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Abstract. Given α ∈ [0, 2) and f ∈ L2((0, T ) × (0, 1)), we derive new Carleman estimates for
the degenerate parabolic problem wt + (xαwx)x = f , where (t, x) ∈ (0, T )× (0, 1), associated to the
boundary conditions w(t, 1) = 0 and w(t, 0) = 0 if 0 ≤ α < 1 or (xαwx)(t, 0) = 0 if 1 ≤ α < 2.
The proof is based on the choice of suitable weighted functions and Hardy-type inequalities. As
a consequence, for all 0 ≤ α < 2 and ω ⊂⊂ (0, 1), we deduce null controllability results for the
degenerate one-dimensional heat equation ut − (xαux)x = hχω with the same boundary conditions
as above.



The Navier Stokes equations

Let Ω be a smooth bounded non empty open subset of Rd, d ∈ {2, 3}. We
are interested in the Navier-Stokes equations

(1)

{

yt −∆y + (y · ∇) y +∇p = 0, t ∈ [0, T ], x ∈ Ω,

div y = 0, t ∈ [0, T ], x ∈ Ω,

where, at time t ∈ [0, T ] and at the position x ∈ Ω, y(t, x) ∈ R
d is the

velocity of the viscous incompressible fluid. We assume that we are able to
prescribe y on a non empty open subset Γ of ∂Ω.



The Navier slip boundary condition

The Navier slip boundary conditions are

(1) y · n = 0 and [D(y)n +Ay]
tan

= 0 on ∂Ω \ Γ.

Here and in the sequel, n denotes the outward normal to ∂Ω. For a vector
field f , we introduce [f ]

tan
its tangential part and D(f) the rate of strain

tensor (or shear stress) which are defined by:

(2) [f ]
tan

:= f − (f · n)n, Dij(f) :=
1

2

(

f jxi
+ f ixj

)

.

Eventually, in (1), A is a smooth matrix valued function on ∂Ω, describing
the friction near the boundary. This is a generalization of the usual
condition involving a single scalar parameter α ≥ 0 (i.e. A = αId). For flat
boundaries, such a scalar coefficient measures the amount of friction.
When α = 0 and the boundary is flat, the fluid slips along the boundary
without friction and there is no boundary layers. When α→ +∞, the
friction is so intense that the fluid is almost at rest near the boundary;
condition (1) converges to the Dirichlet condition.



The controllability problem

The question of small time global exact null controllability asks whether,
for any T > 0 and any initial data y0 (in some appropriate space), there
exists a trajectory y defined on [0, T ]× Ω, which is a solution to

(1)







yt + (y · ∇) y −∆y +∇p = 0 in (0, T ) × Ω
div y = 0,
y · n = 0 and [D(y)n+Ay]

tan
= 0 on (0, T )× (∂Ω \ Γ),

satisfying y(0, ·) = y0 and y(T, ·) = 0. In this formulation, we see
system (1) as an under-determined system. The controls used are the
(implicit) boundary conditions on Γ and can be recovered from the
constructed trajectory y itself. This problem was suggested by
Jacques-Louis Lions in the late 80’s (for the Dirichlet boundary condition,
also called the no slip Stokes condition: y = 0 on ∂Ω \ Γ).



The mathematical framework

We define the space L2
σ(Ω) as the closure in L2(Ω) of the space of smooth

divergence free vector fields which are tangent to ∂Ω \ Γ. For T > 0 and
y0 ∈ L2

σ(Ω), we say that y ∈ C0
w([0, T ];L

2
σ(Ω)) ∩ L2((0, T );H1(Ω)) is a

weak Leray solution to our Navier-Stokes equation with initial data y0 when

(1) −
∫ T

0

∫

Ω
y · ψt +

∫ T

0

∫

Ω
y · ∇y · ψ + 2

∫ T

0

∫

Ω
D(y) : D(ψ)

− 2

∫ T

0

∫

∂Ω\Γ
[Ay]

tan
· ψ =

∫

Ω
y0 · ψ(0, ·),

for any ψ ∈ C∞([0, T ]× Ω̄) which is divergence free, tangent to ∂Ω,
vanishes at t = T and vanishes on the controlled boundary Γ.



