Controllability properties of degenerate parabolic equations

Roberto Guglielmi

Dyrecta Lab, Conversano (BA)

INdAM Workshop on

New Trends in Control Theory and PDEs

INdAM, Rome, 3-7 July 2017

on the occasion of the 60th birthday of Piermarco Cannarsa

Outline

Motivation

Examples of Degenerate Parabolic Equations Previous Results on Controllability of Deg. Par. Eqs

Our Contribution

Main Results

Basic Ideas for Proofs

Outline

Motivation

Examples of Degenerate Parabolic Equations Previous Results on Controllability of Deg. Par. Eqs

Our Contribution

Main Results

Basic Ideas for Proofs

Stochastic Flows

Let $X(\cdot, z)$ denote the unique solution to

$$\begin{cases} dX(t) = b(X(t))dt + \sigma(X(t))dW(t) & t \geq 0 \\ X(0) = z \in \mathbb{R}^d, \end{cases}$$

- ▶ $b: \mathbb{R}^d \to \mathbb{R}^d$, $\sigma: \mathbb{R}^d \to \mathcal{L}(\mathbb{R}^d, \mathbb{R}^m)$ Lipschitz
- ► *W*(*t*) *m*−dimensional Brownian motion

Consider the transition semigroup $P_t\varphi(z)=\mathbb{E}[\varphi(X(t,z))]$ Then $u(t,z)=P_t\varphi(z)$ is the solution of Kolmogorov equation

$$\begin{cases} u_t = \frac{1}{2} Tr[a(x) \nabla^2 u(x)] + \langle b(x), \nabla u(x) \rangle, & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u(0, z) = \varphi(z) & x \in \mathbb{R}^d, \end{cases}$$

where
$$a(x) = \sigma(x)\sigma^*(x) \ge 0$$

Stochastic Flows

Let $X(\cdot, z)$ denote the unique solution to

$$\begin{cases} dX(t) = b(X(t))dt + \sigma(X(t))dW(t) & t \geq 0 \\ X(0) = z \in \mathbb{R}^d, \end{cases}$$

- ▶ $b: \mathbb{R}^d \to \mathbb{R}^d$, $\sigma: \mathbb{R}^d \to \mathcal{L}(\mathbb{R}^d, \mathbb{R}^m)$ Lipschitz
- ► W(t) m-dimensional Brownian motion

Consider the transition semigroup $P_t\varphi(z)=\mathbb{E}[\varphi(X(t,z))]$ Then $u(t,z)=P_t\varphi(z)$ is the solution of Kolmogorov equation

$$\begin{cases} u_t = \frac{1}{2} \operatorname{Tr}[a(x) \nabla^2 u(x)] + \langle b(x), \nabla u(x) \rangle, & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u(0, z) = \varphi(z) & x \in \mathbb{R}^d, \end{cases}$$

where
$$a(x) = \sigma(x)\sigma^*(x) \ge 0$$

Stochastic Invariance for Subset of \mathbb{R}^d

Denote the elliptic operator

$$Lu(x) := \frac{1}{2} Tr[a(x) \nabla^2 u(x)] + \langle b(x), \nabla u(x) \rangle$$

For any $\Omega \subset \mathbb{R}^d$ open set, let $\Gamma = \partial \Omega$ and

$$d_{\Gamma}(x) := \left\{ \begin{array}{ll} d(x; \Gamma) & \text{if } x \in \Omega \\ -d(x; \Gamma) & \text{if } x \in \Omega^c \end{array} \right.$$

the oriented distance from Γ .

A set $S \subset \mathbb{R}^d$ is invariant for X iff

$$z \in S \Rightarrow X(t,z) \in S \quad \mathbb{P} - \text{a.s. } \forall t \geq 0$$

Stochastic Invariance for Subset of \mathbb{R}^d

Denote the elliptic operator

$$Lu(x) := \frac{1}{2} Tr[a(x) \nabla^2 u(x)] + \langle b(x), \nabla u(x) \rangle$$

For any $\Omega \subset \mathbb{R}^d$ open set, let $\Gamma = \partial \Omega$ and

$$d_{\Gamma}(x) := \left\{ \begin{array}{ll} d(x; \Gamma) & \text{if } x \in \Omega \\ -d(x; \Gamma) & \text{if } x \in \Omega^c \end{array} \right.$$

the oriented distance from Γ .

