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Introduction

Background

• We want to study the evolution of singularities of the viscosity solutions
with respect to Hamilton-Jacobi equation

H(x;Du(x)) = 0; x 2 M:

• The dynamics of the propagation of singularities is governed by the
differential inclusion of generalized characteristic satisfying

_x(t) 2 co Hp(x(t);D+u(x(t))); a.e. t 2 [0; t0]:

• In the original work by P. Albano and P. Cannarsa (2002, ARMA), the
authors shown that if the initial point x(0) = x 2 Sing (u), then there
exists a Lipschitz curve x(t) 2 Sing (u) for all t 2 [0; t0],

• if 0 62 Hp(x(0);D+u(x(0))).
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Introduction

Aim and scope of the talk

• Our study is motivated by the attempt to understand the variational
structure of the classical characteristics after encountering cut locus.

• We developed a intrinsic approach to the propagation of singularities and
its connection to generalized characteristics, which leads to a global result.

• This also leads to potential works in a wide range bridging Hamiltonian
dynamical systems, PDEs, (sub-)Riemann-Finsler geometry, calculus of
variations and optimal controls. We will also interpret some further results
we have already obtained recently in this direction.
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Introduction

Literature on propagation of singularities

Reference on the propagation of singularities (possible incomplete)

• Albano-Cannarsa(1999,2000,2002), Albano(2002),
• Bogaevsky(2006),
• Yu(2006,2007),
• Cannarsa-Mazzola–Sinestrari(2015),
• Strömberg(2013), Strömberg-Ahmadzdeh(2014),
• Cannarsa-Yu(2009),
• Khanin-Sobolevski(2014)

Main reference of this talk:

1. Cannarsa-C-Zhang(2014)
2. Cannarsa-C(2015)
3. Cannarsa-C(preprint 2016)
4. Cannarsa-C-Fathi(2017)
5. Full paper of item 4
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Weak KAM theory

A brief review on weak KAM theory
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Weak KAM theory

Hamilton-Jacobi equations

Let M be a C2 smooth closed manifold and H : T�M ! R be a Tonelli
Hamiltonian. We consider the viscosity solutions of the stationary
Hamilton-Jacobi equation

H(x;Du(x)) = 0; x 2 M; (HJs)

or the evolutionary one

Dtu(t; x) + H(x;Dxu(t; x)) = 0; x 2 M; t > 0: (HJe)
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Weak KAM theory

Value function of Bolza Problem

By dynamical programming principle,

u(t; x) = inf
y2M

fu0(y) + At(y; x)g

is the unique viscosity solution of (HJe) with initial data u(0; x) = u0, where

At(x; y) = min
�2�t

x;y

Z t

0
L(�(s); _�(s))ds (x; y 2 M);

with
�t

x;y = f� 2 W1;1([0; t];M) : �(0) = x; �(t) = yg

Here, At(x; y) is called the fundamental solution with respect to (HJe), or
generating function in the context of symplectic geometry.
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Weak KAM theory

Lax-Oleinik semigroups & weak KAM solutions

Let u0 2 C(M;R), for any x 2 M, define

T+
t u0(x) = sup

y2M
fu0(y)� At(x; y)g;

T�t u0(x) = inf
y2M

fu0(y) + At(y; x)g:

• This is also called Lasry-Lions regularization in PDEs. It is one kind of
variational approximation process.

• A continuous function u is said to be a weak KAM solution of (HJs) if u is
a fixed point of the semigroup fT�t g for all t > 0.
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Weak KAM theory

Dominated functions & Calibrated curves

• A function u : M ! R is said to be dominated by L iff, for each
absolutely continuous arc 
 : [a; b]! M with a < b, one has

u(
(b))� u(
(a)) ⩽
Z b

a
L(
(s); _
(s))ds:

One writes u � L.

