Invariance for semilinear stochastic PDEs

Giuseppe Da Prato Scuola Normale Superiore, Pisa (Italy)

Joint work with Piermarco Cannarsa and Hélène Frankowska Conference for the 60th birthday of Piermarco Cannarsa Roma, July 3, 2017

The first part of the talk is devoted to deterministic evolution equations in a Hilbert spaces H of the form

 $\begin{cases} X'(t) = AX(t) + B(X(t)), \\ X(0) = x \in H, \end{cases}$ (PDE)

・ 同 ト ・ ヨ ト ・ ヨ ト

where $A : D(A) \subset H$ is linear and $F : H \to H$ is nonlinear.

In the second part, to take into account random perturbations, we will add to equation (PDE) a stochastic term of the form $\sigma(X(t))dW(t)$, where *W* is an *H*-valued cylindrical Wiener process.

In both cases we shall present necessary and sufficient conditions for the invariance of a closed convex set K.

Hypothesis 1

(i) $A : D(A) \subset H \to H$ is the infinitesimal generator of a strongly continuous semigroup e^{tA} and there is $\omega \in \mathbb{R}$ such that

$$\langle Ax, x \rangle \leq \omega |x|^2, \quad \forall \ x \in D(A).$$
 (1)

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

1

(ii) $B : H \to H$ is continuous and quasi-dissipative, i.e. there exists $M \in \mathbb{R}$ such that

 $\langle B(x) - B(y), x - y \rangle \le M |x - y|^2, \quad \forall x, y \in H.$ (2)

Under Hypothesis 1 it is well known that for any $x \in H$ there exists a unique continuous solution to the integral equation

$$X(t,x)=e^{tA}x+\int_0^t e^{(t-s)A}B(X(s,x))ds,\quad t\ge 0,$$

called a mild solution to problem (PDE).

Let now $K \subset H$ be a non empty, closed and convex subset of H (possibly with a non empty interior); we aim to find necessary and sufficient conditions in order that

 $x \in K \Rightarrow X(t, x) \in K, \quad \forall t \ge 0.$

In this case we say that K is invariant for the dynamical system (PDE).

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Our analysis will be based on the distance function:

$$d_{\mathcal{K}}(x) = \min_{y \in \mathcal{K}} |x - y|, \quad \forall \ x \in \mathcal{H}.$$

Since *K* is convex, the minimum above is attained at a unique point $\Pi_{K}(x)$, the projection of *x* over *K*, so that

$$d_{\mathcal{K}}(x) = |x - \Pi_{\mathcal{K}}(x)|, \quad \forall x \in \mathcal{H}.$$

We recall that d_{κ} is Lipschitz:

$$|d_{\mathcal{K}}(x) - d_{\mathcal{K}}(y)| \le |x - y|, \quad \forall x, y \in H$$

and that the function:

$$V_K(x) := d_K^2(x), \quad x \in H,$$

is of class $C^{1,Lip}$ and it results

$$DV_{\mathcal{K}}(x) = 2(x - \Pi_{\mathcal{K}}(x)), \quad \forall \ x \in H.$$

Theorem 1 ([CaDaFr16])

Under Hypothesis 1 the following assertions are equivalent: (i) K is invariant.

(ii) There is $N \ge 0$ such that

 $\langle DV_{\mathcal{K}}(x), Ax + B(x) \rangle \leq NV_{\mathcal{K}}(x), \quad \forall x \in D(A) \cap \mathcal{K}^{c}.$ (3)

Notice that condition (3) can be written as

 $2\langle x - \Pi_{\mathcal{K}}(x), Ax + B(x) \rangle \le NV_{\mathcal{K}}(x), \quad \forall \ x \in D(A) \cap \mathcal{K}^{c}.$ (4)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Sketch of the proof

