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1770 Lagrange

Our first error was committed 
by Lagrange in 1770
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Joseph Louis Lagrange 
1736-1813

•Born in Turin, student of Euler

•Replaces Euler in Berlin; later 
joins the Paris Academy

•During the revolution : metric 
system, Ecole Normale and 

  Ecole Polytechnique

•Under Napoléon :  senator, count 
of the Empire, grand officer of 

  the Légion d’honneur

•His ‘greatest treasure’ : his (very) 
young wife, whom he marries at 
the age of 56

•Dies in Paris at the age of 77
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 Ainsi c'est un problème de maximis et minimis
 de déterminer la courbe qui, par sa rotation 
 autour de son axe formera une colonne capable 
 de supporter la plus grande charge possible, la
 hauteur et la masse de la colonne étant 
 données.
                                                               Lagrange (1770) Sur l! figure des colonnes

   To find the curve which by its revolution  
 determines the column of greatest efficiency.                    
                     Truesdell

Lagrange’s design problem
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He proves the following
(false) theorem:1770 Lagrange

The optimal column
 is a cylinder

the prejudging mistake: acting as 
if the answer is known, based on 
incorrect intuition or analogy, or 
wishful thinking
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min
x(·)

� b

a
L
�
x(t), x�(t)

�
dt

He proves the following (false) theorem:

If x∗ is an extremal satisfying Lvv

�
x(t), x�(t)

�
> 0 ∀ t,

then x∗ is a weak local minimum for the problem.

The mistake lies in assuming that a differential
equation like x� = x2 + 1 has a solution defined
on the interval [a, b].

the existence mistake

1783 Legendre

His proof is quite ingenious.
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1821 Cauchy
In 1821 he proves the 
following (false) theorem:

the prejudging mistake. But also the 
inadequate definition mistake

The pointwise limit f(x) of a sequence of
continuous functions fi(x) is continuous

Astonishing: Cauchy is the baron of analysis, author of 

800 articles, the inventor of epsilon/delta! 
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He studies solutions u
of Laplace’s equation

uxx + uyy = 0

1851 Riemann

the 
existence 
mistake

min

�

Ω

�
u2

x + u2
y

�
dx dy

u = ϕ (prescribed) on ∂Ω

(Dirichlet principle)

He obtains one by
considering

which (he says) is 
evidently attained
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Poincaré is awarded the prize for showing that the 
reduced three-body problem is (essentially) stable. 

1889 Poincaré It is known that two planets 
constitute a stable system. 

In 1887 King Oscar offers a large prize for a solution of 
the n-body problem.

BUT while the prize paper is in proof, serious errors are 
found. The final paper proves instability (!).

the prejudging mistake
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1960 Keller & Tadjbaksh

the smoothness mistake

They prove the following
(false) theorem:

The optimal column
has zero width 
at two points
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1968 Arrow

the prejudging mistake

x�(t) = f(x(t), u(t)) a.e.

u(t) ∈ U a.e.

state x(·) and control u(·)
defined on [a, b]

(x(a), x(b)) ∈ S

min �(x(b)) where

�
��

�

The necessary
conditions are 
known as the 
Maximum Principle

The Nobel-winning economist proves, by economic 

reasoning, a much-cited version of the Maximum 

Principle for problems in which U = U(x).  

The conclusions are identical to the usual ones for 

the case in which U does NOT depend on x.
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1976 Clarke

the prejudging mistake

He derives (incorrectly) the Hamiltonian inclusion 
necessary conditions. 

(x(a), x(b)) ∈ S

x�(t) ∈ F (t, x(t)) a.e.
�
min �(x(b)) where

differential 
inclusion

(corrected in 2005)
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Lots of people, often, today

The Deductive Method:

1. Prove (a priori) that a solution exists
2. Apply correct necessary conditions
3. Identify (through elimination and
    comparison) a unique candidate.

�
the 
candidate 
solves the 
problem

⇐

It is a fallacy to take existence for granted 
(to omit step 1) in applying the deductive method
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This fallacy is especially common in optimal 
control.

Sometimes, existence is justified by the fact 
that a “real” phenomenon is being modeled. 

In logic, this is called the “fallacy of 
misplaced concreteness”.

Occasionally, the class of controls is not even 
specified, or taken to be PWC (prejudge the 
answer)... 
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For optimal control problems,  a correct analysis 
would involve one of:

• existence theory (measurable controls)
• convexity
• relaxed controls (measures)
• verification functions (nonsmooth)

   (beyond the comfort zone of many engineers 
    and economists)
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A major source of confusion is the dynamic 
programming approach (1950’s and 60’s): 
everything is assumed smooth, continuous, etc.