• An absolutely continuous curve 
 : [a; b]! M is said to be u-calibrated if

u(
(b))� u(
(a)) =
Z b

a
L(
(s); _
(s))ds + c[0](b� a):
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Weak KAM theory

Aubry sets

• The projected Aubry set w.r.t. u is defined by

I(u) = fx 2 M : x = 
(0) for some u-calibrated curve 
 : R! Mg:

• The �-limit set of a backward u-calibrated curve is contained in I(u).
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Weak KAM theory

Cut points & Singular points

Let u be weak KAM solution of (HJs).

• We denote by �(u) the set of points x 2 M, where u is not differentiable.

• The set Cut (u) of cut points of u is defined as the set of points x 2 M
where no backward characteristic for u ending at x can be extended to a
u-calibrating curve beyond x.

• �(u) � Cut (u) � M n I(u), and �(u) � Cut (u) � �(u).
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Regularity properties

Regularity properties
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Regularity properties

Semiconcave functions

• Let 
 � Rn be a convex open set, a function u : 
! R is semiconcave if
there exists a constant C > 0 such that

�u(x) + (1� �)u(y)� u(�x + (1� �)y) ⩽ C
2
�(1� �)jx � yj2

for any x; y 2 
 and � 2 [0; 1].

• Equivalently, u is semiconcave with constant C if

u(�)� Cj � j2=2

is concave.
• Equivalently, u is semiconcave with constant C if u = inf� u� with each

u� a C2 functions whose Hessian (in the sense of distribution) is bounded
above uniformly by C Id.
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Regularity properties

Superdifferential

Let u : 
 � Rn ! R be a continuous function. We recall that, for any x 2 
,
the closed convex sets

D�u(x) =
�

p 2 Rn : lim inf
y!x

u(y)� u(x)� hp; y� xi
jy� xj

⩾ 0
�
;

D+u(x) =

(
p 2 Rn : lim sup

y!x

u(y)� u(x)� hp; y� xi
jy� xj

⩽ 0

)
:

are called the subdifferential and superdifferential of u at x, respectively.
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Regularity properties

Limiting differential

Let u : 
! R be locally Lipschitz. We recall that a vector p 2 Rn is called a
limiting differential of u at x if there exists a sequence fxng � 
 n fxg such that
u is differentiable at xk for each k 2 N, and

lim
k!1

xk = x and lim
k!1

Du(xk) = p:

The set of all limiting differentials of u at x is denoted by D�u(x).
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Regularity properties

Properties of superdifferentials

Let u : 
 � Rn ! R be a semiconcave function and let x 2 
. Then
• D+u(x) is a nonempty closed convex set in Rn and D�u(x) � @D+u(x).

• The set-valued function x⇝ D+u(x) is upper semicontinuous.
• If D+u(x) is a singleton, then u is differentiable at x. Moreover, if D+u(x)

is a singleton for every point in 
, then u 2 C1(
).
• D+u(x) = co D�u(x).

For more information on the semiconcavity, see, e.g.,
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Regularity properties

Regularity properties of At(x; y) and u

• The map (t; y) 7! At(x; y) is locally semiconcave on (0;+1)� M.

• The map y 7! At(x; y) is semiconcave on M with constant C1=t > 0 only
depending on L.

• There exists t0 > 0, the map (t; y) 7! At(x; y) is locally semiconvex on
(0; t0)� M.

• For each � > 0, There exists t0 > 0, the map y 7! At(x; y) is convex on
B(x; �t) with t 2 (0; t0). The constant is C2=t.

• If u is a weak KAM solution of (HJs), by the L-O representation formulae
as a marginal function

u(x) = inf
y2M

fu(y) + At(y; x)g; x 2 M; t > 0;

then u is semiconcave with constant, say C1.
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Regularity properties

A C1;1 argument

• It is well known that a function u is of C1;1 class iff u is both semiconcave
and semiconvex in a domain.

• For each � > 0, There exists t0 > 0, the map y 7! At(x; y) is also C1;1 on
B(x; �t) with t 2 (0; t0).

