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Motivation: Cloaking

Not seeing an object is equivalent to non-observability

surrounding medium object to be cloaked
scattered field

observation boundary
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In order to keep matters as simple as possible, we consider the following
classical problem

V.oVu+k?u=f, in{,
u = h, on 0.

We have the Dirichlet-to-Neumann map (DtN)

As(h) = v - oVulsa.

oo(x) x €D

o(z) — {01(:1:) ze€Q\D

Given
(ulsa = h, As(h))
find o9 in D!
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Standard setup: Change of coordinates

N=N1U2UN2 Nl—_"Q\D N2:D Fl(x):(l_g—l—l—]‘)ﬁ
M = M; U M, M, :=Q = B(O,Z), Mo = — 09 1)3

xxt

|2

x| -1

|

5(x) = 2(1 — P(x)) + 2( P P(x),1< |x] <2, P(x) =

This transformation leads to a Riemann-metric with quadratic degeneration!!
See the work of G. Uhiman and M. Latassas
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Observability of degenerate 1-d wave equations

Joint work with P.Cannarsa and F. Alabau (SICON 2017)
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We study the controllability and observability for degenerate wave
I equations of the form

g — (a(x)ue), =0 in ]0,00[x]0, 1], (1)

where a is positive on ]0, 1] but vanishes at zero.The degeneracy of {1) at
x = 0 is measured by the parameter u, defined by

x|a'(x)|
Ha -=— SUp 3
0<xK1 a(x)

(2)

and one says that (1) degenerates weakly if 1, € [0, 1], strongly if
fta > 1. Here we assume pu, < 2




J

I

B

More precisely, let a € C([0,1]) N C1(]0, 1]) be a function satisfying the
following assumptions:

(i) a(x)>0 ¥x€l0,1], a(0)=0,

) x|a'(x)|
(H) Ha ‘= SUPO<X<1 "Tx)—- <2 y and

L(iii) a € Clk([o,1]),

.

where [-] stands for the integer part.

13.07.17
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We now introduce some weighted Sobolev spaces that are naturally

associated with degenerate operators. We denote by V1(0,1) the space
of all functions u € L?(0,1) such that

{(l) u is locally absolutely continuous in ]0,1], and

(i) +/aue € L2(0,1).

It is easy to see that V1(0,1) is an Hilbert space with the scalar product

1
(U, V)10 = ]: (a(x)u/ (x)v'(x) + u(x)v(x))dx, Yu,ve Vio,1)

and associated norm

NI =

lul

s = { j{ : (a0 ()2 + |u(x)|2)dx} . Yue VY0,1).

13.07.17
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Let us also set
: :
e = { [ a0l GPa}’ Ve Vi),
0

Actually, | - |1,5 is an equivalent norm on the closed subspace of Val,O(O, 1)
defined as
V2o(0,1) = {ue V}(0,1) : u(1)=0}.

This fact is a simple consequence of the following version of Poincaré’s
inequality for a with (2):

||U||L2(o 1y < G |U|1a Vue Vlo(o 1),

13.07.17
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The following are examples of functions a satisfying assumption (2). Let
g €]0, 2[ be given. Define

alx)=x" Vxelo1].

In this case, we have

, 1
lullZ2(0,1) < min {4, 5___—9} ulf,  Yue Vi(0,1).

Next, we define
VZ(0,1) = {u € V}(0,1) : au’ € H'(0,1)},

where H(0, 1) denotes the classical Sobolev space of all functions
u € L2(0,1) such that v’ € L?(0,1). Notice that, if u € V2(0,1), then
au’ is continuous on [0, 1].

13.07.17
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Given a satisfying assumptions (2), let u, € [0,2[ be the constant in
assumption (ii). Consider the degenerate wave equation

U — (a(x)ux)x =0 in ]0,00[x]0, 1] (1)

with

4

boundary conditions u(t,1) =0 and Lf(t’ 0)=0 Ha € [0, 1]
limyyo a(x) uc(t,x) =0 p, €1,2]

u(0, x) = wp(x)

ue (0, x) = wy(x)

initial conditions {

13.07.17 15
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We recall that, since equation (1} is degenerate, different boundary
conditions have to be imposed at x = 0 depending on whether we are
interested in:

i.) the weakly degenerate case u, € [0, 1{, where, we have that the
Dirichlet boundary condition u(t,0) = 0 makes sense for any solution,
and

ii.) the strongly degenerate case 1, € [1, 2], where, we have that the

Neumann boundary condition lim, g a(x) u.(t, x) = 0 is automatically
satisfied by any classical solution.

