The cost of controlling strongly degenerate parabolic equations

Patrick Martinez

Institut de Mathématiques de Toulouse
Université Paul Sabatier, Toulouse III

INDAM - Rome - July 2017 - Piermarco 60

Work in collaboration with

- Piermarco Cannarsa, Univ. Tor Vergata, Roma 2,
- Judith Vancostenoble, Univ. Toulouse 3.

Where the journey has begun...

Outlines

(1) Some examples of degenerate parabolic equations
(2) Controllability cost for a boundary control :

- upper bounds
- lower bounds
(3) Controllability cost for locally distributed control
(9) Works in progress

Motivation

Properties of null controllability (and inverse problems) of

$$
\left\{\begin{array}{l}
u_{t}-\operatorname{div}(A(x) \nabla u)=h(x, t) \chi_{\omega}, \\
\text { boundary conditions }, \\
\text { initial condition }
\end{array}\right.
$$

when Ω bounded domain of $\mathbb{R}^{n}(n=1,2) ; \omega$ sub-domain of Ω, and

$$
A: \bar{\Omega} \rightarrow M_{n}(\mathbb{R}), \quad A(x) \text { symmetric and } \geq 0
$$

but non uniformly positive : for example when

$$
\forall x \in \partial \Omega, \quad \operatorname{det}(A(x))=0
$$

(First step to controllability to trajectories, LQR problems...)
When $A(x)$ is uniformly positive : heat equation Lebeau-Robbiano (95), general case : Fursikov-Imanuvilov (95, 96)

Some examples of degenerate parabolic equations in $\operatorname{dim} 1:$:

- climatology : the Budyko-Sellers model :

$$
R T_{t}-k\left(\left(1-x^{2}\right) T_{x}\right)_{x}-S_{0} s(x) a(x, T)=-I(T), x \in(-1,1)
$$

Ghil (1976...), Diaz (1993...),
Roques-Checkroun-Cristofol-Soubeyrand-Ghil (2014)

- economy : the Black-Scholes model :

$$
u_{t}-x^{2} u_{x x}+\cdots=\cdots, x \in(0, L)
$$

- combustion theory and quantum mechanics : inverse square potential

$$
u_{t}-u_{x x}-\frac{\mu}{x^{2}} u=0, x \in(0,1)
$$

Baras-Goldstein (1984), Vásquez-Zuazua (2000),
Vancostenoble-Zuazua (2008).

Some examples in $\operatorname{dim} 2$:

- aeronautics : the Crocco equation (boundary layer model) :
$u_{t}+a(y) u_{x}-\left(b(y) u_{y}\right)_{y}=$ localized control, $x \in(0, L), y(0,1)$
with $a(1)=0=b(1)$; Oleinik-Samokhin (1999),
Buchot-Raymond (2002), M-Raymond-Vancostenoble (2003)
(in the simple case where $a(y)=1$)
- Kolmogorov type operators:

$$
f_{t}+v f_{x}-f_{v v}=\text { loc. control, }(x, v) \in(0,2 \pi) \times(0,2 \pi)
$$

Beauchard-Zuazua (2009), Beauchard (2014)

- Grushin type operators:

$$
f_{t}-f_{x x}-x^{2 \gamma} f_{y y}=\text { loc. control, }(x, y) \in(-1,1) \times(0,1)
$$

Beauchard-Cannarsa-Guglielmi (2014)

- An example in biology : the Fleming-Viot model (genetic frequency model) :

$$
u_{t}-\operatorname{Tr}\left(C(x) D^{2} u\right) \cdots=f
$$

where $C(x)=\left(x_{i}\left(\delta_{i j}-x_{j}\right)_{i, j}\right.$ and $x \in\left\{x_{i} \in[0,1], \sum_{i} x_{i} \leq 1\right\}$; example : $N=2$: $\operatorname{det} C(x)=0$ along the sides of the triangle. Cerrai-Clément (2004), Campiti-Rasa (2004), Albanese-Mangino (2015)

- invariance sets for diffusion processes : Aubin-Da Prato $(1990,98)$: naturally, the diffusion matrix is degenerate in the normal direction at the boundary (motivation for Cannarsa-M-Vancostenoble, Memoirs AMS (2016)).