• Moreover, for any t 2 (0; t0],

DyAt(x; y) =Lv(�(t); _�(t));

DxAt(x; y) =�Lv(�(0); _�(0));

DtAt(x; y) =� Et;x;y;

where � 2 �t
x;y is the unique minimizer of At(x; y) and Et;x;y is the energy

of the Hamiltonian trajectory (�(s); p(s)) with p(s) = Lv(�(s); _�(s)).
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x;y is the unique minimizer of At(x; y) and Et;x;y is the energy

of the Hamiltonian trajectory (�(s); p(s)) with p(s) = Lv(�(s); _�(s)).
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Regularity properties

An illustrative observation

Proposition

Let x 2 M and u : M ! R be a weak KAM solution of the H-J equation (HJs).
Then p 2 D�u(x) if and only if there exists a unique C2 backward calibrated
curve 
 : (�1; 0]! M with 
(0) = x and p = Lv(x; _
(0)).

D+u(x)
p 2 D�u(x)

Energy hypersurface fp : H(x; p) = 0g
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Intrinsic approach of propagation of Singularities

Propagation of Singularities: general case

Singularities for arbitrary t > 0 (Cannarsa-C, 2016)

If x 2 Cut (u), then any local maximizer of u(�)� At(x; �) is contained in �(u)
for all t > 0. Moreover, There exists t0 > 0 (t0 is independent of x) such that, if
x 2 Cut (u), then the function

u(�)� At(x; �)

achieves a unique maximizer yt;x for all t 2 (0; t0]. Let the curve is defined by

y(t) :=
(

x if t = 0
yt;x if t 2 (0; t0];

(GCloc)

then y(t) 2 �(u) for all t 2 (0; t0].
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Intrinsic approach of propagation of Singularities

Sketch of the proof
Singularities for arbitrary t > 0

• For any t > 0 and yt;x 2 argmaxlocfu(�)� At(x; �)g, suppose yt;x is a
differentiable point of u. Thus

0 2 D+fu(�)� At(x; �)g(yt;x) = Du(yt;x)� D�fAt(x; �)g(yt;x):

• It follows that At(x; �) is differentiable at yt;x and

pt;x = Du(yt;x) = DyAt(x; yt;x):

• There exists two C2 curves �t;x : [0; t]! Rn and 
x : (�1; t]! Rn such
that �t;x(0) = x, 
x(t) = �t;x(t) = yt;x and

pt;x = Lv(
x(t); _
x(t)) = Lv(�t;x(t); _�t;x(t)):

Since �t;x and 
x has the same endpoint condition at t, then they coincide
on [0; t]. This leads to a contradiction since x 2 Cut (u).
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Intrinsic approach of propagation of Singularities

Sketch of the proof
Looking for a unique maximizer

• Let x 2 Cut (u), denoted by Mt(x) = argmaxlocfu(�)� At(x; �)g, the
set-valued map t 7! Mt(x) � �(u) is upper-semicontinuous.

• Whether there exists a continuous selection of the set-valued map
t 7! Mt(x) is unclear!

• Since u(�) is semiconcave with constant C1 and At(x; �) is convex on
B(x; �t), t 2 (0; t0), with constant C2=t. Therefore u(�)� At(x; �) is
strictly concave on B(x; �t) if t satisfies

C1 � C2=t < 0:

Then we have a unique maximizer for t < t0 = C2=C1.
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Intrinsic approach of propagation of Singularities

A picture

x

yt

y(s)

�t(s)

yt0yt00
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Intrinsic approach of propagation of Singularities

Global singular generalized characteristics

• The arc y : [0; t0]! M is Lipschitz (the constant is independent of x) and
it is a generalized characteristic satisfying

_y(t) 2 co Hp(y(t);D+u(y(t))); a.e. t 2 [0; t0]:

Moreover, _y+(0) = Hp(x; p0), where p0 is the unique element of minimal
energy: H(x; p) ⩾ H(x; p0) for all p 2 D+u(x).

