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Setting and Assumptions
Existence and Relaxation

Infinite Horizon Optimal Control Problem

V (t0, x0) = inf
∫ ∞

t0
L(t, x(t), u(t)) dt

over all trajectory-control pairs (x , u), subject to the state equation{
x ′(t) = f (t, x(t), u(t)), u(t) ∈ U(t) for a.e. t ≥ 0
x(t0) = x0

x0 ∈ Rn, U : R+ ; Rm is a measurable set-valued map with closed
6= ∅ images, L : R+ × Rn × Rm → R, f : R+ × Rn × Rm → Rn.
Controls u(t) ∈ U(t) are Lebesgue measurable selections.
L is bounded from below by a function integrable on [0,∞[ .
Thus V takes values in (−∞,+∞].
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A classical infinite horizon optimal control problem

W (x0) = minimize
∫ ∞

0
e−ρt`(x(t), u(t)) dt

over all trajectory-control pairs (x , u), subject to the state equation{
x ′(t) = f (x(t), u(t)), u(t) ∈ U for a.e. t ≥ 0
x(0) = x0

controls u(·) are Lebesgue measurable, ρ > 0.

The literature addressing this problem deals with traditional
questions of existence of optimal solutions, regularity of W ,
necessary and sufficient optimality conditions.
A. Seierstad and K. Sydsaeter. Optimal control theory with
economic applications, 1986.
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Hamilton-Jacobi Equation
` ≥ 0. Under some technical assumptions W is the unique
bounded lower semicontinuous solution with values in R+ of
the Hamilton-Jacobi equation

ρW (x) + sup
u∈U

(〈∇W (x), f (x , u)〉 − `(x , u)) = 0

in the following sense

ρW (x)+sup
u∈U

(〈p, f (x , u)〉 − `(x , u)) = 0 ∀ p ∈ ∂−W (x), x ∈ Rn

∂−W (x) denotes the subdifferential of W at x .
HF and Plaskacz 1999, in the presence of state constraints.

If W is Bounded and Uniformly Continuous, then it is also the
unique viscosity solution in the set of BUC functions
Soner 1986, in the presence of state constraints.

H. Frankowska Infinite Horizon Optimal Control Problem



Infinite Horizon Control Problem
Maximum Principle and Sensitivity
Second Order Sensitivity Relations

State Constrained Case

Setting and Assumptions
Existence and Relaxation

Necessary Optimality Condition: Maximum Principle
If (x̄ , ū) is optimal, then ∃ p0 ∈ {0, 1} and a locally absolutely
continuous p : [0,∞[→ Rn with (p0, p) 6= 0,
solving the adjoint system

−p′(t) = p(t)fx (t, x̄(t), ū(t))−p0Lx (t, x̄(t), ū(t)) for a.e. t ≥ 0

and satisfying the maximality condition

〈p(t), f (t, x̄(t), ū(t))〉 − p0L(t, x̄(t), ū(t)) =

maxu∈U(t)(〈p(t), f (t, x̄(t), u)〉 − p0L(t, x̄(t), u)) for a.e. t ≥ 0

If p0 = 0 this maximum principle (MP) is called abnormal.

Transversality condition like limt→∞ p(t) = 0 is, in general,
absent, cf. Halkin 1974.
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Main Differences with the Finite Horizon Case

The maximum principle may be abnormal
Transversality conditions are not derived from the cost :
some authors, under appropriate assumptions, obtain a
transversality condition at infinity in the form

lim
t→∞

p(t) = 0 or lim
t→∞
〈p(t), x̄(t)〉 = 0

However they are a consequence of the growth assumptions
on f , L

Main difficulty behind : Restriction of an optimal solution to a
finite time interval is no longer optimal
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Some Approaches to Get Necessary Conditions

To work with ”finitely” optimal controls Halkin 1974; Carlson,
Haurie 1987. This leads to finite horizon problems with an
end-point constraint
Penalization and dealing with limits of finite horizon problems
Aseev and Kryazhimskiy, 2004
Locally weakly overtaking optimal controls Aseev and Veliov,
2015
An alternative for linear control systems by Aubin and Clarke,
1979 : duality theory on weighted Sobolev spaces
Lp(0,∞;Rn) with the measure e−ρtdt and, more recently, for
more general measures Pickenhain 2010; Tauchnitz 2015
Transversality condition at the initial state −p(0) ∈ ∂W (x0)
(generalized gradient of W at x0), Aubin and Clarke, 1979
Followed by works of Michel 1982; Ye 1993; Sagara 2010
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Dynamic Programming Principle

L is bounded from below by an integrable function, that is
L(t, x , u) ≥ α(t) for a.e. t ≥ 0 and all x , u, where α : R+ → R is
integrable on [0,+∞[. Thus V takes values in (−∞,+∞].