Main result

Theorem (JMC, F. Marbach and F. Sueur (2016))

Assume that Γ is an open subset of ∂Ω which meets every connected
component of ∂Ω. Let T > 0 and y0 ∈ L2

σ(Ω). There exists a weak Leray
solution

y ∈ C0
w([0, T ];L

2
σ(Ω)) ∩ L2((0, T );H1(Ω))

satisfying y(0, ·) = y0 and y(T, ·) = 0.



Known results and previous works: local results

A first approach to study the controllability of Navier-Stokes is to see the
quadratic term as a perturbation term and obtain results using mostly the
Laplacian. This kind of approach is efficient only for local results, where
the quadratic term is indeed small. It is not clear that it is a good approach
to get global controllability.
For the Dirichlet boundary condition, O. Imanuvilov in 2001 and E.
Fernández-Cara, S. Guerrero, O. Imanuvilov and J.-P. Puel in 2004 proved
small time local null controllability. Their proof uses Carleman estimates.
For Navier boundary conditions, Havârneanu, Popa and Sritharan proved in
2006 a local controllability result in 2D domains. In 2006, Guerrero proved
the small time local null controllability for 2D and 3D domains, with
general (non-linear) Navier-type boundary conditions.



Known results and previous works: global results

For Navier boundary conditions in 2D, JMC proved (1996) a small time
global approximate null controllability result. More precisely a good
approximate controllability can be obtained in the interior of the domain.
However, this is not the case near the boundaries. The approximate
controllability is obtained in the space W−1,∞, which is not a strong
enough space to be able to conclude to global exact null controllability
using a local result.
The global null controllability in small time has been proved when Γ = ∂Ω
by JMC and A. Fursikov (1996) in dimension 2 and by A. Fursikov and O.
Imanuvilov (1999) in dimension 3. The proof is based on the return
method (JMC (1992)).
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Return method: Commercial break

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 pp.



The two key terms of the Navier-Stokes equation

The Navier-Stokes equation

(1)

{

yt−∆y + (y · ∇) y +∇p = 0, t ∈ [0, T ], x ∈ Ω,

div y = 0, t ∈ [0, T ], x ∈ Ω,

has two main terms

−∆y, which is linear,

(y · ∇) y, which is quadratic.

Note that if we omit the linear term, one gets

(2)

{

yt + (y · ∇) y +∇p = 0, t ∈ [0, T ], x ∈ Ω,

div y = 0, t ∈ [0, T ], x ∈ Ω,

which is the Euler equation of incompressible fluids. Let us emphasize that
the boundary conditions are on (0, T )× (∂Ω \ Γ)

For the Euler equations: y · n = 0,

For the Navier-Stokes equations with the Navier slip condition
y · n = 0 and [D(y)n+Ay]

tan
= 0



An example in finite dimension

We consider the following control system

ẏ = Ay + F (y) +Bu(t),(1)

where the state is y ∈ R
n, the control is u ∈ R

m, A is a n× n matrix, B is
a n×m matrix and F ∈ C1(Rn;Rn) is quadratic: F (λy) = λ2F (y),
∀λ ∈ [0,+∞), ∀y ∈ R

n. For the “application” to incompressible fluids (1)
is the Navier-Stokes control system, while

ẏ = F (y) +Bu(t),(2)

where the state is y ∈ R
n, the control is u ∈ R

m is the Euler control
system.



The main assumption

Main assumption

We assume that there exists a trajectory (ȳ, ū) ∈ C0([0, T0];R
n) ×

L∞((0, T0);R
m) of the control system ẏ = F (y) + Bu(t) such that

the linearized control system around (ȳ, ū) is controllable and such that
ȳ(0) = ȳ(T0) = 0.

Remark

The controllability of

(3) ẏ = F (y) +Bu

is equivalent to the existence of trajectory
(ȳ, ū) ∈ C0([0, T0];R

n)× L∞((0, T0);R
m) of the control system (3) such

that the linearized control system around (ȳ, ū) is controllable and such
that ȳ(0) = ȳ(T0) = 0 (JMC (1992, 1994)).



Remark

One has F (0) = 0. Hence (0, 0) is an equilibrium of the control system
ẏ = F (y) +Bu(t). The linearized control system around this equilibrium is
ẏ = Bu, which is not controllable if (and only if) B is not onto.

One has the following theorem.