The typical strongly degenerate parabolic equation :

Given $\alpha \geq 1$:

- Locally distributed control :

$$
\left\{\begin{array}{l}
u_{t}-\left(x^{\alpha} u_{x}\right)_{x}=h(x, t) \chi_{(\alpha, b)}(x), \quad x \in(0,1), t>0, \\
\left(x^{\alpha} u_{x}(x, t)\right)_{/ x=0}=0=u(1, t)
\end{array}\right.
$$

- Boundary control at the non degeneracy point :

$$
\left\{\begin{array}{l}
u_{t}-\left(x^{\alpha} u_{x}\right)_{x}=0, \quad x \in(0,1), t>0 \\
\left(x^{\alpha} u_{x}(x, t)\right)_{x=0}=0 \\
u(1, t)=H(t)
\end{array}\right.
$$

The (theoretical) problem

Known (Cannarsa-M-Vancostenoble (2008)) :

Null Controllability holds if $\alpha \in[1,2)$, does not hold if $\alpha \geq 2$

Goal : understand the behavior when $\alpha \rightarrow 2^{-}$.
Natural quantity to estimate : "Null controllability cost" :

$$
\begin{gathered}
C(\alpha, T):=\sup _{\left\|u_{0}\right\|=1}\left(\inf _{\text {admissible control }: u(T)=0}\{\| \text { control } \|\}\right): \\
? ? \leq C(\alpha, T) \leq ? ? ?
\end{gathered}
$$

expected :

$$
C(\alpha, T) \rightarrow+\infty \quad \text { as } \alpha \rightarrow 2^{-}
$$

Related literature

"Controllability cost" appears also in

- the 'fast control problem' : behavior of $C(T)$ as $T \rightarrow 0$, for several types of equations: Seidman (1984, 2000), Guichal (1985), Miller (2004, 2005, 2006), Tenenbaum-Tucsnak (2007, 2011), Lissy (2014), Benabdallah et al (2014),
- for semilinear parabolic equations : linearized model (first step) :

$$
u_{t}-\Delta u+a(x, t) u=\ldots
$$

behavior of $C\left(\|a\|_{\infty}, T\right)$ as $\|a\|_{\infty} \rightarrow \infty$:
Fernandez-Cara-Zuazua (2000),

- the 'vanishing viscosity limit' :

$$
u_{t}-\varepsilon u_{x x}+M u_{x}=\ldots
$$

analysis of the importance of the transport term, behavior of $C(\varepsilon, T, M)$ as $\varepsilon \rightarrow 0$, taking care of the size of $M T$:
Coron-Guerrero (2005), Guerrero-Lebeau (2007), Glass (2010), Lissy (2015),

- observability cost for 1D wave equation: Haraux-Liard-Privat (2016) ; an equivalent of the observability cost as $T \rightarrow \infty$: Humbert-Privat-Trélat (2016) ;
- optimizing the location of control region of given measure for $1 D$ wave equation : Privat-Trélat-Zuazua (2013), for $1 D$ heat equation : Privat-Trélat-Zuazua (2017).

2 main complementary methods

2 main methods to study null controllability, and its cost :

- moment method:
- Fattorini-Russell $(1971,74)$
- eigenvalues, eigenfunctions, biorthogonal families
- sharp upper and lower bounds for some equations (1-D, constant coefficients) ;
- Carleman estimates :
- Lebeau-Robbiano (1995), Fursikov-Imanuvilov (1996)
- observability
- good upper bounds for a large class of equations (N-D, variable coefficients).

Carleman estimates for the degenerate parabolic equation :
$C(\alpha, T) \leq e^{\frac{C}{(2-\alpha)^{4} T}}: \quad$ bound from below? (sharp estimate?)

Moment method for the boundary control problem

$$
\left\{\begin{array}{l}
u_{t}-\left(x^{\alpha} u_{x}\right)_{x}=0, \quad x \in(0,1), t>0 \\
\left(x^{\alpha} u_{x}(x, t)\right) / x=0=0 \\
u(1, t)=H(t)
\end{array}\right.
$$

- well-posedness in weighted Sobolev spaces; $\left(H \in H^{1}(0, T)\right)$;
- eigenvalues, eigenfunctions :

$$
\left\{\begin{array}{l}
-\left(x^{\alpha} \Phi_{x}\right)_{x}=\lambda \Phi, \quad x \in(0,1), t>0 \\
\left(x^{\alpha} \Phi_{x}\right)_{/ x=0}=0 \\
\Phi(1)=0
\end{array}\right.
$$

then eigenvalues $\left(\lambda_{\alpha, n}\right)_{n \geq 1}$ associated to $\left(\Phi_{\alpha, n}\right)_{n \geq 1}$