• If M is compact, since t0 is independent of x, then the local defined
singular GCs can be extended to a global one.

• It is also true for non-compact M under standard Fathi-Maderna
conditions using some local strategy!
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Further work

Further work
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Further work

The mechanism in principle

• The basic philosophy of our construction of propagation of singularities is
that, under Tonelli-like conditions, if the solution has a representation
form of inf-convolution, then the singularities can be interpreted by the
associated sup-convolution!

• It can be applied to Cauchy problem, Dirichlet problem, etc.;
• compact or non-compact manifold;
• Time independent of not;
• Even an implicit representation form recent obtained by Wang-Wang-Yan

for the contact type H-J equations H(x; u(x);Du(x)) = 0?
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Further work The topology of cut locus

The topology of cut locus
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Further work The topology of cut locus

A homotopy

One can define a (continuous) homotopy F : M � [0; t0]! M,

F(x; s) = ys;x;

which satisfies the following properties:

(a) for all x 2 M, we have F(x; 0) = x;

(b) if F(x; t) 62 �(u), for some t > 0, and x 2 M, then the curve s 7! F(x; s) is
u-calibrating on [0; t];

(c) if there exists a u-calibrating curve 
 : [0; t]! M, with 
(0) = x, then
s 7! F(x; s) = 
(s), for every s 2 [0;min(t; t0)].
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Further work The topology of cut locus

Homotopy equivalence

Theorem (Cannarsa-C-Fathi, 2017)

The inclusion �(u) � Cut (u) � �(u) \ (M n I(u)) � M n I(u) are all
homotopy equivalences.

Corollary

For every connected component C of M n I(u) the three intersections
�(u) \ C, Cut (u) \ C, and �(u) \ C are path-connected.

The key point of the proof is that the cut time function � (x) is upper
semi-continuous, and the homotopy G : (M n I(u))� [0; 1]! M n I(u),

G(x; s) = F(x; s�(x))

is the desired homotopy, where � : M n I(u)!]0;+1[ is a continuous
function with � > � on M n I(u).
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Further work The topology of cut locus

Local path-conectedness

Theorem (Cannarsa-C-Fathi, 2017)

The spaces �(u), and Cut (u) are locally contractible, i.e. for every x 2 �(u)
(resp. x 2 Cut (u)) and every neighborhood V of x in �(u) (resp. Cut (u)), we
can find a neighborhood W of x in �(u) (resp. Cut (u)), such that W � V, and
W in null-homotopic in V.

Therefore �(u), and Cut (u) are locally path connected.

The problem can be attacked by the local homotopy defined above for small t
and Hahn-Baire’s interpolation theorem (There exists a continuos function �,
u ⩽ � ⩽ v, with v lower-semicontinuous and u upper semicontinuous).

Notice
that we can choose u to be the cut time function and v to be certain local exit
time function.
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Further work An example from Mather-Bangert theory of minimal geodesics

An example from Mather-Bangert’s theory of
minimal geodesics
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Further work An example from Mather-Bangert theory of minimal geodesics

Mather-Bangert theory
generating functions & minimal configurations

The example is based on Bangert’s work on minimal geodesics on 2-torus T2.

Generating functions & minimal configurations

Let RZ be the set of bi-infinite sequences of real numbers with the product topology, and an
element in RZ will be denoted by fxigi2Z. Given a function h : R2 ! R, which is called a
generating function of a variational principle, a segment (xj; : : : ; xk), j < k, is called minimal if

h(xj; xj+1; : : : ; xk) :=

k�1X
i=j

h(xi; xi+1) ⩽
k�1X
i=j

h(yi; yi+1)

for all (yj; : : : ; yk) with yj = xj and yk = xk. A bi-infinite sequence fxig is said to be minimal if
every finite segment of fxig is minimal. We always call a minimal bi-infinite sequence
fxig 2 RZ a minimal configuration, and we denote byM =M(h) the set of minimal
configurations with respect to the generating function h.
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Further work An example from Mather-Bangert theory of minimal geodesics