A set $S \subset \mathbb{R}^d$ is invariant for X iff

$$z \in S \Rightarrow X(t,z) \in S \quad \mathbb{P} - \text{a.s. } \forall t \geq 0.$$

Conditions for Invariance - References

A set $S \subset \mathbb{R}^d$ is invariant for X iff

$$z \in S \Rightarrow X(t,z) \in S \quad \mathbb{P} - \text{a.s. } \forall t \geq 0.$$

- A. FRIEDMAN & M.A. PINSKY, Asymptotic stability and spiraling properties of solutions of stochastic equations, (1973)
- J.P. AUBIN & G. DA PRATO, Stochastic viability and invariance (1990)
- M. BARDI & P. GOATIN Invariant sets for controlled degenerate diffusions: a viscosity solutions approach (1999)
- G. DA PRATO & H. FRANKOWSKA, Stochastic viability for compact sets in terms of the distance function (2001)
- M. BARDI & R. JENSEN, A geometric characterization of viable sets for controlled degenerate diffusions (2002)
- P. CANNARSA, G. DA PRATO & H. FRANKOWSKA, *Invariant measures associated to degenerate elliptic operators*, (2010)
- P. CANNARSA & G. DA PRATO, Stochastic Viability for regular closed sets in Hilbert spaces, (2011)
- P. CANNARSA & G. DA PRATO, *Invariance for stochastic reaction-diffusion equations*, (2012)

Characterization of Invariance

- $-\Omega$ is invariant iff $\overline{\Omega}$ is so;
- the domain $\overline{\Omega}$ is invariant iff for all $x \in \Gamma$

(i)
$$Ld_{\Gamma}(x) \geq 0$$

(ii)
$$\langle a(x)\nabla d_{\Gamma}(x), \nabla d_{\Gamma}(x)\rangle = 0$$

– for any smooth function $\varphi:\overline{\Omega}\to\mathbb{R}$, the transition semigroup

$$u(x,t) = \mathbb{E}[\varphi(X(x,t))]$$

is the unique solution of the parabolic equation

$$\begin{cases} u_t = Lu & \text{in } \Omega \times (0, +\infty) \\ \langle a \nabla u, \nabla d_{\Gamma} \rangle = 0 & \text{on } \Gamma \times (0, +\infty) \\ u(x, 0) = \varphi(x) & x \in \Omega, \end{cases}$$

i.e., L degenerates on Γ in the normal direction

Fluid Dynamics Models - Lin. Crocco & Prandl Eqs

Laminar flow ruled by the linearized Crocco's equation, $\Omega := (0, 1) \times (0, L)$

$$\begin{cases} u_t + b(t,y)u_x - (a(y)u_y)_y + cu = f & (x,y,t) \in \Omega \times (0,T), \\ u_y(x,0,t) = u(x,1,t) = 0 & (x,t) \in (0,L) \times (0,T), \\ u(0,y,t) = u_1(y,t) & (y,t) \in (0,1) \times (0,T), \\ u(x,y,0) = u_0(x,y) & (x,y) \in \Omega, \end{cases}$$

- f and u_1 depend on the incident velocity of the flow,
- coefficients a, b and c degenerate at the boundary
- double degeneracy of the diffusion coefficient, since

$$A(x,y) = \begin{pmatrix} 0 & 0 \\ 0 & a(0) \end{pmatrix}$$
, with $a(0) = 0$

Fluid Dynamics Models - Lin. Crocco & Prandl Eqs

Laminar flow ruled by the linearized Crocco's equation, $\Omega := (0, 1) \times (0, L)$

$$\begin{cases} u_t + b(t,y)u_x - (a(y)u_y)_y + cu = f & (x,y,t) \in \Omega \times (0,T), \\ u_y(x,0,t) = u(x,1,t) = 0 & (x,t) \in (0,L) \times (0,T), \\ u(0,y,t) = u_1(y,t) & (y,t) \in (0,1) \times (0,T), \\ u(x,y,0) = u_0(x,y) & (x,y) \in \Omega, \end{cases}$$