For every (t0, x0) with V (t0, x0) <∞ the dynamic programming
principle holds true: if (x̄ , ū) is optimal, then for every T > t0,

V (t0, x0) = V (T , x̄(T )) +
∫ T

t0
L(t, x̄(t), ū(t)) dt

and for any other trajectory control pair (x , u)

V (t0, x0) ≤ V (T , x(T )) +
∫ T

t0
L(t, x(t), u(t)) dt
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Reduction to the Bolza Problem with Finite Horizon
Introducing gT (y) := V (T , y) we get, using the dynamic
programming principle, the Bolza type problem

V B(t0, x0) := inf
(

gT (x(T )) +
∫ T

t0
L(t, x(t), u(t)) dt

)
over all trajectory-control pairs (x , u), subject to the state equation{

x ′(t) = f (t, x(t), u(t)), u(t) ∈ U(t) for a.e. t ∈ [t0,T ]
x(t0) = x0

gT may be discontinuous and so the (MP) is not immediate.

Under assumptions (H) below, V B(s0, y0) = V (s0, y0) for all
s0 ∈ [0,T ], y0 ∈ Rn. Furthermore, if (x̄ , ū) is optimal for the
infinite horizon problem at (t0, x0) then the restriction of (x̄ , ū) to
[t0,T ] is optimal for the above Bolza problem.
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Assumptions (H)

i) ∃ locally integrable c, θ : R+ → R+ such that for a.e. t ≥ 0
|f (t, x , u)| ≤ c(t)|x |+ θ(t), ∀ x ∈ Rn, u ∈ U(t);

ii) ∀R > 0, ∃ a locally integrable cR : R+ → R+ such that for
a.e. t ≥ 0, ∀ x , y ∈ B(0,R), ∀ u ∈ U(t)
|f (t, x , u)− f (t, y , u)|+ |L(t, x , u)−L(t, y , u)| ≤ cR(t)|x − y |;

iii) ∀ x ∈ Rn, f (·, x , ·), L(·, x , ·) are Lebesgue-Borel measurable ;
iv) ∃ a locally integrable β : R+ → R+ and a locally bounded

nondecreasing φ : R+ → R+ such that for a.e. t ≥ 0,
L(t, x , u) ≤ β(t)φ(|x |), ∀ x ∈ Rn, u ∈ U(t);

v) U(·) is Lebesgue measurable and has closed nonempty images;
vi) For a.e. t ≥ 0, ∀ x ∈ Rn the set F (t, x) is closed and convex

F (t, x) :=
{(

f (t, x , u), L(t, x , u) + r
)

: u ∈ U(t) and r ≥ 0
}
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Existence

For any t0 ∈ R+, x0 ∈ Rn such that V (t0, x0) < +∞, a
trajectory-control pair (x̄ , ū) is called optimal for the infinite
horizon problem at (t0, x0) if for every trajectory-control pair (x , u)
satisfying x(t0) = x0 we have∫ ∞

t0
L(t, x̄(t), ū(t)) dt ≤

∫ ∞
t0

L(t, x(t), u(t)) dt

Proposition

Assume (H). Then V is lower semicontinuous and for every
(t0, x0) ∈ dom(V ), there exists a trajectory-control pair (x̄ , ū)
satisfying V (t0, x0) =

∫∞
t0

L(t, x̄(t), ū(t)) dt.
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Relaxation
Consider the relaxed infinite horizon problem

V rel (t0, x0) = inf
∫ ∞

t0

n∑
i=0

λi (t)L(t, x(t), ui (t)) dt

over all trajectory-control pairs of
x ′(t) =

∑n
i=0 λi (t)f (t, x(t), ui (t))

ui (t) ∈ U(t), λi (t) ≥ 0,
∑n

i=0 λi (t) = 1
x(t0) = x0,

where ui (·), λi (·) are Lebesgue measurable.
Clearly V rel ≤ V .