Theorem

Under the above assumptions, the control system (1) is globally
controllable in arbitrary time: For every T > 0, for every y0 ∈ R

n and for
every y1 ∈ R

n, there exists u ∈ L∞((0, T );Rm) such that

(1)
(

ẏ = Ay + F (y) +Bu(t), y(0) = y0
)

⇒
(

y(T ) = y1
)

.



Proof of the theorem

Let y0 ∈ R
n and y1 ∈ R

n. Let

G : R× L∞((0, T0);R
m) → R

n

(ε, ũ) 7→ ỹ(T0)− εy1

where ỹ : [0, T0] → R
n is the solution of

(1) ˙̃y = F (ỹ) + εAỹ +Bũ(t), ỹ(0) = εy0.

The map G is of class C1 in a neighborhood of (0, ū). One has
G(0, ū) = 0. Moreover G′

ũ(0, ū)v = y(T0) where y : [0, T0] → R
n is the

solution of ẏ = F ′(ȳ)y +Bv, y(0) = 0. Hence G′
ũ(0, ū) is onto. Therefore

there exist ε0 > 0 and a C1-map ε ∈ (−ε0, ε0) 7→ ũε ∈ L∞((0, T0);R
m)

such that

G(ε, ũε) = 0, ∀ε ∈ (−ε0, ε0),
ũ0 = ū.



Let ỹε : [0, T0] → R
n be the solution of the Cauchy problem

˙̃yε = F (ỹε) + εAỹε +Bũε(t), ỹε(0) = εy0. Then ỹε(T0) = εy1. Let
y : [0, εT0] → R

n and u : [0, εT0] → R
m be defined by

y(t) :=
1

ε
ỹε

(

t

ε

)

, u(t) :=
1

ε2
ỹε

(

t

ε

)

.

Then ẏ = F (y) +Ay +Bu, y(0) = y0 and y(εT0) = y1. This concludes
the proof of the controllability theorem if T is small enough. If T is not
small, it suffices, with ε > 0 small enough, to go from y0 to 0 during the
interval of time [0, εT0], stay at 0 during the interval of time [εT0, T − εT0]
and finally go from 0 to y1 during the interval of time [T − ε, T ] (reverse
the time).



A drawback of this strategy

However this strategy has a serious drawback in the case of partial
differential equations if “Ay requires more derivatives on y that F (y)”. For
example it seems difficult to deduce from the controllability of

(1) yt + yx = 0, y(t, 0) = u(t), x ∈ (0, L),

in time T > L the (null) controllability of

(2) yt + yx − εyxx = 0, y(t, 0) = u(t), y(t, L) = v(t), x ∈ (0, L),

in time T > L if ε > 0 is small enough. So, let us propose a slightly
different strategy (requiring stronger assumptions).



A slightly different strategy

Let us, moreover, assume that the control system

(1) ẏ = Ay + F (y) +Bu

where the state is y ∈ R
n and the control is u ∈ R

m is locally controllable
in small time. Then one can proceed in the following way in order to get
the global null controllability in small time of ẏ = Ay + F (y) +Bu. We
want to send y0 to 0 to 0 in small time by using a suitable control u.
Again we perform the following scaling

(2) z(t) := εy(εt), w(t) := ε2u(εt).

Then ẏ = Ay + F (y) +Bu is equivalent to ż = εAz + F (z) +Bw. We
then look for z and v of the following form

(3) z = ȳ + εz1 + ε2z2 + . . . , w = ū+ εv1 + ε2v2 + . . .



Then, identifying the orders in εp, p ∈ {0, 1} in ż = εz + F (z) +Bw one
gets

˙̄y = F (ȳ) +Bū,(1)

ż1 = Aȳ +
∂F

∂y
(ȳ, ū)z1 +

∂F

∂u
(ȳ, ū)w1.(2)

Note that, from our assumption on (ȳ, ū), (1) holds. For the initial data,
we have

(3) z̄(0) = 0, z1(0) = y0.

From (1) and the properties of (ȳ, ū), one has ȳ(T0) = 0. From our
assumption of controllability of the linearized control around (ȳ, ū) one gets
the existence of v1 such that z1(T0) = 0. So, with this w1, z(T0) is of
order ε2. Going back to the y variable one gets that y(εT0) is of order ε.
Then using the local controllability in small time of ẏ = Ay + F (y) +Bu,
one gets that, for every τ > 0, we can find a control allowing us to go for
the control system ẏ = Ay + F (y) +Bu from y(εT0) to 0 during the
interval of time [εT0, εT0 + τ ].



