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Plan of the talk

The first part of the talk is devoted to deterministic evolution
equations in a Hilbert spaces H of the form

X ′(t) = AX (t) + B(X (t)),

X (0) = x ∈ H,
(PDE)

where A : D(A) ⊂ H is linear and F : H → H is nonlinear.

In the second part, to take into account random perturbations,
we will add to equation (PDE) a stochastic term of the form
σ(X (t))dW (t), where W is an H–valued cylindrical Wiener
process.

In both cases we shall present necessary and sufficient
conditions for the invariance of a closed convex set K .
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The deterministic case

Hypothesis 1

(i) A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup etA and there is ω ∈ R such that

〈Ax , x〉 ≤ ω|x |2, ∀ x ∈ D(A). (1)

(ii) B : H → H is continuous and quasi–dissipative, i.e. there
exists M ∈ R such that

〈B(x)− B(y), x − y〉 ≤ M|x − y |2, ∀ x , y ∈ H. (2)
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Under Hypothesis 1 it is well known that for any x ∈ H there
exists a unique continuous solution to the integral equation

X (t , x) = etAx +

∫ t

0
e(t−s)AB(X (s, x))ds, t ≥ 0,

called a mild solution to problem (PDE).

Let now K ⊂ H be a non empty, closed and convex subset of H
(possibly with a non empty interior); we aim to find necessary
and sufficient conditions in order that

x ∈ K ⇒ X (t , x) ∈ K , ∀ t ≥ 0.

In this case we say that K is invariant for the dynamical system
(PDE).
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Our analysis will be based on the distance function:

dK (x) = min
y∈K
|x − y |, ∀ x ∈ H.

Since K is convex, the minimum above is attained at a unique
point ΠK (x), the projection of x over K , so that

dK (x) = |x − ΠK (x)|, ∀ x ∈ H.

We recall that dK is Lipschitz:

|dK (x)− dK (y)| ≤ |x − y |, ∀ x , y ∈ H

and that the function:

VK (x) := d 2
K (x), x ∈ H,

is of class C1,Lip and it results

DVK (x) = 2(x − ΠK (x)), ∀ x ∈ H.
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Theorem 1 ([CaDaFr16])

Under Hypothesis 1 the following assertions are equivalent:

(i) K is invariant.

(ii) There is N ≥ 0 such that

〈DVK (x),Ax + B(x)〉 ≤ NVK (x), ∀ x ∈ D(A) ∩ K c . (3)

Notice that condition (3) can be written as

2〈x − ΠK (x),Ax + B(x)〉 ≤ NVK (x), ∀ x ∈ D(A) ∩ K c . (4)
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Sketch of the proof

(i)⇒ (ii). Assume that K is invariant and let x ∈ D(A). Then

1
t

(VK (X (t , x))− VK (x))

=
1
t

(VK (X (t , x))− VK (X (t ,ΠK (x)))− VK (x)),
(5)

because VK (X (t ,ΠK (x))) = 0. Moreover, taking into account
that dK is Lipschitz, yields

1
t

(VK (X (t , x))− VK (x))

≤ 1
t

[dK (X (t , x))|X (t , x))− X (t ,ΠK (x))| − VK (x))].
(6)

Also, by Hypothesis 1 it follows that the dependence of X (t , x)
from x is Lipschitzian,
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|X (t , x)− X (t , y)| ≤ e(ω+M)t |x − y |, ∀ x , y ∈ H.

Therefore

1
t [(VK (X (t , x))− VK (x))

≤ 1
t [dK (X (t , x))e(ω+M)t |x − ΠK (x))| − VK (x))])

= 1
t [dK (X (t , x))dK (x)e(ω+M)t − VK (x))]).

Letting t → 0, yields

〈DVK (x),Ax + B(x)〉 ≤ (ω + M)VK (x),

and the implication (i)⇒ (ii) is proved.
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(ii)⇒ (i). Take x ∈ D(A) ∩ K and write (formally),

d
dt

VK (X (t , x)) = 〈DVK (X (t , x)),AX (t , x) + B(X (t , x))〉

By the assumption it follows that

d
dt

VK (X (t , x)) ≤ NVK (X (t , x)),

which implies
VK (X (t , x)) ≤ eNtVK (x).