- f and u_1 depend on the incident velocity of the flow,
- coefficients a, b and c degenerate at the boundary
- double degeneracy of the diffusion coefficient, since

$$A(x,y) = \begin{pmatrix} 0 & 0 \\ 0 & a(0) \end{pmatrix}$$
, with $a(0) = 0$

Crocco's eq. simplifies the Prandl's equation for boundary layers (nonlinear and degenerate equation)

Fluid Dynamics Models - Lin. Crocco Equation

References:

P. MARTINEZ; J.P. RAYMOND & J. VANCOSTENOBLE, Regional null controllability of a linearized Crocco-type equation, (2003)

Results for 1-D degenerate equations

- P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, Persistent regional null controllability for a class of degenerate parabolic equations, (2004)
- P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, Null controllability of degenerate heat equations, (2005)
- F. ALABAU-BOUSSOUIRA, P. CANNARSA & G. FRAGNELLI, Carleman estimates for degenerate parabolic operators with applications to null controllability, (2006)
- P. CANNARSA, G. FRAGNELLI & J. VANCOSTENOBLE, Regional controllability of semilinear degenerate parabolic equations in bounded domains, (2006)

Fluid Dynamics Models - Lin. Crocco Equation

References:

P. MARTINEZ; J.P. RAYMOND & J. VANCOSTENOBLE, Regional null controllability of a linearized Crocco-type equation, (2003)

Results for 1-D degenerate equations

- P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, Persistent regional null controllability for a class of degenerate parabolic equations, (2004)
- P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, *Null controllability of degenerate heat equations,* (2005)
- F. ALABAU-BOUSSOUIRA, P. CANNARSA & G. FRAGNELLI, Carleman estimates for degenerate parabolic operators with applications to null controllability, (2006)
- P. CANNARSA, G. FRAGNELLI & J. VANCOSTENOBLE, Regional controllability of semilinear degenerate parabolic equations in bounded domains, (2006)

More References on 1−D degenerate equations

- P. CANNARSA & G. FRAGNELLI, Null controllability of semilinear degenerate parabolic equations in bounded domains, (2006)
- P. CANNARSA, G. FRAGNELLI & D. ROCCHETTI, Null controllability of degenerate parabolic operators with drift, (2007)
- P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, Carleman estimates for a class of degenerate parabolic operators, (2008)
- P. CANNARSA, G. FRAGNELLI & D. ROCCHETTI, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, (2008)
- P. CANNARSA & L. DE TERESA, Controllability of 1-D coupled degenerate parabolic equations, (2009)
- P. CANNARSA, J. TORT & M. YAMAMOTO, Unique continuation and approximate controllability for a degenerate parabolic equation, (2012)
- M. GUEYE, Exact Boundary Controllability of 1-D Parabolic and Hyperbolic Degenerate Equations, (2014)

Budyko-Sellers climate models

Heat-balance equation for the sea-level averaged temperature

$$\begin{cases} cu_t - (k(1-x^2)u_x)_x = S_0 s(x)\alpha(x,u) - I(u), & \text{in } (-1,1) \times (0,T), \\ (1-x^2)u_x(t,x) = 0 & (x,t) \in \{-1,1\} \times (0,T), \\ u(0,x) = u_0(x) & x \in (-1,1), \end{cases}$$

c thermal capacity of the Earth, k horizontal thermal conductivity, S_0 solar constant, s(x) normalized distribution of solar input, α the coalbedo

I(u) the outgoing infrared radiation (radiation emitted by the Earth)

Budyko-Sellers climate models - References

Heat-balance equation for the sea-level averaged temperature

$$\begin{cases} cu_t - (k(1-x^2)u_x)_x = S_0 s(x)\alpha(x,u) - I(u) \,, & \text{in } (-1,1)\times(0,T) \,, \\ (1-x^2)u_x(t,x) = 0 & (x,t) \in \{-1,1\}\times(0,T) \,, \\ u(0,x) = u_0(x) & x \in (-1,1) \,, \end{cases}$$

References:

- P. CANNARSA & A.Y. KHAPALOV, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, (2010)
- P. CANNARSA & G. FLORIDIA, Approximate controllability for linear degenerate parabolic problems with bilinear control, (2011)
- P. CANNARSA & G. FLORIDIA, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions (2011)
- P. CANNARSA, G. FLORIDIA & A.Y. KHAPALOV, *Multiplicative* controllability for semilinear reaction-diffusion equations with finitely many changes of sign, (2017)

More Examples...