- if $u(T)=0$, then multiplying by $\Phi_{\alpha, n}(x) e^{\lambda_{\alpha, n}(T-t)}$:
$\forall n \geq 1, \quad \int_{0}^{T} H(t) e^{\lambda_{\alpha, n} t} d t=\frac{\left(u_{0}, \Phi_{\alpha, n}\right)}{r_{\alpha, n}}$, with $r_{\alpha, n}=\Phi_{\alpha, n}^{\prime}(1) ;$
- if family $\left(\sigma_{\alpha, m}^{+}\right)_{m \geq 1}$ "biorthogonal" to $\left(e^{\lambda_{\alpha, n} t}\right)_{n \geq 1}$ in $L^{2}(0, T)$:

$$
\forall m, n \geq 1, \quad \int_{0}^{T} \sigma_{\alpha, m}^{+}(t) e^{\lambda_{\alpha, n} t} d t=\delta_{m n}=\left\{\begin{array}{l}
1 \text { if } m=n \\
0 \text { if } m \neq n
\end{array}\right.
$$

then formally

- biorth. family \Longrightarrow control $H(t):=\sum_{m=1}^{\infty} \frac{\left(u_{0}, \Phi_{\alpha, m}\right)}{r_{\alpha, m}} \sigma_{\alpha, m}^{+}(t)$ drives the solution to 0 in time T,
- control \Longrightarrow biorth. family : if $u_{0}=\Phi_{\alpha, m}$ and H_{m} is admissible, then $\left(r_{\alpha, m} H_{m}\right)_{m \geq 1}$ is biorthogonal to $\left(e^{\lambda_{\alpha, n} t}\right)_{n \geq 1}$ in $L^{2}(0, T)$.

To sum up :
$\left\{\begin{array}{l}\text { upper bound for SOME biorthogonal sequence } \\ \text { information on the eigenfunctions }\end{array}\right.$
$\Longrightarrow \quad$ upper bound for NC cost :

$$
C(\alpha, T) \leq \sup _{\left\|u_{0}\right\|=1}\|H\| \leq\left(\sum_{m=1}^{\infty} \frac{\left\|\sigma_{\alpha, m}^{+}\right\|^{2}}{r_{\alpha, m}^{2}}\right)^{1 / 2}
$$

$\left\{\begin{array}{l}\text { lower bound for ANY biorthogonal sequence } \\ \text { information on the eigenfunctions }\end{array}\right.$
$\Longrightarrow \quad$ lower bound for NC cost.
Good upper/lower bounds on biorthogonal families? necessary : information about the eigenvalues and eigenfunctions

Eigenvalues of the degenerate problem

related to Bessel functions and their zeros:
For $\alpha \in[1,2)$, let

$$
\kappa_{\alpha}:=\frac{2-\alpha}{2}, \quad \nu_{\alpha}:=\frac{\alpha-1}{2-\alpha} .
$$

Then (Kamke (1948), Everitt-Zettl (1978), Gueye (2014) when $\alpha \in[0,1))$

- the eigenvalues : $\forall n \geq 1, \lambda_{\alpha, n}=\kappa_{\alpha}^{2} j_{\nu_{\alpha}, n}^{2}$,
- the eigenfunctions $\Phi_{\alpha, n}(x)=\frac{\sqrt{2 \kappa_{\alpha}}}{\left|J_{\nu_{\alpha}}\left(j_{\nu_{\alpha}, n}\right)\right|} x^{(1-\alpha) / 2} J_{\nu_{\alpha}}\left(j_{\nu_{\alpha}, n} x^{\kappa_{\alpha}}\right)$, where
- $J_{\nu_{\alpha}}$ is the Bessel function of first kind and of order ν_{α},
- and $\left(j_{\nu_{\alpha}, n}\right)_{n \geq 1}$ is the sequence of the positive zeros of $J_{\nu_{\alpha}}$.

