1(0) = m0, un+1(x, T ) = g(x,mn(T ))

where

mn =
1

n

n
∑

k=1

mk .

and the smooth initial guess (m0(t))t∈[0,T ] is given.
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The fictitious play in MFG

Main result

Theorem [C.-Hadikhanloo (2017)]

Under the previous assumptions :

The family {(un,mn)}n∈N is uniformly continuous and any cluster point is a solution to the
MFG system.

In particular, if f and g are monotone, then the whole sequence {(un,mn)}n∈N converges
to the unique solution of the MFG system.

Remarks :

The drawback of the result is that players have to know the mechanisms f and g.

The structure of proof is inspired by ideas of Monderer-Shapley ’96.
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The fictitious play in MFG

Ideas of proof

Potential associated with the MFG system : Recall that

Φ(m,w) =

∫ T

0

∫

Td
m(t, x)L(x, w(t, x)/m(t, x))dxdt +

∫ T

0

F (m(t))dt + G(m(T )),

where (m,w) solves ∂t m −∆m + div(w) = 0 in (0, T )× T
d m(0) = m0.

Monotonicity of Φ : Setting wn := −mnDpH(x,Dun), wn = 1
n

∑n
k=1 wk , then

Φ(mn+1,wn+1)− Φ(mn,wn) ≤ −
1

C

an

n
+

C

n2
,

where an =

∫ T

0

∫

Td
mn+1

∣

∣

∣
wn+1/mn+1 − wn+1/mn+1

∣

∣

∣

2
.

This implies that
∑

n an/n < +∞ and, as |an+1 − an| → 0, that an → 0.

Thus ‖wn+1/mn+1 − wn+1/mn+1‖ → 0, which yields ‖(un,mn)− (un,mn)‖ → 0.

�

P. Cardaliaguet (Paris-Dauphine) MFG 14 / 24



The fictitious play in MFG

Other results

The fictitious play works also for first order Mean Field Games :

(MFG)







(i) −∂t u + H(x, Du) = f (x, m(t)) in [0,T ]× T
d

(ii) ∂t m − div(mDpH(x, Du)) = 0 in [0,T ]× T
d

(iii) m(0, ·) = m0, u(T , x) = g(x,m(T )) in R
d

Because the lack of regularity of the solutions, statements and proofs are completely
different.

The same procedure can be adapted to N players : any cluster point is then an
approximate MFG equilibrium when N is large.

Convergence in the monotone, non potential case (Hadikhanloo).
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Stable equilibria

Aim :

Understand the multiplicity of solutions

Show that “most" solutions are isolated

Prove the full convergence of the Fictitious Play in this setting.

Additional assumptions : f , g : Td × P(Td ) → R are C1 with respect to m.

−→ Strongly inspired by similar results in classical optimal control or in optimal control of PDEs.
(Cannarsa-Sinestrari (2004) or Cannarsa and Tessitore (1994))
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Stable equilibria

Stable solutions of the MFG system

Definition

Let (u,m) be a solution of the MFG system starting from the initial configuration m(t0) = m0. We
say that (u,m) is stable if, for any t1 ∈ [t0,T ), the unique classical solution to the linearized
system

(LS)|[t1,T ]



















−∂t v −∆v + DpH(x,Du) · Dv =
δf

δm
(x,m)(µ) in T

d × (t1,T ),

∂tµ−∆µ− div(µDpH(x,Du)) − div(mD2
ppH(x, Du)Dv) = 0 in T

d × (t1, T )

µ(x, t1) = 0, v(x, T ) =
δg

δm
(x, m(T ))(µ(T )) in T

d .

is given by (v , µ) ≡ (0, 0).
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Stable equilibria

Stable solutions and uniqueness

Stable solutions are isolated :

Proposition (Briani-C., preprint)

Let (u,m) be a stable solution of the MFG system starting from (t0,m0).

Then, for any η > 0, there is a neighborhood U of m0 in P(Td ) such that : for any m1 ∈ U, there
is a unique solution (u′,m′) of the MFG system starting from (t0,m1) which is close to (u,m) :

‖(u,m) − (u′,m′)‖C1,0×C0 ≤ η.

Proof : compactness argument.
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Stable equilibria

Existence of stable solutions

Recall that

Φ(m,w) =

∫ T

0

∫

Td
m(t, x)L(x, w(t, x)/m(t, x))dxdt +

∫ T

0

F (m(t))dt + G(m(T )),

where (m, w) solves ∂t m −∆m + div(w) = 0 in (0, T )× T
d m(0) = m0.

Theorem (Briani-C., preprint)

Let (u,m) corresponding to a minimizer of the energy Φ. Then for any t1 ∈ (0, T ), the pair
(u,m)|[t1,T ]

is stable.

In particular, the set of initial positions (t0,m0) from which a stable solution starts is dense.
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Stable equilibria

Sketch of proof.

For t ∈ [t0, T ], let J (t0,m, u;µ, z) the second order derivative of the potential Φ in the
direction (µ, z) :

J (t, m, u;µ, z)

:=

∫ T

t

∫

Td
m−1D2

qqL
(

x,
w

m

)

(z + µDpH(x, Du)) · (z + µDpH(x,Du))

+

∫ T

t

∫

Td

∫

Td

δf

δm
(x,m(t), y)µ(x, t)µ(y , t) +

∫

Td

∫

Td

δg

δm
(x,m(T ), y)µ(x, T )µ(y , T ).

By minimality of (u,m), J (t,m, u;µ, z) ≥ 0 for all t ∈ [t0,T ] and all (µ, z) such that
∂tµ −∆µ+ div(z) = 0.

Lemma. (v , µ) solves (LS)|[t,T ]
IFF J (t, u,m;µ, z) = 0 where

z = −µDpH(x, Du)− mD2
ppH(x, Du)Dv .
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Stable equilibria

Let t1 ∈ (t0,T ) and (v , µ) solution to (LS)|[t1,T ]
. To show : (v , µ) = 0.

Set z := −µDpH(x,Du)− mD2
ppH(x, Du)Dv . Then J (t1,m, u;µ, z) = 0.

Extend (µ, z) to [t0,T ] by setting (µ, z) = 0 on [t0, t1]. Then J (t0,m, u;µ, z) = 0.

Thus (µ, z) solves (LS)|[t0,T ]
and so (µ, z) is smooth on [t0, T ] : z(t1) = 0 and Dv(t1) = 0.

So (v , µ) solves (LS)|[t1,T ]
with (Dv(t1), µ(t1)) = 0.

A unique continuation argument∗ à la Lions-Malgrange implies that (Dv , µ) = 0.

(∗ inspired by Cannarsa and Tessitore (1994))

�
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Stable equilibria

Application to the Fictitious Play

Assume that

(u,m) is a stable MFG equilibrium in a potential MFG,

that (un,mn) is the sequence given by the Fictitious Play,

that the initial guess m0 is “sufficiently close" to m.

Theorem (C.-Briani, preprint)

Under the above condition, the full sequence (un,mn) converges to (u,m).
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Stable equilibria

Conclusion

So far, we have explained that the fictitious play mechanism works for a potential Mean field
games and discussed the stability of solutions.

Open problems

Convergence rate.

More general models of learning.

Learning in Mean field games with common noise (not potential).
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