 $(i) \Rightarrow (ii)$. Assume that *K* is invariant and let $x \in D(A)$. Then

$$\frac{1}{t} (V_{\mathcal{K}}(X(t,x)) - V_{\mathcal{K}}(x))
= \frac{1}{t} (V_{\mathcal{K}}(X(t,x)) - V_{\mathcal{K}}(X(t,\Pi_{\mathcal{K}}(x))) - V_{\mathcal{K}}(x)),$$
(5)

because $V_{\mathcal{K}}(X(t, \Pi_{\mathcal{K}}(x))) = 0$. Moreover, taking into account that $d_{\mathcal{K}}$ is Lipschitz, yields

$$\frac{1}{t} (V_{\mathcal{K}}(X(t,x)) - V_{\mathcal{K}}(x)) \\
\leq \frac{1}{t} [d_{\mathcal{K}}(X(t,x))|X(t,x)) - X(t,\Pi_{\mathcal{K}}(x))| - V_{\mathcal{K}}(x))].$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Also, by Hypothesis 1 it follows that the dependence of X(t, x) from x is Lipschitzian,

$$|X(t,x) - X(t,y)| \le e^{(\omega+M)t}|x-y|, \quad \forall x,y \in H.$$

Therefore

$$\begin{split} \frac{1}{t} \left[(V_{\mathcal{K}}(X(t,x)) - V_{\mathcal{K}}(x)) \right] \\ &\leq \frac{1}{t} \left[d_{\mathcal{K}}(X(t,x)) e^{(\omega+M)t} | x - \Pi_{\mathcal{K}}(x)) \right] - V_{\mathcal{K}}(x) \right] \\ &= \frac{1}{t} \left[d_{\mathcal{K}}(X(t,x)) d_{\mathcal{K}}(x) e^{(\omega+M)t} - V_{\mathcal{K}}(x) \right] \\ \text{Letting } t \to 0, \text{ yields} \\ &\quad \langle DV_{\mathcal{K}}(x), Ax + B(x) \rangle < (\omega+M) V_{\mathcal{K}}(x), \end{split}$$

and the implication $(i) \Rightarrow (ii)$ is proved.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(*ii*) \Rightarrow (*i*). Take $x \in D(A) \cap K$ and write (formally),

 $\frac{d}{dt}V_{K}(X(t,x)) = \langle DV_{K}(X(t,x)), AX(t,x) + B(X(t,x)) \rangle$

By the assumption it follows that

$$\frac{d}{dt} V_{\mathcal{K}}(X(t,x)) \leq \mathsf{NV}_{\mathcal{K}}(X(t,x)),$$

which implies

 $V_{\mathcal{K}}(X(t,x)) \leq e^{Nt}V_{\mathcal{K}}(x).$ Since $V_{\mathcal{K}}(x) = 0$ we have $V_{\mathcal{K}}(X(t,x)) = 0$ so that $X(t,x) \in \mathcal{K}, \quad \forall t \geq 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

We can also give a necessary and sufficient condition for the invariance of K involving only the boundary ∂K .

Proposition 2 ([CaDaFr16])

Assume, besides Hypothesis 1, that $\prod_{K} (x) \in D(A)$ for all $x \in D(A)$. Then the following assertions are equivalent :

(i) K is invariant.

(ii) There is $N \ge 0$ such that

 $\langle \boldsymbol{\rho}, \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}(\boldsymbol{x}) \rangle \leq \mathbf{0} \quad \forall \ \boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{A}) \cap \partial \boldsymbol{K}, \ \forall \ \boldsymbol{\rho} \in \mathscr{N}_{\boldsymbol{K}},$

(7)

1

(日本) (日本) (日本)

where \mathcal{N}_{K} is the normal cone of K.

Proof

 $(i) \Rightarrow (ii)$. Assume that *K* is invariant and let $x \in D(A) \cap \partial K$. Recall that by Theorem 1 we have

 $2\langle x - \Pi_{\mathcal{K}}(x), Ax + B(x) \rangle \leq NV_{\mathcal{K}}(x), \quad \forall x \in D(A).$

Now, replacing x with $x_{\lambda} = x + \lambda p$, $\lambda > 0$, and taking into account that $\prod_{\mathcal{K}}(x_{\lambda}) = x$, $d_{\mathcal{K}}(x_{\lambda}) = \lambda |p|$, yields,

 $\langle x_{\lambda} - \Pi_{\mathcal{K}}(x_{\lambda}), \mathcal{A}x_{\lambda} + \mathcal{B}(x_{\lambda})
angle = \lambda \langle \mathcal{P}, \mathcal{A}x_{\lambda} + \mathcal{B}(x_{\lambda})
angle \leq rac{1}{2} N \lambda^2 |\mathcal{P}|^2.$

Dividing both sides by λ and letting $\lambda \downarrow 0$, yields

 $\langle \boldsymbol{p}, \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}(\boldsymbol{x}) \rangle \leq \mathbf{0},$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

as claimed.