The above corresponds to the convexification of the set

F (t, x) :=
{(

f (t, x , u), L(t, x , u)
)

: u ∈ U(t)
}
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Continuity of V rel allows to omit (H) vi)

Theorem

Assume (H) i)-v) and that, for a.e. t ≥ 0 and all x ∈ Rn, the set{(
f (t, x , u), L(t, x , u)

)
: u ∈ U(t)

}
is compact.
If for every t ≥ 0, V rel (t, ·) : Rn → R is continuous, then V rel = V
on R+ × Rn. In particular, if a trajectory-control pair (x̄ , ū) is
optimal, then it is also optimal for the relaxed problem.

The above assumption is verified if U(t) is compact a.e. and
f (t, x , ·), L(t, x , ·) are continuous. We introduce the Hamiltonian

H(t, x , p) := sup
u∈U(t)

(〈p, f (t, x , u)〉 − L(t, x , u))
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Lower Semicontinuous Value Function
Continuous Value Function
Locally Lipschitz Value Function

Generalized differentials and Limiting Normals
hyp(ϕ) - hypograph of ϕ : Rn → R ∪ {±∞}. For x ∈ dom(ϕ)

∂−ϕ(x) := {p | lim inf
y→x

ϕ(y)− ϕ(x)− 〈p, y − x〉
|y − x | ≥ 0}

For K ⊂ Rn and x ∈ K

TK (x) := {v | lim inf
h→0+

dK (x + hv)
h = 0}, NL

K (x) = Limsupy→K x [TK (y)]−

where TK (y)− is the negative polar of TK (y).
Limiting superdifferential resp. horizontal superdifferential:

∂L,+ϕ(x) := {p | (−p, 1) ∈ NL
hyp(ϕ)(x , ϕ(x))}

∂∞,+ϕ(x) := {p | (−p, 0) ∈ NL
hyp(ϕ)(x , ϕ(x))}

If ϕ is loc. Lipschitz, ∂ϕ(x) - generalized gradient of ϕ at x .
For loc. Lipschitz ψ : Rn → Rn, ∂ψ(x) denotes the generalized
Jacobian of ψ at x .
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Maximum Principle for LSC Value Function

Theorem (normal MP with a sensitivity relation)

Let (x̄ , ū) be optimal at (t0, x0) and ∂−x V (t0, x0) 6= ∅.
If f (t, ·, u) and L(t, ·, u) are differentiable, then
∀ p0 ∈ ∂−x V (t0, x0) the solution p(·) of the adjoint system

−p′(t) = p(t)fx (t, x̄(t), ū(t))− Lx (t, x̄(t), ū(t)), p(t0) = −p0

satisfies for a.e. t ≥ t0 the maximality condition

〈p(t), f (t, x̄(t), ū(t))〉 − L(t, x̄(t), ū(t)) = H(t, x̄(t), p(t))

and the sensitivity relation

−p(t) ∈ ∂−x V (t, x̄(t)) ∀ t ≥ t0.
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Maximum Principle for any (t0, x0) ∈ dom(V )

Theorem (MP without transversality condition)

Assume (H) and that (x̄ , ū) is optimal at (t0, x0). Then
i) either normal (MP) holds: ∃ p(·) solving the adjoint inclusion

− p′(t) ∈ p(t)∂x f (t, x̄(t), ū(t))− ∂x L(t, x̄(t), ū(t)) a.e. t ≥ t0

and satisfying the maximality condition a.e. in [t0,+∞[
ii) or abnormal (MP) holds: ∃ p(·) 6= 0 solving

− p′(t) ∈ p(t)∂x f (t, x̄(t), ū(t)) a.e. t ≥ t0,

and satisfying a.e. in [t0,+∞[ the abnormal maximality condition

〈p(t), f (t, x̄(t), ū(t))〉 = max
u∈U(t)

〈p(t), f (t, x̄(t), u)〉.
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Normality of the Maximum Principle

The infinite horizon problem is called calm with respect to the
state variable at (t0, x0) ∈ dom(V ) if

lim inf
y→x0

V (t0, y)− V (t0, x0)
|y − x0|

> −∞.