Fleming-Viot diffusion process in population genetics:

Consider the equation

$$u_t - Tr[A(x)\nabla^2 u] = g$$

in $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : 0 < x_i < 1, \ x_1 + x_2 \le 1\}$, with

$$A(x_1,x_2) = \begin{pmatrix} x_1(1-x_1) & -x_1x_2 \\ -x_1x_2 & x_2(1-x_2) \end{pmatrix}$$

and A degenerates on $\partial\Omega$, indeed

$$det(A) = x_1 x_2 (1 - x_1 - x_2) = 0$$
 on $\partial \Omega$.

... and More Challenges

in mathematical finance, the Black-Scholes equation

$$V_t + \frac{1}{2}\sigma^2 x^2 V_{xx} + rxV_x - rV = 0,$$

where V is the price of the option as a function of stock price x and time t, r is the risk-free interest rate, and σ is the volatility of the stock;

- Porous Media Equation, m > 0,

$$u_t = \Delta(u^m) = \nabla \cdot (c(u)\nabla u)$$

degenerates where u=0 for m>1; Reference: J.M. CORON, J.I. DIAZ, A. DRICI & T. MINGAZZINI, Global null controllability of the 1-dimensional nonlinear slow diffusion equation, (2013)

- the p-laplacian equation

$$u_t = \nabla \cdot (|\nabla u|^{p-2} \nabla u)$$

is degenerate for p > 2 on $\{\nabla u = 0\}$

Outline

Motivation

Examples of Degenerate Parabolic Equations
Previous Results on Controllability of Deg. Par. Eqs

Our Contribution Main Results

Basic Ideas for Proofs

Unique Continuation & Approximate Controllability of Degenerate Parabolic Operators

joint work with Piermarco Cannarsa

Given $a : \mathbb{R} \to \mathbb{R}$ such that a(0) = 0 and a > 0 otherwise, study controllability properties of the parabolic equations

$$\begin{cases} y_t - (a(x)y_x)_x = 0, & \text{in } Q := (0,1) \times (0,T), \\ y(0,t) = u(t), & t \in (0,T), \\ y(1,t) = 0, & t \in (0,T), \\ y(x,0) = y_0(x), & x \in (0,1), \end{cases}$$
(BD.BC)

and, for some open $\omega \subset (-1,0)$,

$$\begin{cases} y_t - (a(x)y_x)_x = \chi_\omega u, & \text{in } \tilde{Q} := (-1,1) \times (0,T), \\ y(-1,t) = 0, & t \in (0,T), \\ y(1,t) = 0, & t \in (0,T), \\ y(x,0) = y_0(x), & x \in (-1,1), \end{cases}$$
 (ID.DC)

Assumptions on the Degenerate Diffusion Coefficient

Case of Boundary Degeneracy & Boundary Control

$$\begin{cases} y_t - (a(x)y_x)_x = 0, & \text{in } Q := (0,1) \times (0,T), \\ y(0,t) = u(t), & t \in (0,T), \\ y(1,t) = 0, & t \in (0,T), \\ y(x,0) = y_0(x), & x \in (0,1), \end{cases}$$

where

H1 $a \in C([0,1]) \cap C^1((0,1]), a(0) = 0, a(x) > 0$ otherwise;

H2 There exist γ , $K \in (0,1)$ such that

$$\liminf_{x\to 0^+}\frac{xa'(x)}{a(x)}=\gamma\,,\qquad \limsup_{x\to 0^+}\frac{xa'(x)}{a(x)}=K\,.$$

(global version of H2: There exist $\gamma, K \in (0, 1)$ such that

$$\gamma a(x) \leq xa'(x) \leq Ka(x)$$
 for all $x \in [0, 1]$

Main Results - Unique Continuation

Theorem (Unique continuation for (BD.BC))

$$L^*v=v_t+(av_x)_x$$
 in Q , and
$$v\in L^2(0,T;D(A))\cap H^1(0,T,L^2(0,1)) \text{ such that }$$

$$v(0,t)=(av_x)(0,t)=0$$
.