This gives again the global null controllability in small time of
ẏ = Ay + F (y) +Bu. It requires an extra property, namely, the local null
controllability in small time of ẏ = Ay + F (y) +Bu, but it avoids the use
of the inverse mapping theorem which is a serious problem in the pde
framework if “Ay requires more derivatives on y that F (y)”.



Morality

The “morality” behind these strategies is that the quadratic term F (y) is
the leading term compared to the linear term Ay for the global
controllability: Ay is just an annoying perturbations (which can however be
used when we are close enough to 0).
Of course, as one can see by looking at the proof of the controllability
theorem, this method works only if we have a (good) convergence of the
solution of the Navier-Stokes equations to the solution of the Euler
equations when the viscosity tends to 0. This is the case on manifolds
without boundary, which, in our situation, corresponds to the case where
the control is on the full boundary of Ω: Γ := ∂Ω (or in the case of interior
control on a manifold without boundary).



Let us recall that this convergence is not known (and might be wrong...)
even in dimension d = 2 if there is no control. More precisely, let us
assume that Ω is of class C∞, that d = 2 and that y0 ∈ C∞

0 (Ω;R2) is
such that div y0 = 0. Let T > 0. Let y ∈ C∞([0, T ]× Ω;R2) and
p ∈ C∞([0, T ] × Ω) be the solution to the Euler equations

(E)







yt + (y · ∇)y +∇p = 0, div y = 0, in (0, T ) × Ω,
y · n = 0 on [0, T ]× ∂Ω,

y(0, ·) = y0 on Ω.

Let ε ∈ (0, 1]. Let yε ∈ C∞([0, T ] × Ω;R2) and pε ∈ C∞([0, T ] × Ω) be
the solution to the Navier-Stokes equations

(NS)







yεt − ε∆yε + (yε · ∇)yε +∇pε = 0, div yε = 0, in (0, T ) × Ω,
yε = 0 on [0, T ]× ∂Ω,

y(0, ·) = y0 on Ω.

One knows that there exists C > 0 such that |yε|C0([0,T ];L2(Ω;R2)) 6 C, for
every ε ∈ (0, 1].



One has the following challenging open problems.

Open problem (Convergence of Navier-Stokes to Euler)

(i) Does yε converge weakly to y in L2((0, T )× Ω;R2) as ε→ 0+?

(ii) Let K be a compact subset of Ω and m be a positive integer. Does
yε|[0,T ]×K

converge to y|[0,T ]×K in Cm([0, T ] ×K;R2) as ε→ 0+?

(Of course, due to the difference of boundary conditions between the
Euler equations and the Navier-Stokes equations, one does not have a
positive answer to this last question if K = Ω.)

However this open problem is known to have a positive answer in the case
of the Navier slip boundary condition. D. Iftimie and F. Sueur got in 2011
a rigorous boundary layer expansion in the case of the Navier slip boundary
condition. This expansion is easier to handle than the Prandtl model (which
deals with the Dirichlet boundary condition) because the main equation for
the boundary layer correction is linear and well-posed. So there is some
hope to be able to treat the case of the Navier slip boundary condition.



An advice due to L. Nirenberg

L. Nirenberg, besides to be a great mathematician, always give great
advices when you have no more idea to solve a given problem. I was told
that one of his famous advices is
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An advice due to L. Nirenberg

L. Nirenberg, besides to be a great mathematician, always give great
advices when you have no more idea to solve a given problem. I was told
that one of his famous advices is

Have you tried the dimension 2?

Note that we are in dimension d+ 1. It means that we should take d = 1
to follow Nirenberg’s advice. At a first glance the 1-D analogous of the
Navier-Stokes with full control on the boundary is the following Burgers
control system

(1)

{

yt − yxx + yyx = 0,
y(t, 0) = v(t), y(t, L) = w(t).

Unfortunately O. Imanuvilov and S. Guerrero proved in 2007 that this
control system is not globally null controllable system in small time.