Since VK (x) = 0 we have VK (X (t , x)) = 0 so that

X (t , x) ∈ K , ∀ t ≥ 0.
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We can also give a necessary and sufficient condition for the
invariance of K involving only the boundary ∂K .

Proposition 2 ([CaDaFr16])

Assume, besides Hypothesis 1, that ΠK (x) ∈ D(A) for all
x ∈ D(A). Then the following assertions are equivalent :

(i) K is invariant.

(ii) There is N ≥ 0 such that

〈p,Ax + B(x)〉 ≤ 0 ∀ x ∈ D(A) ∩ ∂K , ∀ p ∈ NK , (7)

where NK is the normal cone of K .

Giuseppe Da Prato Scuola Normale Superiore, Pisa (Italy) Invariance for semilinear stochastic PDEs



Proof

(i)⇒ (ii). Assume that K is invariant and let x ∈ D(A) ∩ ∂K .
Recall that by Theorem 1 we have

2〈x − ΠK (x),Ax + B(x)〉 ≤ NVK (x), ∀ x ∈ D(A).

Now, replacing x with xλ = x + λp, λ > 0, and taking into
account that ΠK (xλ) = x , dK (xλ) = λ|p|, yields,

〈xλ − ΠK (xλ),Axλ + B(xλ)〉 = λ〈p,Axλ + B(xλ)〉 ≤ 1
2

Nλ2|p|2.

Dividing both sides by λ and letting λ ↓ 0, yields

〈p,Ax + B(x)〉 ≤ 0,

as claimed.
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(ii)⇒ (i). Assume conversely that

〈p,Ax + B(x)〉 ≤ 0, ∀ x ∈ D(A) ∩ ∂K , ∀ p ∈ NK .

Let x ∈ D(A) and set y = ΠK (x). Then write

〈x − ΠK (x),Ax + B(x)〉 = 〈x − y ,Ax + B(x)〉

= 〈x − y ,Ay + B(y)〉+ 〈x − y ,A(x − y) + B(x)− B(y)〉

≤ (ω + M)|x − y |2 = (ω + M)|x − y |2VK (x),

which yields

2〈x − ΠK (x),Ax + B(x)〉 ≤ NVK (x), ∀ x ∈ D(A) ∩ K c .

Therefore K is invariant in view of Theorem 1.
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Example 1. The unitary ball

Let K = B1 = {x ∈ H : |x | ≤ 1}. Then we have

dK (x) = (|x | − 1)1{|x |>1},

ΠK (x) = x if x ∈ B1, ΠK (x) =
x
|x |

if x /∈ B1.

Therefore, if x ∈ D(A) we have ΠK (x) ∈ D(A) and the normal
cone NK (x) at x ∈ ∂B1 is given by

NK (x) = {λx : λ ≥ 0}.

By Proposition 2 it follows that B1 is invariant if and only if

〈x ,Ax + B(x)〉 ≤ 0, ∀ x ∈ D(A), |x | = 1.
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Example 2. The cone of nonnegative functions

Let H = L2(O) where O is an open subset of Rd with a regular
boundary ∂O and

K = {x ∈ L2(O) : x(ξ) ≥ 0, a.e.}.

K has an empty interior. Moreover,

VK (x) = |x−|2 =

∫
O
|x−(ξ)|2 dξ, x− = max{0,−x}.

So, DVK (x) = −2x−, and the iff condition for the invariance

〈DVK (x),Ax + B(x)〉 ≤ NVK (x), ∀ x ∈ D(A) ∩ K c ,

reduces to

− 2〈x−,Ax + B(x)〉 ≤ N|x−|2, ∀ x ∈ D(A). (8)
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Let us now consider in particular the Heat equation, taking
A = ∆ (the Laplacian) equipped with Dirichlet boundary
conditions.

Since for x ∈ D(A) = H2(O) ∩ H1
0 (O) we have

〈x−,Ax〉 = −|∇x |2, 〈x−,B(x)〉 = 〈x−,B(−x−)〉,

condition

−2〈x−,Ax + B(x)〉 ≤ N|x−|2, ∀ x ∈ D(A).

is equivalent to

− 2〈x−,B(x−)〉 ≤ N|x−|2 + |∇x |2, ∀ x ∈ D(A). (9)

We note that if B(0) = 0 this condition is obviously fulfilled.
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Remark

In the paper by [CaDaFr16], Theorem 1 and Proposition 2
above are proved in more general situations including non
empty closed sets K which are not necessarily convex as well
as by replacing the Hilbert space H by a Banach space X .