 $(ii) \Rightarrow (i)$. Assume conversely that

 $\langle \boldsymbol{\rho}, \boldsymbol{A} \boldsymbol{x} + \boldsymbol{B}(\boldsymbol{x}) \rangle \leq \mathbf{0}, \quad \forall \ \boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{A}) \cap \partial \boldsymbol{K}, \ \forall \ \boldsymbol{\rho} \in \mathscr{N}_{\mathcal{K}}.$

Let $x \in D(A)$ and set $y = \prod_{K} (x)$. Then write

 $\langle x - \Pi_{\mathcal{K}}(x), Ax + B(x) \rangle = \langle x - y, Ax + B(x) \rangle$

 $= \langle x - y, Ay + B(y) \rangle + \langle x - y, A(x - y) + B(x) - B(y) \rangle$

 $\leq (\omega + M)|x - y|^2 = (\omega + M)|x - y|^2 V_{\mathcal{K}}(x),$

which yields

 $2\langle x - \Pi_{\mathcal{K}}(x), Ax + B(x) \rangle \leq NV_{\mathcal{K}}(x), \quad \forall \ x \in D(A) \cap \mathcal{K}^{c}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Therefore *K* is invariant in view of Theorem 1.

Example 1. The unitary ball

Let $K = B_1 = \{x \in H : |x| \le 1\}$. Then we have

 $d_{\mathcal{K}}(x) = (|x|-1) \mathbb{1}_{\{|x|>1\}},$

$$\Pi_{\mathcal{K}}(x) = x \text{ if } x \in B_1, \quad \Pi_{\mathcal{K}}(x) = \frac{x}{|x|} \text{ if } x \notin B_1.$$

Therefore, if $x \in D(A)$ we have $\prod_{K} (x) \in D(A)$ and the normal cone $\mathcal{N}_{K}(x)$ at $x \in \partial B_{1}$ is given by

 $\mathscr{N}_{\mathsf{K}}(\mathsf{X}) = \{\lambda \mathsf{X} : \lambda \geq \mathsf{0}\}.$

By Proposition 2 it follows that B_1 is invariant if and only if

 $\langle x, Ax + B(x) \rangle \leq 0, \quad \forall x \in D(A), |x| = 1.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Example 2. The cone of nonnegative functions

Let $H = L^2(\mathcal{O})$ where \mathcal{O} is an open subset of \mathbb{R}^d with a regular boundary $\partial \mathcal{O}$ and

 $\mathcal{K} = \{ x \in L^2(\mathscr{O}) : x(\xi) \ge 0, \text{ a.e.} \}.$

K has an empty interior. Moreover,

$$V_{\mathcal{K}}(x) = |x^{-}|^{2} = \int_{\mathscr{O}} |x^{-}(\xi)|^{2} d\xi, \quad x^{-} = \max\{0, -x\}.$$

So, $DV_{K}(x) = -2x^{-}$, and the iff condition for the invariance

 $\langle DV_{\mathcal{K}}(x), Ax + B(x) \rangle \leq NV_{\mathcal{K}}(x), \quad \forall \ x \in D(A) \cap \mathcal{K}^{c},$

reduces to

$$-2\langle x^{-}, Ax + B(x) \rangle \leq N|x^{-}|^{2}, \quad \forall \ x \in D(A).$$
(8)

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ ● ● ● ●

Let us now consider in particular the Heat equation, taking $A = \Delta$ (the Laplacian) equipped with Dirichlet boundary conditions.