However the quadratic part (i.e. the “F part”) of

(1) yt − yxx + yyx = 0, y(t, 0) = v(t), y(t, L) = w(t)

is the following control system (in an implicit formulation: no boundary
condition)

(2) yt + yyx = 0,

which is not null controllable (even in large time and even locally). So (1)
is not a good 1-D analogue of our Navier-Stokes control system since the
Euler equations are controllable (JMC (1996), O. Glass (2002)).



A 1-D analogue of our Navier-Stokes control systems

In order to have a good 1-D analogue we add one more control and
consider the following control system

(3) yt − yxx + yyx = u(t), y(t, 0) = v(t), y(t, L) = w(t),

(roughly speaking u plays the role of the pressure). Then, using the return
method, M. Chapouly proved in 2009 that the quadratic part of (3), i.e.
(in an implicit formulation)

(4) yt + yyx = u(t),

is globally null controllable in small time and then, from this result and the
above “morality” she deduced the globally null controllability in small time
of (3).



A case with a boundary layer

In M. Chapouly’s case there was no boundary layer problem since one can
do what we want on the boundary. The remaining challenging open
problem was to remove the control w. The control system is then

(1) yt − yxx + yyx = u(t), y(t, 0) = v(t), y(t, L) = 0.

and if one follows the above strategy there is a boundary layer which
appears at x = L. This problem was solved by F. Marbach in 2014.



F. Marbach’s method

The Burgers control system studied by F. Marbach is

(2) yt − yxx + yyx = u(t), y(t, 0) = v(t), y(t, L) = 0.

In 2014, F. Marbach proved the global null controllability in small time of
the control system (2).

Theorem (F. Marbach (2014))

For every T > 0 and for every y0 ∈ L2(0, L), there exist u ∈ C∞([0, T ])
and v ∈ C∞([0, T ]) such that the solution of

(3)















yt − yxx +

(

y2

2

)

x

= u(t), t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = v(t), y(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),

satisfies y(T, ·) = 0.



F. Marbach’s proof

Note that the analogous of the Euler equation for (2) is (C. Bardos, A-Y.
Le Roux and J.-C. Nédélec (1979))

(4)

{

yt + (y2/2)x = u(t),
y(t, 0) ∈ I(v(t)), y(t, 1) ≥ 0,

where I(a) = (−∞, 0] if a 6 0 and I(a) = (−∞,−a) ∪ {a} if a > 0.
Using the return method as for the Euler equation, F. Marbach first proved
that this control system is globally null controllable in small time. If ones
uses the same control for the viscous Burgers equation a boundary layer
appears at x = L. A fundamental result due to F. Marbach is that this
boundary layer has a form which leads to a natural rapid dissipation. Then
one can conclude by using a standard local null controllability result.



Key ingredients for our global controllability result for the

Navier-Stokes equations with the Navier slip boundary

condition

There are five main ingredients

1 The return method together with the idea to consider by scaling the
Navier-Stokes as some kind of perturbation of the Euler equation
(JMC (1992, 1996)),

2 The controllability of the Euler equation (JMC (1996), 0. Glass
(2002)),

3 The description of the evolution of the boundary layer due to D.
Iftimie and F. Sueur (2011),

4 The dissipation method due to F. Marbach (2014),

5 The local null controllability result due to S. Guerrero (2006).

Let us now give more details.
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Going back to the details

As in finite dimension we perform the scaling: z(t, x) := εy(εt, x) and
q(t, x) := ε2p(εt, x). Now, (z, q) is the solution to the following system for
t ∈ (0, T ):

(N-Sε)























zt + (z · ∇) z − ε∆z +∇q = 0 on (0, T )× Ω,
div z = 0 on (0, T )× Ω,
z · n = 0 on (0, T )× (∂Ω \ Γ),
z · n = 0, [D(z)n +Az]

tan
= 0 on (0, T )× (∂Ω \ Γ),

z|t=0 = εy0 on Ω.



Due to the scaling chosen, we need to prove that we can obtain
|z(T, ·)|L2(Ω) = o(ε) if we want to achieve global approximate null
controllability (and then conclude by using the local null controllability).
Since ε is small, we expect z to converge to the solution of the Euler
equation. Hence, as in finite dimension, we first introduce the following
asymptotic expansion for z:

(1) z(t, x) = ȳ(t, x) + εz1(t, x) + . . . .

The pressure is also expanded as:

(2) q(t, x) = p̄(t, x) + εq1(t, x) + . . . .



