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Stochastic Flows

Let X(-, z) denote the unique solution to
dX(t) = b(X(t))dt + o(X(t))dW(t) t>0
X(0) =z RY,

» b:RY = RY, o :RY — L(RY,R™) Lipschitz
» W(t) m—dimensional Brownian motion
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Let X(-, z) denote the unique solution to

dX(t) = b(X(£))dt + o(X(£)dW(t) t>0
X(0)=z€eRY,

» b:RY = RY, o :RY — L(RY,R™) Lipschitz
» W(t) m—dimensional Brownian motion

Consider the transition semigroup Pip(z) = E[e(X(t, 2))]
Then u(t, z) = Pip(z) is the solution of Kolmogorov equation

ur = 3 Trla(x)V2u(x)] + (b(x), Vu(x)), in (0,+00) x RY
u(0,z) = p(2) x€RY,

where a(x) = o(x)o*(x) >0



Stochastic Invariance for Subset of R?

Denote the elliptic operator
Lu(x) = %Tr[a(x)vzu(x)] + (b(x), Vu(x))

For any Q c RY open set, let I = 9Q and

C(diaT) ifxeQ
dr(x) := { —d(x;T) ifxeQc

the oriented distance from I.
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For any Q c RY open set, let I = 9Q and

C(diaT) ifxeQ
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the oriented distance from I.
A set S c RY is invariant for X iff

zeS=X(t,z)e S P—-as. Vi>0.
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Characterization of Invariance

— Qs invariant iff Q is so;
— the domain Q is invariant iff forall x € T

() Ldr(x)=0
(i) (a(x)Vdr(x),Vdr(x)) =0

— for any smooth function ¢ : Q — R, the transition semigroup
u(x, t) = Elp(X(x,1))]
is the unique solution of the parabolic equation

ur=Lu in Q x (0,+00)
(avVu,Var) =0 onT x (0,+00)
u(x,0)=p(x) xeQ,

i.e., L degenerates on I in the normal direction



Fluid Dynamics Models - Lin. Crocco & Prandl Eqs

Laminar flow ruled by the linearized Crocco’s equation,
Q:=(0,1) x(0,L)

ur + b(t,y)ux — (a(y)uy)y +cu=1f (x,y,t) € Q2x(0,T),
Uy(X,O,t):U(X,1,f):0 ( ) ( ) (07 T)7
u(0,y,t) = ui(y, 1) (y,1) € (0,1)x(0,T),
u(x, y,0) = uo(x,y) (x,y) € Q,

— f and uy depend on the incident velocity of the flow,
— coefficients a, b and ¢ degenerate at the boundary
— double degeneracy of the diffusion coefficient, since

A(X, y) = ( : a(OO) ) , with a(0) = 0
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— f and uy depend on the incident velocity of the flow,
— coefficients a, b and ¢ degenerate at the boundary
— double degeneracy of the diffusion coefficient, since

A(X, y) = ( : a(OO) ) , with a(0) = 0

Crocco’s eq. simplifies the Prandl’s equation for boundary
layers  (nonlinear and degenerate equation)



Fluid Dynamics Models - Lin. Crocco Equation

References:

P. MARTINEZ; J.P. RAYMOND & J. VANCOSTENOBLE, Regional
null controllability of a linearized Crocco-type equation, (2003)
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Budyko-Sellers climate models

Heat-balance equation for the sea-level averaged temperature

cur — (k(1 — x?)uy)x = Sos(x)a(x,u) — I(u), in(=1,1)x(0,T),
(1= x®)uy(t,x) =0 (x,t) e {-1,1} x (0, T),
u(0, x) = up(x) xe(-1,1),

c thermal capacity of the Earth,
k horizontal thermal conductivity,

Sy solar constant, s(x) normalized

distribution of solar input,
« the coalbedo

I(u) the outgoing infrared radiation

s 4 w @ w0 o w x »- (radiation emitted by the Earth)
Annual Mean Temperature
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More Examples...

— Fleming-Viot diffusion process in population genetics:
Consider the equation

us — TIA(X)V2u] = g
inQ={(x,x) €eR?:0< x; <1, xy + xo < 1}, with

X1(1 — X1) —X1 X2 >
—X1X2  Xo(1—x2)

A(x1,x2) = <

and A degenerates on 0%, indeed

det(A) = X1X2(1 — X1 — X2) =0 onoQ.