13.07.17
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In order to express the above boundary conditions in functional settings,
we define H(0,1) to be the closed subspace of V;4(0,1) which consists

of all u € V;,(0,1) satisfying u(0) = 0 when p, € [0,1]. We also set
H3(0,1) = V2(0,1) N HX(0, 1).

Observe that all functions u € H2(0,1) satisfy homogeneous boundary
conditions at both x = 0 and x = 1. Such conditions are of Dirichlet type
in the weakly degenerate case, whereas they are of Neumann/Dirichlet
type at x = 0 and x = 1, respectively, when u, € [1,2].

13.07.17
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For any mild solution u of (1) we have that u,(-,1) € L?(0, T) for every
T >0 and

T
a(1) ]0 W2(t,1) dt < (6T+ — {11,3(1)})5,(0).

Moreover,

a(l)f u3(t,1) dt—]_/ uz (t,x) + (a(x) — xa'(x)) u3(t, x)}dtdx

t=T

+2 [/; xuy(t, x)us(t, x)dx]

=0

For any mild solution v of (1) we have that, for every T > 0,

t=T

T 1 .
j:;](; {a(X)ux(t,X) — ut(t,x)}dtdx—l- [./0 u(t, x)ut(t,x)dx] —0.

t=0

13.07.17
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Assume (2) and let u be the mild solution of (1). Then, for every T > 0.

T ) 4
a(l)A ux(tv 1) dt 2 {(2 o N’B)T o min{l, a(l)} T 2"”8 \/Eé;} EU(O) ?

where C; is the constant in the Poincare inequality.

We recall that (1) is said to be observable (via the normal derivative at
x =1) in time T > 0 if there exists a constant C > 0 such that for any
(uo, tn) € H2(0,1) x L2(0,1) the mild solution of (1) satisfies

;
] ui(t,1)dt > C E,(0).
G

Any constant satisfying this is called an observability constant for (1) in

time T. The supremum of all observability constants for (1) is denoted
by CT

13.07.17
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Equivalently, (1) is observable if

T 9
t,1) dt
R . 1 GL L
(1o, 11)7(0,0) E,(0)

| The inverse cr = 1/Cr is sometimes called the cost of observability (or
the cost of control) in time T.

Corollay:
Assume (2). Then (1) is observable in time T provided that

+zﬂa\/a),

T>T,:=

1 / 4
@ 152) \min{L, 2(0))

where C, is defined as above. In this case

1 4
CT P a_(lj{(z_ua)-r“ mm{l,a(l)} - 2”’8 \/Ea}

13.07.17
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Let a be the power x?. Then we can apply the above to conclude that,
defining

To = 2—1—0(44—29 mﬁn{z,\/zlfg ),

we have that
CT2(2—9)(T—T9) VT > Tp.

Observe that Ty — 2 as 6 | 0, which coincides with the classical
observability time for the wave equation.

13.07.17
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We shall see that boundary observability is no longer true when the

constant p, in (2) is greater than or equal to 2 and that, for p, < 2, the

controllability time blows up as u, 1 2. We discuss two examples with
power-iike coefficients.

1.) Given T > 0, consider the problem

(e — (X°ux) =0 10, T[x]0, 1]
boundary conditions: u(t,1) =0 and lim,ox? u(t,x) =0 0<t< T

initial conditions: {u(O,x) = to(x)

ue(0, x) = uy(x) x €0, 1],

\

where up and u; are smooth functions with compact support in |0, 1], not
identically zero.

13.07.17 22



' .

Observe that the so-called Liouville transform

’ \/)? ’ g X
turns problem (1) into

1
Ve — vy + =0 in 10, T[x]0, oo

v(t,0) =0 O<t< T
v(0,y) = e72ug(e™) == wy(y)
ve(0,y) = e 2 (™) :== wvi(y).

_ oy

initial conditions: { y €]0, oo .

\

Since the support of the initial data propagates at finite speed, the
normal derivative vy (-,0) of the solution may well be identically zero on
[0, T] when the support of vy and v; is sufficiently far from y = 0.
Consequently, problem (1) is not observable on [0, T] via the normal
derivative uy(-, 1).