Mather-Bangert theory
generating functions & twist maps

Conditions for twist maps

We suppose h satisfies the following conditions:

(h1) h(x + 1; y + 1) = h(x; y) for all (x; y) 2 R2;

(h2) limjyj!1 h(x; x + y) =1 uniformly in x;

(h3) If x1 < x2 and y1 < y2, then

h(x1; y1) + h(x2; y2) < h(x1; y2) + h(x2; y1);

(h4) If (x�1; x0; x1) 6= (y�1; y0; y1) are minimal and x0 = y0, then (x�1 � y�1)(x1 � y1) < 0.

Area-preserving monotone twist map

When h is smooth, we define F : S1 � R! S1 � R by

F(x0; y0) = (x1; y1) , y0 = �D1h(x0; x1); y1 = D2h(x0; x1):
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Further work An example from Mather-Bangert theory of minimal geodesics

Mather-Bangert theory
Lifting to R2

(0;x0)
(1;x1)

(2;x2)

(3;x3)

(4;x4)

(5;x5)

Figure: The minimal geodesics on T2 and the minimal configurations. The red line is a
minimal geodesic in its lift R2.
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Further work An example from Mather-Bangert theory of minimal geodesics

Mather-Bangert theory
rotation number

• There exists a continuos map ~� :M! R such that, if � = fxig 2 M
then jxi � x0 � i~�(x)j < 1 for all i 2 Z.

• In particular, ~�(x) = limi!1(xi � x0)=i. ~�(x) is called the rotation
number of the minimal configuration �.

• Moreover, by the order-preserving properties of the minimal
configurations (Lemma of Aubry graphs), we associate a minimal
configuration � = fxig with a (order-preserving) circle map f (xi) = xi+1
(mod 1), i 2 Z, and the Poincaré’s rotation number �(f ) = ~�(�).

• By well known Denjoy’s theorem, when �(f ) is a irrational number, f is
topologically conjugate to a rigid rotation on the circle with the rotation
number �(f ), and the recurrent set of f is the whole circle or a Cantor
subset.
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topologically conjugate to a rigid rotation on the circle with the rotation
number �(f ), and the recurrent set of f is the whole circle or a Cantor
subset.
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Mather-Bangert theory
Denjoy minimal invariant set
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Figure: The minimal geodesics on T2. The shaded part stands for the complement of
the Denjoy set. The red line is a minimal geodesic with rotation number � 2 R nQ.
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Further work An example from Mather-Bangert theory of minimal geodesics

Singularities approach Aubry sets
sketch of the proof

• Let f(xi; yi)g be a sequence of intervals produced by the iteration of any
of such an open interval, say (x0; y0), then all the iterated open intervals
can not intersect each other since order-preserving property of the
associated area-preserving monotone twist map.

• By the periodicity property, we have
P

i2Z(yi � xi) ⩽ 1. Therefore, for
any " > 0, there exists i0 2 N such that

P
i>i0(yi � xi) < ".

• If x and y are the unique generalized characteristics starting from x and y
respectively, then there exists C > 0 such that

jx(s)� y(s)j ⩽ Cjx � yj; s 2 [0; 1):
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Further work An example from Mather-Bangert theory of minimal geodesics

Singularities approach Aubry sets
Formulation of the result

We define a Busemann weak KAM solution

u(x) = inf
t<0
fAt(
(t); x)� At(
(t); 
(0))g; (5.1)

where 
 : (�1; 0]! T2 is semi-static and At(x; y) is the minimal action (see,
for instance, [Contreras2001]).

Proposition

Let 
 : R! T2 be a minimal geodesic with respect to a big bump Riemannian
metric and the rotation number of 
 is irrational. Suppose u defined in (5.1) is
a Busemann weak KAM solution of the associated Hamilton-Jacobi equation.
Then, Sing (u) intersects any neighborhood of the projected Aubry set �(L)
nonempty.
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semi-dynamics of generalized characteristics
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Further work Semi-dynamics of generalized characteristics

Construction of global GCs

Here we concentrate on the case when M is compact.