Argument :

λ eigenvalue, Φ associated eigenfunction : then the new function ψ

$$
\Phi(x)=: x^{\frac{1-\alpha}{2}} \Psi\left(\frac{2}{2-\alpha} \sqrt{\lambda} x^{\frac{2-\alpha}{2}}\right)
$$

satisfies the following ODE :

$$
y^{2} \Psi^{\prime \prime}(y)+y \Psi^{\prime}(y)+\left(y^{2}-\left(\frac{\alpha-1}{2-\alpha}\right)^{2}\right) \Psi(y)=0, \quad y \in\left(0, \frac{2 \sqrt{\lambda}}{2-\alpha}\right)
$$

which is the Bessel's equation of order ν :

$$
y^{2} \Psi^{\prime \prime}(x)+y \Psi^{\prime}(x)+\left(y^{2}-\nu^{2}\right) \Psi(x)=0, \quad y>0
$$

with $\nu=\nu_{\alpha}:=\frac{\alpha-1}{2-\alpha}$.
Using the boundary conditions and well-posedness setting, we find $\lambda_{\alpha, n}$ and $\Phi_{\alpha, n}$.

Connection with the other problems :

- the strongly degenerate parabolic equation :

$$
\left\{\begin{array}{l}
-\left(x^{\alpha} \Phi_{x}\right)_{x}=\lambda \Phi \\
\left(x^{\alpha} \Phi_{x}\right)(0)=0=\Phi(1) \quad \Longrightarrow \quad \lambda_{\alpha, n}=\kappa_{\alpha}^{2} j_{\nu_{\alpha, n}}^{2},
\end{array}\right.
$$

and then

$$
\sqrt{\lambda_{\alpha, n+1}}-\sqrt{\lambda_{\alpha, n}}=\kappa_{\alpha}\left(j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n}\right),
$$

and (classical for Bessel functions)

$$
j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n} \rightarrow \pi \quad \text { as } n \rightarrow \infty,
$$

hence

$$
\sqrt{\lambda_{\alpha, n+1}}-\sqrt{\lambda_{\alpha, n}} \rightarrow \frac{\pi}{2}(2-\alpha) \quad \text { as } n \rightarrow \infty .
$$

- the 'vanishing viscosity limit' :

$$
\left\{\begin{array}{l}
-\varepsilon \Phi_{x x}-M \Phi_{x}=\lambda \Phi \\
\Phi(0)=0=\Phi(1)
\end{array} \quad \Longrightarrow \quad \lambda_{\varepsilon, n}=\varepsilon \pi^{2} n^{2}+\frac{M^{2}}{4 \varepsilon}:\right.
$$

hence

$$
\sqrt{\lambda_{\varepsilon, n+1}}-\sqrt{\lambda_{\varepsilon, n}} \rightarrow \pi \sqrt{\varepsilon} \quad \text { as } n \rightarrow \infty ;
$$

- the 'fast control problem' : with the normalization $v(x, \tau):=u(x, \tau T):$

$$
\left\{\begin{array}{l}
v_{\tau}-T v_{x x}=\text { loc. control }, \\
v_{/ x=0}=0=v_{/ x=1}, \\
v_{/ t=0}=u_{0}, v_{/ \tau=1}=0
\end{array}\right.
$$

$$
\Longrightarrow \quad \lambda_{T, n}=T \pi^{2} n^{2},
$$

and then

$$
\sqrt{\lambda_{T, n+1}}-\sqrt{\lambda_{T, n}} \rightarrow \pi \sqrt{T} \quad \text { as } n \rightarrow \infty .
$$

Existence and bounds of a biorthogonal sequence under 'gap-min' condition

Existence of biorthogonal sequences :

- Fattorini-Russell $(1971,74)$: functional analysis and complex analysis ; gap conditions but not explicit as $T \rightarrow 0$;
- many applications of their results and methods;
- for the dependence $T \rightarrow 0$:
- Seidman-Avdonin-Ivanov (2000), Tenenbaum-Tucsnak (2007, 2011), Lissy (2014) : complex analysis (but they work with $\lambda_{n}=r n^{2}+$ l.o.t., and do not take care of a large parameter),
- Glass (2010) : precise, but adaptable to general conditions on the eigenvalues?

We proved the following version (Cannarsa-M-Vancostenoble (2017)) :

Theorem

Assume that $\lambda_{1} \geq 0$, and that

$$
\forall n \geq 1, \quad \sqrt{\lambda_{n+1}}-\sqrt{\lambda_{n}} \geq \gamma_{\min }>0
$$