This leads to a misleading climate: the 
ultimate smoothness mistake!

Consider control systems that are GAC.

x�(t) = f(x(t), u(t)) a.e.

u(t) ∈ U a.e.

GAC

x�(t) = g(x(t)) a.e.

stable
⇐⇒
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x�(t) = g(x(t)) a.e.

stableFact: ⇐⇒
there is a 
smooth 
Lyapunov 
function

But:

x�(t) = f(x(t), u(t)) a.e.

u(t) ∈ U a.e.

GAC
⇐⇒

there is a 
control
Lyapunov 
function 
(nonsmooth 
in general)
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Let us consider the issue of stabilizing feedbacks.

x�(t) = f(x(t), u(t)) a.e.

u(t) ∈ U a.e.

GAC

It is a fallacy to assume that k can be 
taken to be continuous. (Example: NHI)

Goal: find k(x) with values in U such that

x�(t) = g(x(t)) := f(x(t), k(x(t)))

is stable.
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Or: to consider solutions of x�
= g(x)

when g is discontinuous?

Question: What does it mean to put a

discontinuous function k(x) into f ?

There is a longstanding  
inadequate definition error

in considering discontinuous feedbacks
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�
x
y

��
=

�
0 1
0 0

� �
x
y

�
+

�
0
1

�
ux�� = u(t) ∈ [−1, 1] a.e.

min T : x(T ) = y(T ) = 0

Example: minimal time for the double integrator

22.3 Problems with variable time 453

Fig. 22.3 The switching curve and the time-optimal feedback synthesis

We conclude that if time-optimal trajectories exist (for every initial condition), then
they are described as above. It so happens that an existence theorem to be seen later
does apply to this example (namely Theorem 23.13, but let’s take our word for it for
now). Given this, the deductive method assures us that we have, in fact, identified
the optimal trajectories.4

At this point, it is a matter of routine calculation to derive an explicit formula for
the corresponding optimal time as a function of the initial point (x,y). Letting this
optimal time be denoted T (x,y), we find:

T (x,y) =





−y +

√
2y2 −4x if (x,y) lies to the left of Σ

+y +
√

2y2 +4x if (x,y) lies to the right of Σ .

It is of interest (and not difficult) to show that this minimal-time function T is contin-
uous, and that T is smooth on the open set which is the complement of the switching
curve Σ . However, T is nondifferentiable, and indeed, fails to be locally Lipschitz,
at points on Σ . "#

22.15 Exercise. (Very soft landing) Consider the system

x ′′′(t) = u(t) ∈ [−1,1] ,

and the problem of steering the state to rest at 0 in minimal time T , in the sense that
the position x, the velocity x ′, and the acceleration x ′′ must all equal 0 at T . Show
that an optimal control is bang-bang with at most two switches. "#

4 We should mention that minimal-time problems with linear dynamics, of which the soft land-
ing problem is but one example, can be studied on a systematic basis using time reversal and a
technique called “backing out of the origin.” See Lee and Markus [30].
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So this kind of 
feedback is 
meaningless:
the thin set 
f!ll!cy

dither !

22



Sliding mode feedb!ck

stable

nice k2(x, y)

nice k1(x, y)

k =

�
k1 below the line

k2 above the line
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Theorem (Clarke, Ledyaev, Sontag, Subbotin 1997)
 

A system is GAC if !nd only if it is st!biliz!ble by 
feedb!ck (in the s!mple-!nd-hold sense).    

progress has been made, notably:

A rigorous !ppro!ch to sliding feedb!ck control 
(Cl!rke & Vinter 2009)

24



There is a parallel universe of alternative 
facts out there. You must choose:

The blue pill The red pill

or
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The blue pill

Minima are always attained
Necessary conditions always apply
Equations have global smooth solutions
Unique extremals must be solutions 
Intuition is always right
Dependences and value functions are smooth 
Controllable systems admit continuous stabilizing feedbacks  
and smooth control Lyapunov functions 
Nonlinear control systems are always linearizable
The values of a feedback on a set of measure zero can 
effectively steer a system
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The red pill

“You take the red pill: ... all I’m offering is the truth.  
  Nothing more.”                                     (Morpheus)

Welcome to the real world 
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It may be tempting to remain in the world of 
alternative facts:

“Why oh why didn’t I t!ke the blue pill?”  (Cypher)

“Truth emerges more re!dily from error th!n from 
confusion”                              (Francis Bacon 1611)

But we must resist, and learn from our errors! 
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