• For any x 2 M, there exists t0 > 0 independent of x such that the curve
y(�; x) = y : [0; t0]! M defined by (GCloc) is Lipschitz continuous and
y(t; x) 2 �(u) for all t 2 [0:t0].

• For each � 2 (0; t0], one can define a global GC x� : [0;+1)! M
inductively as

x� (t) = y(t � i�; y(i�; x)); 8t 2 [i�; (i + 1)� ]; i = 1; 2; : : : : (GC)

• We denote by GC(x) the set of all the generalized characteristics defined
by (GC).

Our aim is to study the !-limit set of such GCs in GC(x).
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Further work Semi-dynamics of generalized characteristics

Critical points

Recall that x 2 M is a critical point of a viscosity solution u if

0 2 co Hp(x;D+u(x));

and a strong critical point of u if

0 2 Hp(x;D+u(x)):

The !-limit set is an attractor
If limt!1 x� (t) exists for any x� 2 GC(x), then there exists z 2 M such that
0 2 Hp(z;D+u(z)).
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Further work Semi-dynamics of generalized characteristics

Recurrence property of GCs

We need some quantity to describe the recurrence properties of GCs.

• Let x� 2 GC(x) such that limt!1 x� (t) does not exists and z�i = x� (i� ),
i 2 N.

• For any fixed � > 0, let ! = fi1; i2; : : : ; ik; : : :g be any strictly increasing
sequence of natural numbers and let Z� the set of all convergent
subsequences of fz�i g.

• For any ! and the associated convergent sequence z�! = fz�ikg, we define

N!(� ) = supfik+1 � ik : z�! 2 Z
�g:

• The quantity N!(� ) describe the recurrence property of the associated
GCs.
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Further work Semi-dynamics of generalized characteristics

Closed GCs

The !-limit set contains a closed GC
If there exists ! such that N!(� ) <1, then there exists a closed generalized
characteristic contained in the !-limit set of x� .

The !-limit set contains a sequence of closed GCs shrinking to one point

Let �n ! 0+ as n !1. If for each n 2 N, there exists an !n such that
z�n
!n
2 Z�n with N!n(�n) <1, and limn!1 �nN!n(�n) = 0, then there exists

z 2 M such that 0 2 co Hp(z;D+u(z)).
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Further work Semi-dynamics of generalized characteristics

General case

The !-limit set contains a global defined GC

Fix any � 2 (0; t0] and !. If N!(� ) =1, then there exists a global generalized
characteristic x : (�1;+1)! M such that fx(t) : t 2 Rg is contained in the
!-limit set of x� .
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Further work Semi-dynamics of generalized characteristics

Uniqueness of GCs

• We say a Hamiltonian H has the uniqueness property if one has only a
unique generalized characteristic from a given initial point.

• A typical Hamiltonian H having the uniqueness property has the
following form

H(x; p) =
1
2

g�x(!x + p; !x + p) + V(x): (Huni)

• It is still open if there exists an example of Hamiltonian having the
uniqueness property besides the Hamiltonians having the p-term with
orders less or equal to 2.

• Uniqueness assumption on H implies all the GC can be explained as an
arc produced in the procedure of sup-convolution as T+

t .
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Further work Semi-dynamics of generalized characteristics

Results under uniqueness assumption

When we have uniqueness assumption

Suppose H has the uniqueness property, x 2 Cut (u) and C(x) is the component
containing x. Let x : [0;+1)! M be the unique GC staring from x. If there is
no critical points of u w.r.t. H in C(x), then limt!1 x(t) does not exists. In
addition, there exists a global GC y : R! M such that fy(t) : t 2 Rg is
contained in !-limit set of x. Moreover, we have either

• y : R! M is a global singular generalized characteristic, or
• C(x) intersect the Aubry set I(u) nonempty.