Theorem

Assume (H) i)− v) and that the infinite horizon problem is calm
with respect to the state variable at (t0, x0) ∈ dom(V ).
If a trajectory-control pair (x̄ , ū) is optimal at (t0, x0), then a
normal (MP) holds true.
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Maximum Principle with a Transversality Condition

Theorem

Let (H) i)− v) hold and (x̄ , ū) be optimal at (t0, x0). If an upper
semicontinuous function Φ : Rn → R satisfies Φ(·) ≤ V (t0, ·) on
B(x0, r) for some r > 0 and Φ(x0) = V (t0, x0), then

i) either the normal (MP) holds true with
the transversality condition

−p(t0) ∈ ∂L,+Φ(x0);

ii) or the abnormal (MP) holds true with
the transversality condition

− p(t0) ∈ ∂∞,+Φ(x0).
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Transversality Condition and Sensitivity Relation

Theorem

Assume (H) i)− v) and that V (T , ·) is locally Lipschitz for all
large T > 0 . Then for every t ≥ 0, V (t, ·) is locally Lipschitz with
the local Lipschitz constant depending only on the magnitude of t.
Moreover, if (x̄ , ū) is optimal at some (t0, x0), then the normal
(MP) holds true together with the sensitivity relations

− p(t0) ∈ ∂x V (t0, x0), −p(t) ∈ ∂x V (t, x̄(t)) for a.e. t > t0.

If c, θ, β are bounded and F (t, x) are closed, then (MP) holds
true with the adjoint system in the Hamiltonian form with p
satisfying in addition the sensitivity relation

(H(t, x̄(t), p(t)),−p(t)) ∈ ∂V (t, x̄(t)) a.e.
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Second Order Jets

Let ϕ : Rn → [−∞,∞] and x ∈ dom(ϕ).
A pair (q,Q) ∈ Rn × S(n) is a subjet of ϕ at x if

ϕ(x) + 〈q, y − x〉+ 1
2 〈Q(y − x), y − x〉 ≤ ϕ(y) + o(|y − x |2)

for some δ > 0 and for all y ∈ x + δB. Then q ∈ ∂−ϕ(x).
The set of all subjets of ϕ at x is denoted by J2,−ϕ(x).

We assume next that H ∈ C 2,1
loc , that f , L are differentiable with

respect to x and consider an optimal trajectory-control pain (x̄ , ū)
starting at (t0, x0).
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Riccati Equation

For a fixed p0 ∈ ∂−x V (t0, x0) let p̄(·) solves the adjoint system with
p̄(t0) = −p0.
We already know that −p̄(t) ∈ ∂−x V (t, x̄(t)) for all t ≥ t0.

If for some T > t0, V (t, ·) ∈ C 2 for all t ∈ [t0,T ], then the
Hessian −Vxx (t, x̄(t)) solves the matrix Riccati equation:

Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0

where Hpx [t] abbreviates Hpx (t, x(t), p(t)), and similarly for
Hxp[t],Hpp[t],Hxx [t].
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Forward Propagation of Subjets

Theorem (corollary of Cannarsa, HF, Scarinci, SICON, 2016)

Assume (p0,R0) ∈ J2,−
x V (t0, x0) for some R0 ∈ S(n).

If the solution R of the matrix Ricatti equation

Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0

with R(t0) = −R0 is defined on [t0,T ], T > t0, then the following
second order sensitivity relation holds true:

(−p̄(t),−R(t)) ∈ J2,−
x V (t, x̄(t)), ∀ t ∈ [t0,T ].

Similar result is valid for backward propagation of second order
superjets.
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State Constraints
We request, in addition, that for a closed set K ⊂ Rn trajectories
of the control system have to satisfy the state constraint

x(t) ∈ K , ∀ t ≥ t0

Assume that U is time independent and the following
inward pointing condition (IPC) holds true:
∃ δ > 0 such that ∀ x ∈ ∂K and ∀ u ∈ U with

max
n∈NL

K (x)∩Sn−1
〈n, f (t, x , u)〉 ≥ 0

∃w ∈ U satisfying max
n∈NL

K (x)∩Sn−1
〈n, f (t, x ,w)− f (t, x , u)〉 < −δ

(Conditions developed together with M. Mazzola)
The usual H.M. Soner-type condition can not be applied in the
non-autonomous case even for finite horizon problems :
counterexamples to NFT theorems where given by A. Bressan.
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Lipschitz Continuity of Value Function

Theorem

Assume (IPC), that (H) holds true with time independent
c, θ, U, that f is continuous, L(t, x , u) = e−ρt`(x , u), with
` : Rn × Rm → R bounded, continuous and locally Lipschitz in x
uniformly in u.
Then for all ρ > 0 sufficiently large, V is locally Lipschitz and
V (t, ·) is locally Lipschitz uniformly in t.