13.07.17 23
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p(x) = [{ 1 S‘jfz = 2(’(1;?22_ D ) = (51 )BT

2+ (0 —-2)y

u(t,x) = x—;lﬁ v(t, p(x))

Then the problem transforms into

.-

¢

\

c(9) B .
Vit — Vyy + 24 0= 2 v=0 in ]0, T[x]0, oo

v(t,0) =0 O<t< T

V(Ga Y) — VO(.V)

ve(0,y) = va(y) y €0, 0],

initial conditions: {

where c(0) = 0(30 — 4)/4,
voly) = ¥(¥)?*uo (¥(y)), viy) = ¥(y)? *u1 (¥(y))

13.07.17
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Given T > 0 and 8 > 2, consider the problem

((ugy — (xeux)x =0 10, T[x]O, 1]
boundary conditions: u(t,1) =0 and lim,ox? u(t,x)=0 0<t< T
u(0, x) = up(x)
ue(0, x} = ur(x)

x €]0,1[,

initial conditions: {
.

where up and u; are smooth functions with compact support in ]0, 1]

13.07.17
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We now show that, for any fixed 7 > 0 the observability constant Ct(6)

of (1) for a(x) = x%, with 0 < 8 < 2, goes to zero as § 1 2. We recall
spectral re the sults (see Patrick Martinez' talk)

~(x?y'(x))" = dy(x) x €]0, 1]
limy o x? y'(x} =0 and y(1) =0.

For any v 2 0, denote by J, the Bessel function of the first kind of order
v, that is,

oo

(_1)’" X\ 2m+v

where I is Euler's Gamma function.

13.07.17 28
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Let j,, be the first positive zero of J,,.
Given § € [1, 2[ define

0=l 2-¢
=29 M=

Then the first eigenvalue is given by A9 = x3j2 and the corresponding
normalized eigenfunction is

\/2_%— 1—9
o)~

yo(x) I Jug (g x"0) (0<x<1).

For any fixed T > 0 the observability constant Cr(6) of (1), with
1 < 6 <2, satisfies

Cr(@) < (2-0)T.

13.07.17
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Define
ug(t, x) = sin (\/X;t) vo(x) (t,x) €]0, T[x]0,1[.

Then uy satisfies (1)g with ugp = 0 and u1(x) = v/ Ag ys(x). Now,
straightforward computations lead to

S| |8xuel?(t, 1) dt sin (2v/2g T) |
? E...(0) —27169(1— 2\/)\_0_?_ )<(2—9)T

taking into account the definition of kg. The conclusion follows recalling
the definition of Cr.

13.07.17
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Control in the coefficients of the p-Laplace problem

Joint work with E. Casas and P. Kogut (SICON 2016)

129017
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Let Q be a bounded open subset of RV (N > 1) with a Lipschitz
boundary. Let p be a real number such that 2 < p < co. By BV(Q) we
denote the space of all functions in L*(Q2) for which the norm

1fllev) =

f'

@) + f | DF|
Q

|(1(q2) + sup {/ fdivpdx : o e CG(GLRY), |p(x)| <1,x e Q
Q -

is finite.Let &;, & be given elements of L°°(Q2) N BV(Q) satisfying the

conditions

0 < a<é&(x) <&(x) ae in €,

where « is a given positive value. Define the p-Laplacian

where|Vy|P~2 := |Vy|]§52 = (Z?_’—_I

Bp(u,y) = div (u(x)|Vy[P~2Vy)

p—2

By 2) 3
?

6x;

13.07.17 30
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We consider the following optimal control problem

Minimize {I(u,y):/ |y—zd|2dx+/|Du|,u€2lad}
Q Q

—Bp(u,y)+y=Ff in Q,
y=0 on 01,

Aag = {u € BV(Q) ‘ &1(x) < ux) < &(x) a.e. in Q}.

Notice that for p > 2 the Problem exhibits degeneration on the set
{X’Vy(x) = 0}. Moreover, degeneration may happen, where &; is zero.

13.07.17
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As usual, a function y € Wol’p(Q) is said to be a solution

fulVy|p_2(‘Vy,V<,o)R~ dx—i—/yc,odx:/fc,odx Vo € WyP(9).
Q Q Q

The existence of a unique solution to the boundary value problem follows
from an abstract theorem on monotone operators.

Let V be a reflexive separable Banach space. Let V* be the dual space,

and let A: V — V* be a bounded, semicontinuous, coercive and strictly
monotone operator. Then the equation Ay = f has a unique solution for
each f € V*. Moreover, Ay = f if and only if (Ap, o —y) > {f, 0o — y)

for all p € V*.

13.07.17
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Let {(uk, y)}ken C = be a bounded sequence. Then, there is a pair

(u,y) € = such that, up to a subsequence, ux — v in BV(Q) and
Yk — y in Wol’p(Q).