Since for $x \in D(A) = H^2(\mathcal{O}) \cap H^1_0(\mathcal{O})$ we have

 $\langle x^-, Ax \rangle = -|\nabla x|^2, \quad \langle x^-, B(x) \rangle = \langle x^-, B(-x^-) \rangle,$

condition

 $-2\langle x^-, Ax + B(x) \rangle \le N |x^-|^2, \quad \forall \ x \in D(A).$

is equivalent to

 $-2\langle x^{-}, B(x^{-})\rangle \leq N|x^{-}|^{2} + |\nabla x|^{2}, \quad \forall x \in D(A).$ (9)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

We note that if B(0) = 0 this condition is obviously fulfilled.

Remark

In the paper by [CaDaFr16], Theorem 1 and Proposition 2 above are proved in more general situations including non empty closed sets K which are not necessarily convex as well as by replacing the Hilbert space H by a Banach space X.

In this way reaction–diffusion equations with polynomial nonlinearity are covered by our results.

When H is infinite dimensional and A is unbounded, several sufficient conditions for the invariance are available in the literature, but necessary conditions are laking, except some one which seems not easy to check, see [CaNeVr07].

We stress that necessary conditions are important in the applications, in particular to scientific modelling.

・ 同 ト ・ ヨ ト ・ ヨ ト

As we said before, to take into account random perturbations, one is lead to add to equation (PDE) a stochastic term of the form

 $\sigma(X(t))dW(t),$

where *W* is an *H*-valued cylindrical Wiener process in some filtered probability space $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \ge 0}, \mathbb{P})$. Then problem (PDE) reduces to a stochastic PDE:

 $\begin{cases} dX(t) = (AX(t) + B(X(t)))dt + \sigma(X(t))dW(t), \\ X(0) = x \in H. \end{cases}$ (SPDE)

直 とう かい うちょう

Hypothesis 2

We assume, besides Hypothesis 1, that

 $\sigma: H \to \mathscr{L}_2(H)$

is Lipschitz continuous, where $\mathscr{L}_2(H)$ is the Hilbert space of all Hilbert–Schmidt operators on H, endowed with the scalar product

 $\langle T, S \rangle_{\mathscr{L}_2(H)} = \operatorname{Tr} [TS^*].$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

As well known, under Hypothesis 2, there exists a unique mild solution $X(\cdot, x)$ to problem (SPDE) for any $x \in H$.

 $X(\cdot, x)$ is the unique mean-square continuous and adapted stochastic process solving the integral equation

$$X(t,x) = e^{tA}x + \int_0^t e^{(t-s)A}B(X(s,x))ds$$
$$+ \int_0^t e^{(t-s)A}\sigma(X(s,x))dW(s), \quad t \ge 0$$

We are also given a non empty, closed convex set K as before and we look for necessary and sufficient conditions such that

 $x \in K \Rightarrow X(t, x) \in K, \quad \forall t \ge 0, \mathbb{P}-a.s..$

In this case we say that *K* is invariant for (SPDE).

A problem arises, however, in applying Itô's formula to $d_K^2(X(t,x))$ because d_K^2 is in general only $C^{1,Lip}$, whereas Itô's formula requires a C^2 regularity.

For this reasons we replace the square with the forth power of the distance setting $W_{\mathcal{K}} = d_{\mathcal{K}}^4$.

It happens that d_K^4 is of class C^2 in some interesting situations as for instance when *K* is a ball, a closed subspace or a half–space.

If *K* is the set of all positive function, d_K^4 is not of class C^2 , but it can be slightly changed following [CaDa12], in order that the theory below applies.

・ 同 ト ・ ヨ ト ・ ヨ ト

So, we shall assume, besides Hypothesis 2, that

Hypothesis 3

 $W_K := d_K^4 \in C^2(H).$

Notice that

$$DW_{\mathcal{K}}(x) = 4d_{\mathcal{K}}^2(x)(x - \Pi_{\mathcal{K}}(x)),$$

and that, setting

$$n(x):=rac{x-\Pi_{K}(x)}{d_{K}(x)}=Dd_{K}(x),\quad x\in K^{c},$$

we have for $x \in K^c$,

 $D^2 W_K(x) = 12 d_K(x)^2 n(x) \otimes n(x) + 4 d_K^3(x) n'(x).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Applying Itô's formula to $W_{\mathcal{K}}(X(t,x))$ we deduce that