The proof ot this result is so that it provides an estimate of ρ and
of the local Lipschitz constants of V and V (t, ·) from c, θ, cR and
the inward pointing condition.
This work is in progress with V. Basco and P. Cannarsa
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Maximum Principle under State Constraints
Under the same assumptions, let (x̄ , ū) be optimal at
(t0, x0) ∈ R+ × K . Then there exists a locally absolutely
continuous p : [t0,∞[→ Rn with −p(t0) ∈ ∂L,+

x V (t0, x0), a
positive Borel measure µ on [t0,∞[ and a Borel measurable

ν(t) ∈
(
conv NL

K (x̄(t))
)
∩ B µ− a.e. t ≥ t0

such that for

η(t) :=
∫

[t0,t]
ν(s)dµ(s) ∀ t > t0 & η(t0) = 0,

q(t) = p(t) + η(t) and for a.e. t ≥ t0, we have

(−ṗ(t), ˙̄x(t)) ∈ ∂x ,pH(t, x̄(t), q(t))

−q(t) ∈ ∂x V (t, x̄(t)), (H(t, x̄(t), q(t)),−q(t)) ∈ ∂ V (t, x̄(t))
H. Frankowska Infinite Horizon Optimal Control Problem
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Local Lipschitz Continuity of V (t, ·)
Assume (H) with c(t) ≡ c, θ(t) ≡ θ, cR(t) ≡ δ for all R > 0 and

|L(t, y , u)−L(t, x , u)| ≤ k(t, |x |∨|y |)|x−y |, ∀ x , y ∈ Rn, u ∈ U(t)

k : R+×R+ → R+ is Lebesgue-Borel measurable, k(t, ·) is ↗, and∫ ∞
0

eδtk(t, (R + θt)ect)dt < +∞ ∀ R ≥ 0.

If dom (V ) 6= ∅, then V is locally Lipschitz on R+ ×Rn and for all
t ≥ 0 and R > 0

|V (t, x2)− V (t, x1)| ≤ e−δt Kt(R) |x2 − x1| ∀ x1, x2 ∈ B(0,R)

where for Mt(τ,R) = [R + θ(τ − t)]ec(τ−t)

Kt(R) :=
∫ ∞

t
eδτk

(
τ,Mt(τ,R)

)
dτ

Remark. Less restrictive assumptions imply just continuity of V .
H. Frankowska Infinite Horizon Optimal Control Problem



Infinite Horizon Control Problem
Maximum Principle and Sensitivity
Second Order Sensitivity Relations

State Constrained Case

Local Lipschitz Continuity
Maximum Principle

Behavior of the Co-state at ∞

Corollary

Under the same assumptions let (t0, x0) ∈ R+ × Rn and (x̄ , ū) be
any trajectory-control pair satisfying x̄(t0) = x0. Then for all
t ≥ t0 and x1, x2 ∈ B(x̄(t), 1) we have

|V (t, x2)− V (t, x1)| ≤ e−δt Kt0(1 + |x0|) |x2 − x1|

Consequently, if (x̄ , ū) is optimal and (MP) is augmented by the
sensitivity relation

−p(t) ∈ ∂x V (t, x̄(t)) a.e. t > t0

then p(t)→ 0 exponentially when t →∞.

H. Frankowska Infinite Horizon Optimal Control Problem


	Infinite Horizon Control Problem
	Setting and Assumptions
	Existence and Relaxation

	Maximum Principle and Sensitivity 
	Nonsmooth Analysis
	Lower Semicontinuous Value Function
	Continuous Value Function
	Locally Lipschitz Value Function

	Second Order Sensitivity Relations
	State Constrained Case
	Local Lipschitz Continuity
	Maximum Principle