... and More Challenges

— in mathematical finance, the Black-Scholes equation
Vi + %szzvxx +rxVy—rvV =0,

where V is the price of the option as a function of stock
price x and time t, r is the risk-free interest rate, and o is
the volatility of the stock;

— Porous Media Equation, m > 0,
ur=AW") =V - (c(u)Vu)
degenerates where u =0 for m > 1;
Reference: J.M. CORON, J.I. DIAZ, A. DRICI & T. MINGAZZINI,
Global null controllability of the 1-dimensional nonlinear slow
diffusion equation, (2013)
— the p—laplacian equation
ur =V - (|VuP~2vu)
is degenerate for p > 2 on {Vu = 0}
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Unique Continuation & Approximate Controllability
of Degenerate Parabolic Operators

joint work with Piermarco Cannarsa

Given a: R — R such that a(0) = 0 and a > 0 otherwise,
study controllability properties of the parabolic equations

yi —(@x)yx)x =0, in Q:=(0,1)x(0,T7),
y(0,1) = u(t), €(0,7),
V(1.0 =0, €(0.7), (BD.BC)
y(x,0) = yo(x), x €(0,1),
and, for some open w C (—1,0),
vi—(a (x)yx)x = xoU, INQ:=(-1,1)x(0,T),
y( 1,1) = te(0,7), (ID.DC)
y(1,t):0, te(0,7),
y(X?O):yO(X)a XE(—1,1),



Assumptions on the Degenerate Diffusion Coefficient

Case of Boundary Degeneracy & Boundary Control

yi —(a(x)yx)x =0, in Q:=(0,1)x(0,7),
y(0,t) = u(t), €(0,7),
y(1,1) =0, €(0,7),
y(x,0) = yo(x), x€(0,1),

where
H1 ae C([0,1])n C'((0,1]), a(0) = 0, a(x) > 0 otherwise;
H2 There exist v, K € (0,1) such that

. ooxd(x) _ xa(x)
minf 2oy ~ 70 ImesuP g =

(global version of H2: There exist v, K € (0, 1) such that

~va(x) < xa(x) < Ka(x) for all x € [0,1])



Main Results - Unique Continuation

Theorem (Unique continuation for (BD.BC))
L*v=vi+(aw)x in Q,and
v € L2(0, T; D(A) N H'(0, T, L%(0,1)) such that

v(0,1) = (avx)(0,t) =0.
If L*v=0 in Q, then v=0 in Q.

Theorem (Unique continuation for (ID.DC))
Pv=vi+(aX)w)x in Q,and
v e H'(0,T;L?(—1,1)) N L?(0, T; D(A¢)) such that

v=0 in wx(0,T).

If Pv=0 in Q, then v=0 in Q.



Main Results - Approximate Controllability of (BD.BC)

Theorem

For all yo € L2(0,1), yr € L?(0,1) and all ¢ > 0 there exists
u € H}(0, T) such that the solution y, to

¥t —(ayx)x =0 ( ) in Q,

y(0,t) = u(t) €(0,7),
y(1,6)=0 €(0,T),
¥ (x,0) = yo(x) X€(01),

satisfies
1Yu(T) = ¥7ll201) < €



Main Results - Approximate Controllability of (ID.DC)

Theorem

Forall yg € L?(—1,1), yr € L?(—1,1) and all ¢ > O there exists
u € L?(Q) such that the solution y, of problem

y(=1,)=0=y(1,t) te(0,T7),

{ Y — (ayX)X = Xwl in (_171) X (07 T),
y(X,O):yo(X) X€(7171)7

satisfies
1Yu(T) = yrllzc11y S e
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Carleman Estimate with suitable space weight

Proof of the Unique Continuation based on new Carleman
estimate, combining techniques from

F. ALABAU-BOUSSOUIRA, P. CANNARSA & G. FRAGNELLI,
Carleman estimates for degenerate parabolic operators with
applications to null controllability, (2006)

P. CANNARSA, J. TORT & M. YAMAMOTO, Unique continuation and
approximate controllability for a degenerate parabolic equation,
(2012)



Carleman Estimate with suitable space weight

Proof of the Unique Continuation based on new Carleman
estimate, combining techniques from

F. ALABAU-BOUSSOUIRA, P. CANNARSA & G. FRAGNELLI,
Carleman estimates for degenerate parabolic operators with
applications to null controllability, (2006)

P. CANNARSA, J. TORT & M. YAMAMOTO, Unique continuation and
approximate controllability for a degenerate parabolic equation,
(2012)

Remark: in toy model a(x) = x*, x € (0,1), « € (0,1)
for AC: spatial weight p(x) = —x”, for some 8 € (1 — a,1 — a/2)

_ 27X2—a

for NC: spatial weight p(x) = oy

from P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE,
Carleman estimates for a class of degenerate parabolic operators,
(2008)
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