Proof: By compactness properties of BV(£2) x Wg”’ (Q), there exists a
subsequence of {(uk, yx)}ken and functions v € BV(Q) and y € W,"P(Q)
such that ue = uin BV(Q), yx — y in W;P(Q). Then, we have

lim f (Vo, Vyi)pn Uk dx = / (Vo, Vy)pv udx, Vo e C(Q).
Q Q

k— oo

The Minty relation for (uy, yx) reads:

/Q IVIP~2 (Vo Vo — Vyi)gn Uk dx > /Q flo—y)dx, Ye C(Q).

We can pass to the limit in relation as k — oo and arrive at the Minity
inequality for every ¢ € C§°(2) and then for W, (), hence,

y € W,P(Q) is solution to the boundary value problem.

13.07.17 33
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Let z; € L?(Q2) and f € L2(Q) be given functions. Then optimal control
problem admits at least one solution.

rootf: oSince the set = I1s nonempty and the cost runctional is bounded
_ from below on =, it follows that there exists a minimizing sequence

{(uk, Y)}ken C Z, ie.

[ —

inf _I(u,y) = Ium [/ |yk-—zd|2dx+/[Duk|} < +o0.

(u,y)e=

Hence, {{uk, yx)}ken is bounded in BV/(Q) x W,"?(Q). We deduce the

existence of a subsequence, and a pair (u*,y*) € = such that uy — v in
BV(Q) and yx — y* in Wl"’ (©2). From these convergences we infer that

l|m /kam—zd|2dx—/|y — z4% dx and Inmlnf/IDuk|>]|Du[

So I(u*, y*) < inf(, y)e= I(u, ¥) and, consequently, (u*,y*) is a solution.

13.07.17
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Minimize {Is,k(uay) = [ ly — Zdlz dx+/ [Dul}
Q Q

subject to the constraints

- As,k,p(uay) +y=fFf in 0,
y=0 on 09,

u € Ug = {v € BV(Q) ] 61(x) < v(x) S &(x) ae. in Q.

| o 252
Baspltsy) = div () (e + Fi (957)) 7 v ),
Fk : Ry — Ry is a non-decreasing C}(R_ )-function such that

F(t)=1t, if tc[0,k?], Fu(t)=k*+1, if t>k>+1, and
t< Fu(t) <t+6, if <t<k®+1 forsome é € (0,1).

13.07.17
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Foreach e >0, k € N, u € U,q, and f € L?(Q), the regularized
boundary value problem admits a unique weak solution y, , € H}(Q), i.e.

f u(e + Fil| Ve kl?)) T (Ve Vip)gn dx + /Q Ye,kip dx = /Q f dx,
Q
Vo € H3(Q), or equivalently
| e+ FUTS) T (T, Vi — Ty o
Q

+ fn ol =y ) i > ]Q flo—yer)dx, Ve CO(Q).

For every positive value € > 0 and integer k € N, the regularized optimal
control problem has at least one solution.

13.07.17
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Let {(ug,k,yg,k))}zég be an arbitrary sequence of optimal pairs to the

perturbed problems. Then, this sequence is bounded in BV(Q) x HL(%)
and any cluster point (1%, y°) with respect to the (weak-* weak)
topology is a solution of the original OCP. Moreover, if for one
subsequence we have 1, = v in BV(Q) and y?, — y° in H}(R), then
the following properties hold

lim (ugﬁk,ygik) = (% y°) strongly in [}(Q) x H3 (),
'sij}’}) f l”g,k
Q

e—0
- [ 10w,
k— o0 2

k— oo
lim xq, (0 YVy2, = Vy° strongly in LP(Q)N
k(ys’,‘) y&:,k y gly ’

e—0

k=00

i | .FVOZP—}Z-Vozod—- v,012,0 d
lim | (e FulVyeul) * 1Vyeulul i dx = VYO dx
k—s o0

Li_ﬂ fésk(ug,kﬁyg,k) = I(uoayo)-

k—co

13.07.17
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Damage modeling and sustainable optimal control

Joint work with P. Kogut (Math. Meth. Appl. Sci. 2013)
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3¢2 € W, such that P <¢G<1 ae in Q,

a displacement field u: Q+ — RV, a stress field o : Q7 — SV
damage field ¢ : 27 — R satisfy the relations

—dive=f in Q,
o =(Ae(u) in Qr,
u=0 on (0,7)xS,

ov=p on (0, T)xT, pe&P.yg,
(' — kAC = ¢(e(u),¢) in Qr,

C(Oa):CO in Qs
¢=1 on(0,7T)xT, -3-5:0 on (0,7) xS,

3¢« € Wy such that ¢, <{(t,x) <1 ae. in

o and a

13.07.17
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Happy birthday Piermarco!

sara tre volte Natale
e festa tutto il giorno!

13.07.17 40
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Thank you for your attention and come visit us at FAU!
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