The Euler equation

At order O(1), the first part (ȳ, p̄) of our expansion is a solution to the
Euler equation. Hence, the pair (ȳ, p̄) is a return-method trajectory of the
Euler equation on [0, T ]:

(3)























ȳt + (ȳ · ∇) ȳ +∇p̄ = 0, on (0, T )× Ω,
div ȳ = 0 on (0, T )× Ω,
ȳ · n = 0 on (0, T )× ∂Ω \ Γ,
ȳ(0, ·) = ȳ(T, ·) = 0 in Ω,
the linearized Euler control system around (ȳ, p̄) is controllable.

Such (ȳ, p̄) are constructed by JMC (1996) in dimension 2 and by O. Glass
(2000) in dimension 3. It is here that we use the assumption that Γ meets
every connected component of ∂Ω.



Construction of (ȳ, p̄) for d = 2

Take θ : Ω → R such that

∆θ = 0 in Ω,
∂θ

∂n
= 0 on ∂Ω \ Γ.

Take α : [0, T ] → R such that α(0) = α(T ) = 0. Finally, define
(ȳ, p̄) : [0, T ] × Ω → R

2 × R by

ȳ(t, x) := α(t)∇θ(x), p̄(t, x) := −α̇(t)θ(x)− α(t)2

2
|∇θ(x)|2.(1)

Then (ȳ, p̄) is a trajectory of the Euler control system which goes from 0 to
0.



Controllability of the linearized control system around (ȳ, p̄)

if d = 2

The linearized control system around (ȳ, p̄) is

{

yt + (ȳ · ∇)y + (y · ∇)ȳ +∇p = 0, div y = 0 in [0, T ]× Ω,
y · n = 0 on [0, T ]× (∂Ω \ Γ).(1)

Again we assume that d = 2. Taking the curl of the first equation, one gets

(curl y)t + (ȳ · ∇)(curl y) = 0.(2)

This is a simple transport equation on curl y. If there exists a ∈ Ω such
that ∇θ(a) = 0, then ȳ(t, a) = 0 and (curl y)t(t, a) = 0 showing that (2)
is not controllable. This is the only obstruction: If ∇θ does not vanish in
Ω, one can prove that (2) (and then (1)) is controllable if

∫ T

0 α(t)dt is
large enough.
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Order 1

We move on to order O(ε). Here, the initial data y0 comes into play. The
equation of the order 1 is (using the fact that ∆ȳ = 0)

(1)















z1t + (ȳ · ∇) z1 +
(

z1 · ∇
)

ȳ +∇q1 = 0 in Ω for t ≥ 0,
div z1 = 0 in Ω for t ≥ 0,
z1 · n = 0 in ∂Ω \ Γ for t ≥ 0,
z1(0, ·) = y0 in Ω at t = 0.

This control system is controllable. So we can get z1(T0) = 0.



Boundary layer

Due to the scaling chosen, we need to prove that we can obtain
|z(T/ε, ·)|L2(Ω) = o(ε). Following closely the original boundary layer
expansion for Navier slip boundary conditions proved by D. Iftimie and F.
Sueur (2011), the correct expansion for z:

(2) z(t, x) = ȳ(t, x) +
√
εv

(

t, x,
ϕ(x)√
ε

)

+ εz1(t, x) + . . . ,

where ϕ(x) := dist(x, ∂Ω) in a neighborhood of ∂Ω. The pressure is again
expanded as:

(3) q(t, x) = p̄(t, x) + εq1(t, x) + . . . .

Compared with the expansion we gave in finite dimension for
ẏ = Ay + F (y) +Bu, expansion (2) introduces a boundary correction v.
Indeed, ȳ does not satisfy the Navier slip boundary condition on ∂Ω \ Γ.
The purpose of the second term v is to recover this boundary condition by
introducing the tangential boundary layer generated by ȳ. More precisely,



since the Euler system is a first-order system, we have only been able to
impose one scalar boundary condition, namely, ȳ · n = 0 on ∂Ω \ Γ. Hence,
the full Navier slip boundary condition is not satisfied by ȳ. Therefore, at
order O(

√
ε), we introduce a boundary layer correction v. This correction if

fully tangential and has no normal part. This profile is expressed in terms
both of the slow space variable x ∈ Ω and a fast scalar variable
ξ = ϕ(x)/