• If !x is closed, then all the closed singular GCs are composed of critical
points, since the monotonicity property of u along GCs.

• Therefore, C(x) must intersect the Aubry set for the unbounded
components if there is no critical points in C(x).
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Further work Semi-dynamics of generalized characteristics

More on the critical points
A model problem

• To study the existence of the critical points, it is useful to lift the H-J
equations to the universal covering space ~M.

• We consider H(x; p) = 1
2 g�x(!x + p; !x + p) + V(x). It is clear

Lv(x; 0) = !x.
• Suppose ~!, the pullback of ! to ~M, is closed, then it is exact by Poincaré’s

lemma, say ~! = dS. Then the associated generalized characteristics has
the form (in local chart):

_x(t) 2 A(x)(D+(u + S)(x(t))) = A(x)D+v(x(t))

• x is a (strong) critical point iff 0 2 D+v(x).
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Further work Semi-dynamics of generalized characteristics

More on the critical points
Two result on the existence

• If ! is closed and C � ~M is a bounded component of �(u) = Sing (v),
then C contains a strong critical point.

• If ! is exact, then each component of �(u) contains critical points of v.
• It is unclear now if there exists a critical point in the unbounded

components of �(u).
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Remarks

Remarks & possible extension
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Remarks

Existence and non-existence of critical points

• The uniqueness of GC’s is far from well understood.

• The 1st-order term ! in the Lagrangian L plays an important rôle in the
existence of critical points,

even for the aforementioned mechanical
systems.What is the connection with resonance conditions in KAM theory
to give a precise characterization of the existence of critical points even in
mechanical systems?

• If ker ! is an integrable distribution in the sense of Frobenius, the
problem is closely connected to the H-J equations with u-term.

• Along this line, what can we talk about the problem in the context of
sub-Riemann-Finslerian geometry or non-holonomic mechanics.
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Remarks

Changing cohomology-homology, I

• A very useful tools for the study of connecting orbits in Hamiltonian
dynamical systems is the technique of changing Lagrangians.

• Along this line, let u be any semiconcave functions and L be any Tonelli
Lagrangian (even without superlinear growth condition).

argmaxfu(y)� AL
t (x; y)g

determines local propagation of singularities in a small time interval
[0; � ].

But there is no quantitative estimate of � on x!
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Remarks

Changing cohomology-homology, II

In [Cannarsa-Yu, 2008], the authors esentially shown

Theorem
If the following condition

H(x; �) takes minimum on D+u(x) at the unique point p0;

where p0 2 D+u(x) n D�u(x);
(H)

is satisfied, then the curve x defined by the maximizers is a GC, i.e,

_x(s) 2 co Hp(x(s);D+u(x(s))); a.e. s 2 [0; � ]:

with _x(0) = Hp(x; p0).
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Remarks

Changing cohomology-homology, III

• By taking H = 1
2 jp� p0j

2 + hq; p� p0i in the theorem above, we have

_x(s) 2 q� p0 + D+u(x(s))); a.e. s 2 [0; � ];

where p0 2 D+u(x) n D�u(x), and q 2 Rn satisfies

hq; p� p0i ⩾ 0 8p 2 D+u(x):

• Even for mechanical systems, it is not well understood such a changing
cohomology-homology process, which occurs when x is a critical point of
u definitely.
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Remarks

Changing cohomology-homology, IV

• If H is of class C3, and H has the form

H = H(x; p� p0 + �p(x)) + hq; p� p0i;

where �p(x) is solved by Hp(x; �p(x)) = 0 under Legendre condition.

• Observe that, in fact, �p(x) = Lv(x; 0), which is the 1st-order term in the
Lagrangian L. Recall the problem we mentioned before!

• Can one gives an intrinsic explanation of such changing Lagrangian
method for both regular and singular dynamics, and also the connection to
the structure of the flat part of Mather’s �-function?
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Thanks

Thanks for your attention!

Tanti Auguri! 生日快乐！

Piermarco
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