If
$$L^*v \equiv 0$$
 in Q , then $v \equiv 0$ in Q .

Theorem (Unique continuation for (ID.DC))

$$P^*v = v_t + (a(x)v_x)_x$$
 in \hat{Q} , and $\tilde{v} \in H^1(0, T; L^2(-1, 1)) \cap L^2(0, T; D(A_1))$ such that

$$\tilde{v}=0$$
 in $\omega \times (0,T)$.

If
$$P^*\tilde{v}=0$$
 in \tilde{Q} , then $\tilde{v}=0$ in \tilde{Q} .

Main Results - Approximate Controllability of (BD.BC)

Theorem

For all $y_0 \in L^2(0,1)$, $y_T \in L^2(0,1)$ and all $\varepsilon > 0$ there exists $u \in H_0^1(0,T)$ such that the solution y_u to

$$\begin{cases} y_t - (ay_x)_x = 0 & (x,t) \text{ in } Q, \\ y(0,t) = u(t) & t \in (0,T), \\ y(1,t) = 0 & t \in (0,T), \\ y(x,0) = y_0(x) & x \in (0,1), \end{cases}$$

satisfies

$$\|y_u(T)-y_T\|_{L^2(0,1)}\leq \varepsilon.$$

Main Results - Approximate Controllability of (ID.DC)

Theorem

For all $y_0 \in L^2(-1,1)$, $y_T \in L^2(-1,1)$ and all $\varepsilon > 0$ there exists $u \in L^2(\tilde{Q})$ such that the solution y_u of problem

$$\left\{ \begin{array}{ll} y_t - (ay_x)_x = \chi_\omega u & \text{in } (-1,1) \times (0,T) \,, \\ y(-1,t) = 0 = y(1,t) & t \in (0,T) \,, \\ y(x,0) = y_0(x) & x \in (-1,1) \,, \end{array} \right.$$

satisfies

$$||y_u(T) - y_T||_{L^2(-1,1)} \le \varepsilon.$$

Outline

Motivation

Examples of Degenerate Parabolic Equations Previous Results on Controllability of Deg. Par. Eqs

Our Contribution

Main Results

Basic Ideas for Proofs

Carleman Estimate with suitable space weight

Proof of the Unique Continuation based on new *Carleman estimate*, combining techniques from

F. ALABAU-BOUSSOUIRA, P. CANNARSA & G. FRAGNELLI, Carleman estimates for degenerate parabolic operators with applications to null controllability, (2006)

P. CANNARSA, J. TORT & M. YAMAMOTO, Unique continuation and approximate controllability for a degenerate parabolic equation, (2012)

Remark: in toy model $a(x) = x^{\alpha}$, $x \in (0,1)$, $\alpha \in (0,1)$ for AC: spatial weight $p(x) = -x^{\beta}$, for some $\beta \in (1-\alpha,1-\alpha/2)$ for NC: spatial weight $p(x) = \frac{2-x^{2-\alpha}}{(2-\alpha)^2}$ from P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, Carleman estimates for a class of degenerate parabolic operators, (2008)

Carleman Estimate with suitable space weight

Proof of the Unique Continuation based on new *Carleman estimate*, combining techniques from

F. ALABAU-BOUSSOUIRA, P. CANNARSA & G. FRAGNELLI, Carleman estimates for degenerate parabolic operators with applications to null controllability, (2006)

P. CANNARSA, J. TORT & M. YAMAMOTO, Unique continuation and approximate controllability for a degenerate parabolic equation, (2012)

Remark: in toy model $a(x) = x^{\alpha}$, $x \in (0, 1)$, $\alpha \in (0, 1)$ for AC: spatial weight $p(x) = -x^{\beta}$, for some $\beta \in (1 - \alpha, 1 - \alpha/2)$ for NC: spatial weight $p(x) = \frac{2 - x^{2 - \alpha}}{(2 - \alpha)^2}$ from P. CANNARSA, P. MARTINEZ & J. VANCOSTENOBLE, *Carleman estimates for a class of degenerate parabolic operators*,

(2008)