Then there exists a family $\left(\sigma_{m}^{+}\right)_{m \geq 1}$ which is biorthogonal to the family $\left(e^{\lambda_{n} t}\right)_{n \geq 1}$ in $L^{2}(0, T)$, and for which there is some universal constant C_{u} independent of $T, \gamma_{\text {min }}$ and m such that

$$
\forall m, \quad\left\|\sigma_{m}^{+}\right\|_{L^{2}(0, T)}^{2} \leq C_{u} e^{-2 \lambda_{m} T} e^{C_{u} \frac{\sqrt{\lambda_{m}}}{\gamma_{\text {min }}}} e^{\frac{C_{u}}{\gamma_{\text {min }}{ }^{T}}} B\left(T, \gamma_{\text {min }}\right),
$$

with $B\left(T, \gamma_{\min }\right)=\frac{1}{T} \max \left(T \gamma_{\min }^{2}, \frac{1}{T \gamma_{\text {min }}^{2}}\right)$.
Proof : mainly the construction of Seidman-Avdonin-Ivanov (2000) (complex analysis techniques), combined with an additionnal parameter (Tenenbaum-Tucsnak (2007), Lissy (2015)) :

Argument

- a Weierstrass product :

$$
F_{m}(z):=\prod_{k=1, k \neq m}^{\infty}\left(1-\left(\frac{i z-\lambda_{m}}{\lambda_{k}-\lambda_{m}}\right)^{2}\right)
$$

whose growth is estimated using the gap condition,

- a suitable mollifier $M_{m}(z)$, chosen so that
$f_{m}:=F_{m} M_{m}$ satisfies $\left\{\begin{array}{l}\forall m, n \geq 1, \quad f_{m}\left(-i \lambda_{n}\right)=\delta_{m n}, \\ \forall z \in \mathbb{C}, \quad\left|f_{m}(-z) e^{-i z \frac{T}{2}}\right| \leq C_{m} e^{\frac{T}{2}|z|}, \\ \forall m \geq 1, \quad f_{m} \in L^{2}(\mathbb{R})\end{array}\right.$,
- the Paley-Wiener theorem : $f_{m}(-z) e^{-i z \frac{T}{2}}$ is the inverse Fourier transform of some compactly supported function ϕ_{m} (properties 2 and 3), that will the biorthogonal sequence (property 1).

Application: upper bound of the cost

When $\nu_{\alpha}=\frac{\alpha-1}{2-\alpha} \geq \frac{1}{2}$, the sequence $\left(j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n}\right)_{n}$ decays to π (Komornik-Loreti (2005)), hence

$$
\sqrt{\lambda_{\alpha, n+1}}-\sqrt{\lambda_{\alpha, n}} \geq \frac{\pi}{2}(2-\alpha)=: \gamma_{\min }(\alpha),
$$

hence the existence of a biorthogonal family, and

$$
H^{\left(u_{0}\right)}(t):=\sum_{m=1}^{\infty} \frac{\left(u_{0}, \Phi_{\alpha, m}\right)}{r_{\alpha, m}} \sigma_{\alpha, m}^{+}(t)
$$

is well-defined, drives the solution to 0 in time T, hence

$$
\begin{aligned}
& C(\alpha, T) \leq \sup _{\left\|u_{0}\right\|=1}\left\|H^{\left(u_{0}\right)}\right\| \\
& \leq\left(\sum_{m=1}^{\infty} \frac{C_{u}}{r_{\alpha, m}^{2}} e^{-2 \lambda_{\alpha, m} T} e^{C_{u} \frac{\sqrt{\lambda_{\alpha i n}(\alpha)}}{\gamma_{\min }}} e^{\gamma_{\gamma_{\text {min }}(\alpha)^{2} T}} B\left(T, \gamma_{\text {min }}\right)\right)^{1 / 2} \leq C_{u} e^{\frac{C_{u}}{(2-\alpha)^{2} T}} .
\end{aligned}
$$

Lower bound under some global 'gap-max' condition

Motivation :
H_{m} drives $u_{0}:=\Phi_{\alpha, m}$ to 0 in time T
\Longrightarrow (moment method) $\int_{0}^{T}\left(r_{\alpha, m} H_{m}\right) e^{\lambda_{\alpha, n} t} d t=\delta_{m n}$,
hence $\left(r_{\alpha, m} H_{m}\right)_{m}$ is biorthogonal to $\left(e^{\lambda_{\alpha, n} t}\right)_{n}$.
And bound from below, by hilbertian techniques :

- in $\mathbb{R}^{2}, \mathbb{R}^{3}$:

$$
\left(v_{1}, v_{2}\right) \text { biorthogonal to }\left(u_{1}, u_{2}\right) \Longrightarrow\left\|v_{2}\right\| \geq \frac{1}{\operatorname{dist}\left(u_{2}, \mathbb{R} u_{1}\right)}
$$

- similarly in a general context :
- Hansen (1991) : optimality (w.r.t. m) of Fattorini-Russell,
- Guichal (1985) optimality (for heat eq.) of Seidman (1984).