In this way reaction–diffusion equations with polynomial
nonlinearity are covered by our results.

When H is infinite dimensional and A is unbounded, several
sufficient conditions for the invariance are available in the
literature, but necessary conditions are laking, except some
one which seems not easy to check, see [CaNeVr07] .

We stress that necessary conditions are important in the
applications, in particular to scientific modelling.
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The stochastic case

As we said before, to take into account random perturbations,
one is lead to add to equation (PDE) a stochastic term of the
form

σ(X (t))dW (t),

where W is an H–valued cylindrical Wiener process in some
filtered probability space (Ω,F , (Ft )t≥0,P). Then problem
(PDE) reduces to a stochastic PDE:

dX (t) = (AX (t) + B(X (t)))dt + σ(X (t))dW (t),

X (0) = x ∈ H.
(SPDE)
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Hypothesis 2
We assume, besides Hypothesis 1, that

σ : H → L2(H)

is Lipschitz continuous, where L2(H) is the Hilbert space of all
Hilbert–Schmidt operators on H, endowed with the scalar
product

〈T ,S〉L2(H) = Tr [TS∗].
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As well known, under Hypothesis 2, there exists a unique mild
solution X (·, x) to problem (SPDE) for any x ∈ H.

X (·, x) is the unique mean-square continuous and adapted
stochastic process solving the integral equation

X (t , x) = etAx +

∫ t

0
e(t−s)AB(X (s, x))ds

+

∫ t

0
e(t−s)Aσ(X (s, x))dW (s), t ≥ 0.

We are also given a non empty, closed convex set K as before
and we look for necessary and sufficient conditions such that

x ∈ K ⇒ X (t , x) ∈ K , ∀ t ≥ 0, P–a.s..

In this case we say that K is invariant for (SPDE).
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A problem arises, however, in applying Itô’s formula to
d 2

K (X (t , x)) because d 2
K is in general only C1,Lip, whereas Itô’s

formula requires a C2 regularity.

For this reasons we replace the square with the forth power of
the distance setting WK = d 4

K .

It happens that d 4
K is of class C2 in some interesting situations

as for instance when K is a ball, a closed subspace or a
half–space.

If K is the set of all positive function, d 4
K is not of class C2, but it

can be slightly changed following [CaDa12], in order that the
theory below applies.
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So, we shall assume, besides Hypothesis 2, that

Hypothesis 3

WK := d 4
K ∈ C2(H).

Notice that
DWK (x) = 4d 2

K (x)(x − ΠK (x)),

and that, setting

n(x) :=
x − ΠK (x)

dK (x)
= DdK (x), x ∈ K c ,

we have for x ∈ K c ,

D2WK (x) = 12dK (x)2n(x)⊗ n(x) + 4d 3
K (x)n′(x).
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Applying Itô’s formula to WK (X (t , x)) we deduce that

d
dt

E[WK (X (t , x))] = E[L WK (X (t , x))],

where the Kolmogorov operator L is given by

L WK (x) = 2d 3
K (x) Tr [n′(x)a(x)] + 6d 2

K (x)〈a(x)n(x),n(x)〉

+4d 3
K (x)〈Ax + B(x),n(x)〉, x ∈ D(A) ∩ K c

and a(x) := σ(x)σ∗(x), x ∈ H.
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Theorem 2 ([CaDaFr])

Under Hypotheses 2 and 3 the following assertions are
equivalent:

(i) K is invariant.

(ii) There is N > 0 such that

L WK (x) ≤ NWK (x), ∀ x ∈ D(A) ∩ K c . (10)
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Sketch of the proof

(i)⇒ (ii). Assume that K is invariant and let x ∈ D(A). Write

1
t

(WK (X (t , x))−WK (x))

= 1
t (WK (X (t , x))−WK (X (t ,ΠK (x)))−WK (x))

(11)

Using lipschitzianity of dk , yields

1
t

(VK (X (t , x))− VK (x))

≤ 1
t

[d3
K (X (t , x))|X (t , x))− X (t ,ΠK (x))| − VK (x))].