$$\frac{d}{dt}\mathbb{E}[W_{\mathcal{K}}(X(t,x))] = \mathbb{E}[\mathscr{L}W_{\mathcal{K}}(X(t,x))],$$

where the Kolmogorov operator \mathscr{L} is given by

 $\mathscr{L}W_{K}(x) = 2d_{K}^{3}(x)\operatorname{Tr}[n'(x)a(x)] + 6d_{K}^{2}(x)\langle a(x)n(x), n(x)\rangle$ $+4d_{K}^{3}(x)\langle Ax + B(x), n(x)\rangle, \quad x \in D(A) \cap K^{c}$ and $a(x) := \sigma(x)\sigma^{*}(x), \ x \in H.$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Theorem 2 ([CaDaFr])

Under Hypotheses 2 and 3 the following assertions are equivalent:

(i) K is invariant.

(ii) There is N > 0 such that

 $\mathscr{L}W_{\mathcal{K}}(x) \leq NW_{\mathcal{K}}(x), \quad \forall \ x \in D(\mathcal{A}) \cap \mathcal{K}^{c}.$ (10)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

(*i*) ⇒ (*ii*). Assume that *K* is invariant and let $x \in D(A)$. Write $\frac{1}{t} (W_K(X(t,x)) - W_K(x))$ $= \frac{1}{t} (W_K(X(t,x)) - W_K(X(t,\Pi_K(x))) - W_K(x))$ Using lipschitzianity of *d_k*, yields

$$\frac{1}{t} (V_{K}(X(t,x)) - V_{K}(x))
\leq \frac{1}{t} [d_{K}^{3}(X(t,x))|X(t,x)) - X(t,\Pi_{K}(x))| - V_{K}(x))].$$
(12)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Since the dependence of X(t, x) from x is Lpschitzian we have

 $\mathbb{E}(|X(t,x) - X(t,y)|^2) \le e^{2(\omega + M)t} |x - y|^2, \quad x, y \in H$ (13)

and we deduce that

 $\frac{1}{t}\mathbb{E}[(W_{\mathcal{K}}(X(t,x))-V_{\mathcal{K}}(x))] \leq \frac{1}{t}e^{(\omega+M)t}d_{\mathcal{K}}^{3}(x)|e^{(\omega+M)t}-1|W_{\mathcal{K}}(x).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Using Itô's formula and letting $t \rightarrow 0$, yields

 $\mathscr{L}W_{\mathcal{K}}(x) \leq (\omega + M)W_{\mathcal{K}}(x),$

and the conclusion follows.

(*ii*) \Rightarrow (*i*). Take $x \in D(A) \cap K$ and write,

$\frac{d}{dt}\mathbb{E}[W_{\mathcal{K}}(X(t,x))]=\mathbb{E}[\mathscr{L}W_{\mathcal{K}}(X(t,x))].$

Then by (10) it follows that

$$\frac{d}{dt}\mathbb{E}[V_{\mathcal{K}}(X(t,x))] \leq N\mathbb{E}[V_{\mathcal{K}}(X(t,x))],$$

so that

$$\mathbb{E}[V_{\mathcal{K}}(X(t,x))] \leq e^{Nt} V_{\mathcal{K}}(x) = 0,$$

which implies

 $X(t,x) \in K$, \mathbb{P} -a.s., $\forall t \ge 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

We can also give a necessary and sufficient condition for the invariance of K involving only the boundary ∂K when the signed distance \overline{d}_{K} defined by

$$\overline{d}_{\mathcal{K}}(x) = d_{\mathcal{K}}(x) - d_{\overline{\mathcal{K}^c}}(x), \quad x \in \mathcal{H},$$

is of class $C^{2,Lip}$ (this requires K to be the closure of its interior).

Proposition 2 ([CaDaFr])

Assume that \overline{d}_{K} is of class $C^{2,Lip}$ and that $\Pi_{K} \in D(A)$ for all $x \in D(A)$. Then K is invariant if and only if

(i) $\langle a(x)n(x), n(x) \rangle = 0$, $\forall x \in D(A) \cap \partial K$. (ii) Tr $[n'(x)a(x)] + 2\langle Ax + B(x), n(x) \rangle \le 0$, $\forall x \in D(A) \cap \partial K$.