√
ε. For x ∈ Ω, ϕ(x) ≥ 0. Thus, ξ lives in R+. As in D. Iftimie

and F. Sueur (2011), v is the solution to:

(4)







vt + [(ȳ · ∇)v + (v · ∇)ȳ]
tan

+ κξvξ − vξξ = 0 in R+ × Ω, t ≥ 0,
vz(t, x, 0) = g0(t, x) in {0} × Ω, t ≥ 0,
v(0, ·, ·) = 0 in R+ × Ω, t = 0,

where

κ(t, x) :=
ȳ(t, x) · n(x)

ϕ(x)
, in [0, T0]× Ω,(5)

g0(t, x) := 2χ(x) [D (ȳ(t, x)) n(x) +Aȳ(t, x)]
tan

in [0, T0]× Ω.(6)



After time T0, the boundary layer equation reduces to the following heat
equations on the half line ξ ≥ 0 (where the slow variable x plays the role of
a parameter):

(7)

{

vt − vξξ = 0, in R+ × Ω for t ≥ T0,
vξ(t, x, 0) = 0 in {0} × Ω for t ≥ T0.

There is no more control. There is a natural dissipation on [T0, T/ε].
However this dissipation is not good enough to get that the boundary
profile v at the final time is small enough to apply a local controllability
result and that the source terms generated by v in the equation satisfied by
the remainder are integrable with respect to time. However this dissipation
on [T0, T/ε] turns out to be good enough if if the function v at time T0
satisfies the following moment properties

(8)

∫ +∞

0
ξkv(T0, x, ξ)dξ = 0, ∀x ∈ Ω, ∀k ∈ {0, 1, 2, 3}.

Property (8) can be obtained by using controllability properties of the
boundary layer equation during the interval of time [0, T0] (even if this
controllability is not sufficient to get v(T0, ·, ·) = 0 since ξ ∈ [0,+∞)).
This concludes the proof.



An open problem on Γ

Does the global controllability in small time of our Navier-Stokes control
system holds if one replaces the assumption “Γ is an open subset of ∂Ω
which meets every connected component of ∂Ω” by the weaker assumption

(1) Γ is a non empty open subset of ∂Ω?

Note that (1) is sufficient for the local controllability of Navier-Stokes
control system (Guerrero (2006)). It is also sufficient to get a global
approximate controllability result in small time for the Euler control system,
with exact controllability inside Ω (JMC (1996), Glass (2000, 2001)).
However there is a difficulty to get a well-prepared boundary layer (i.e. a
boundary layer which dissipates fast enough). A related question is what
about the case of interior control?



An open problem on the regularity of the solution

Is it possible to get the global null controllability in the framework of strong
solutions instead of weak solutions if the initial data is smooth? This
problem is open for d = 3 only. Note that in the interval of time [0, εT0] the
solution is strong (if the initial data is smooth). It is during the dissipation
stage that we do not know if the solution remains a strong solution.



Global controllability in small time of Korteweg de Vries

equations

Let us start with the following

(1)

{

yt + yx + yxxx + yyx = a(t), x ∈ (0, L)
y(t, 0) = b(t), y(t, L) = c(t), y(t, L) = d(t),

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is
(a(t), b(t), c(t), d(t))tr ∈ R

4. Using the approach of the global
controllability in small time of the Navier-Stokes control system, M.
Chapouly proved in 2009 that (1) is globally null controllable in small time.
What happen to this global controllability in small time in the following
situations.



1 One removes the control on the left: b(t) = 0. Then if we follow the
return method strategy a boundary layer appears at x = 0. Is it
possible to handle it (using F. Marbach’s strategy)?

2 One removes one or two controls on the right: c(t) = 0 or/and
d(t) = 0. Then, if we follow the return method strategy a boundary
layer appears at x = L. Is it possible to handle it?

3 0ne removes the control a(t). Note that in this the quadratic part (the
leading term at infinity)

(1) yt + yyx = 0, x ∈ (0, L)

which is not null controllable. Let us recall that for the analogous
viscous Burgers equation, O. Imanuvilov and S. Guerrero proved in
2007 that this global controllability do not hold. However their proof
relies heavily on the maximum principle, a maximum principle which
do not hold for our KdV equation. Does the global controllability in
small time holds? The corresponding Lagrangian controllability holds
(L. Gagnon 2016).