(12)

Giuseppe Da Prato Scuola Normale Superiore, Pisa (Italy) Invariance for semilinear stochastic PDEs



Since the dependence of X (t , x) from x is Lpschitzian we have

E(|X (t , x)− X (t , y)|2) ≤ e2(ω+M)t |x − y |2, x , y ∈ H (13)

and we deduce that

1
t
E[(WK (X (t , x))− VK (x))] ≤ 1

t
e(ω+M)td3

K (x) |e(ω+M)t − 1|WK (x).

Using Itô’s formula and letting t → 0, yields

L WK (x) ≤ (ω + M)WK (x),

and the conclusion follows.
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(ii)⇒ (i). Take x ∈ D(A) ∩ K and write,

d
dt

E[WK (X (t , x))] = E[L WK (X (t , x))].

Then by (10) it follows that

d
dt

E[VK (X (t , x))] ≤ NE[VK (X (t , x))],

so that
E[VK (X (t , x))] ≤ eNtVK (x) = 0,

which implies

X (t , x) ∈ K , P–a.s., ∀ t ≥ 0.
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We can also give a necessary and sufficient condition for the
invariance of K involving only the boundary ∂K when the
signed distance dK defined by

dK (x) = dK (x)− dK c (x), x ∈ H,

is of class C2,Lip (this requires K to be the closure of its
interior).

Proposition 2 ([CaDaFr])

Assume that dK is of class C2,Lip and that ΠK ∈ D(A) for all
x ∈ D(A). Then K is invariant if and only if

(i) 〈a(x)n(x),n(x)〉 = 0, ∀ x ∈ D(A) ∩ ∂K .

(ii) Tr [n′(x)a(x)] + 2〈Ax + B(x),n(x)〉 ≤ 0, ∀ x ∈ D(A) ∩ ∂K .
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Example. The unitary ball

Let K = B(0,1) = {x ∈ H : |x | ≤ 1}. Then

dK (x) = (|x | − 1)1|x |>1},

WK (x) = (|x | − 1)41|x |>1},

n(x) =
x
|x |
, n′(x) =

1
|x |
− x ⊗ x
|x |3

, |x | ≥ 1.

Then by Proposition 2, K is invariant if and only if
(i) 〈a(x)x , x〉 = 0, ∀ x ∈ D(A) ∩ ∂K .

(ii) Tr [a(x)] + 2〈Ax + B(x), x〉 ≤ 0, ∀ x ∈ D(A) ∩ ∂K .
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Example. Invariance of a subspace

Let Z be a closed subspace of H and let P be the orthogonal
projector onto Z see [Fi06].

Then, ΠZ (x) = Px ,

n(x) =
x − Px
|x − Px |

, x /∈ Z

and

Dn(x) =
I − P
|x − Px |

− (x − Px)⊗ (x − Px)

|x − Px |3
, x /∈ Z ,

By Theorem 2, Z is invariant if and only if

1
2 |x − Px |2 Tr [a(Px)(I − P)] + |x − Px |2〈b(Px)(x − Px)〉

+〈a(Px)(x − Px), x − Px〉 ≤ 0, ∀ x ∈ H.
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Example. Invariance of the set of nonnegative
functions

Let H = L2(O) where O is an open subset of Rd with a regular
boundary ∂O. We set

K = {x ∈ L2(O) : x(ξ) ≥ 0, a.e.}.

Then we have

d 2
K (x) =

∫
O

[min{x ,0}]2dξ =

∫
O

[x−(ξ)]2dξ . (14)

Note that d 4
K (x) fails to be C2 on H, as it is easy to see. So,

this example is not covered by Theorem 2.
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Therefore, we shall replace, following [CaDa12], the fourth
power of the distance by the function

V (x) :=

∫
O

F (x−(ξ))dξ, x ∈ H , (15)

where

F (r) =

{
r4 |r | ≤ 1
6r2 − 8|r |+ 3 |r | ≥ 1.

Observe that F is convex on R, and F ′(r) ≥ 0 for r ≥ 0.
Notice that V is of class C1 but not of class C2 because it only
possesses weakly continuous Gateaux second derivatives.

But Itô’s formula can be generalized ad we can characterize the
invariance of K see [CaDa16].
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