ヘロト ヘアト ヘビト ヘビト

Example. The unitary ball

Let $K = B(0, 1) = \{x \in H : |x| \le 1\}$. Then $d_K(x) = (|x| - 1)\mathbb{1}_{|x| > 1\}},$

$$W_{K}(x) = (|x| - 1)^{4} \mathbb{1}_{|x| > 1},$$
$$n(x) = \frac{x}{|x|}, \quad n'(x) = \frac{1}{|x|} - \frac{x \otimes x}{|x|^{3}}, \quad |x| \ge 1.$$

Then by Proposition 2, K is invariant if and only if

 $\begin{cases} (i) \langle a(x)x, x \rangle = 0, \quad \forall \ x \in D(A) \cap \partial K. \\ (ii) \ \operatorname{Tr} [a(x)] + 2\langle Ax + B(x), x \rangle \leq 0, \ \forall \ x \in D(A) \cap \partial K. \end{cases}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Example. Invariance of a subspace

Let Z be a closed subspace of H and let P be the orthogonal projector onto Z see [Fi06].

Then, $\Pi_Z(x) = Px$,

$$n(x) = \frac{x - Px}{|x - Px|}, \quad x \notin Z$$

and

$$Dn(x) = \frac{I-P}{|x-Px|} - \frac{(x-Px)\otimes(x-Px)}{|x-Px|^3}, \quad x \notin Z,$$

By Theorem 2, Z is invariant if and only if

 $\frac{1}{2}|x-Px|^2\operatorname{Tr}\left[a(Px)(I-P)\right]+|x-Px|^2\langle b(Px)(x-Px)\rangle$

 $+\langle a(Px)(x-Px), x-Px \rangle \leq 0, \quad \forall x \in H.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example. Invariance of the set of nonnegative functions

Let $H = L^2(\mathcal{O})$ where \mathcal{O} is an open subset of \mathbb{R}^d with a regular boundary $\partial \mathcal{O}$. We set

 $\mathcal{K} = \{ x \in L^2(\mathscr{O}) : x(\xi) \ge 0, \text{ a.e.} \}.$

Then we have

$$d_{K}^{2}(x) = \int_{\mathscr{O}} [\min\{x, 0\}]^{2} d\xi = \int_{\mathscr{O}} [x^{-}(\xi)]^{2} d\xi.$$
(14)

通りメモトメモト

Note that $d_{\mathcal{K}}^4(x)$ fails to be C^2 on H, as it is easy to see. So, this example is not covered by Theorem 2.

Therefore, we shall replace, following [CaDa12], the fourth power of the distance by the function

$$V(x) := \int_{\mathscr{O}} F(x^{-}(\xi)) d\xi, \quad x \in H,$$
(15)

where

$$F(r) = \begin{cases} r^4 & |r| \le 1\\ 6r^2 - 8|r| + 3 & |r| \ge 1. \end{cases}$$

Observe that *F* is convex on \mathbb{R} , and $F'(r) \ge 0$ for $r \ge 0$. Notice that *V* is of class C^1 but not of class C^2 because it only possesses weakly continuous Gateaux second derivatives.

But Itô's formula can be generalized ad we can characterize the invariance of K see [CaDa16].

- P. Cannarsa and G. Da Prato, *Invariance for stochastic reaction-diffusion equations*. EECT, **1**, no. 1, 43–56, 2012.
- P. Cannarsa and G. Da Prato, *Positivity of solutions in a perturbed age-structured model*, Mathematical Population Studies, 23, no.1, 1–14, 2016.
- P. Cannarsa, G. Da Prato and H. Frankowska, *Invariance for quasi-dissipative systems in Banach spaces*, to appear in J. Math. An. Appl.
- P. Cannarsa, G. Da Prato and H. Frankowska, *Invariance for reaction–diffusion equations*, in preparation.
- O. Caria, M. Necula and I.I. Vrabie, *Viability, Invariance and Applications*, Elsevier, Amsterdam, 2007.
- D. Filipovič, *Consistency problems for Heath-Jarrow Morton interest rate models*, Springer, 2001.

프 에 에 프 어 - -