We extend Guichal (1985), the goal being to have $\left\|r_{\alpha, m} H_{m}\right\| \geq \cdots$, hence $\left\|H_{m}\right\| \geq \frac{\cdots}{\left|r_{\alpha, m}\right|}$, hence $C(\alpha, T) \geq \frac{\cdots}{\left|r_{\alpha, m}\right|}$.

Theorem

(CMV (2017) Assume that $\lambda_{1} \geq 0$, and that there is some $0<\gamma_{\text {min }} \leq \gamma_{\text {max }}$ such that

$$
\forall n \geq 1, \quad \gamma_{\min } \leq \sqrt{\lambda_{n+1}}-\sqrt{\lambda_{n}} \leq \gamma_{\max }
$$

Then there exists some $C\left(m, \gamma_{\max }, \lambda_{1}\right)>0$ (given explictly in the paper) and $c_{u}>0$ independent of T and m such that : any family $\left(\sigma_{m}^{+}\right)_{m \geq 1}$ which is biorthogonal to the family $\left(e^{\lambda_{n} t}\right)_{n \geq 1}$ in $L^{2}(0, T)$ satisfies :

$$
\left\|\sigma_{m}^{+}\right\|_{L^{2}(0, T)}^{2} \geq e^{-2 \lambda_{m} T} e^{\frac{1}{2 \gamma_{\max }^{2} T}} b\left(T, \gamma_{\max }, m\right)
$$

with

$$
b\left(T, \gamma_{\max }, m\right)=\frac{c_{u}^{2}}{C\left(m, \gamma_{\max }, \lambda_{1}\right)^{2} T}\left(\frac{1}{2 \gamma_{\max }^{2} T}\right)^{2 m} \frac{1}{\left(4 \gamma_{\max }^{2} T+1\right)^{2}}
$$

Argument

- As in \mathbb{R}^{2} : any biorthogonal sequence verifies

$$
\left\|\sigma_{m}^{+}\right\| \geq \frac{1}{d_{T, m}}, \quad \text { where } d_{T, m}:=\operatorname{dist}\left(e^{\lambda_{m} t}, \overline{\operatorname{Vect}\left\{e^{\lambda_{k} t}, k \neq m\right\}}\right)
$$

- then Guichal (1985) :
$d_{T, m} \leq\left\|e^{\lambda_{m} t}-\sum_{i=1, i \neq m}^{M+1} A_{i} e^{\lambda_{i} t}\right\|=\left\|\frac{-1}{\tilde{A}_{m}} \sum_{i=1}^{M+1}-\tilde{A}_{i} e^{\lambda_{i} t}\right\|=\left\|\frac{-1}{\tilde{A}_{m}} q(t)\right\|$,
with a special choice of the coefficients \tilde{A}_{i} : chosen such that

$$
q(0)=\cdots=q^{(M-1)}(0)=0, \quad q^{(M)}(0)=1
$$

(in order to have q small) ;

- then (Vandermonde determinant)

$$
d_{T, m} \leq\left(\prod_{i=1, i \neq m}^{M+1}\left|\lambda_{i}-\lambda_{m}\right|\right)\left(\int_{0}^{T} \frac{s^{2 M}}{M!^{2}} e^{-2 \lambda_{1} s} d s\right)^{1 / 2} \leq \cdots
$$

Application

As already seen :

$$
\pi \leq j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n} \leq j_{\nu_{\alpha}, 2}-j_{\nu_{\alpha}, 1}
$$

hence $\gamma_{\max }=\kappa_{\alpha}\left(j_{\nu_{\alpha}, 2}-j_{\nu_{\alpha}, 1}\right)$. But (classical)

$$
j_{\nu, 2}-j_{\nu, 1} \sim a \nu^{1 / 3} \quad \text { as } \nu \rightarrow+\infty
$$

Hence $\gamma_{\max } \sim c \nu_{\alpha}^{-2 / 3} \sim c^{\prime}(2-\alpha)^{2 / 3} \quad$ as $\alpha \rightarrow 2^{-}$, hence

$$
C(\alpha, T) \geq \| H_{1}\left(\text { driving } \Phi_{\alpha, 1}\right) \| \geq \frac{\cdots}{\left|r_{\alpha, 1}\right|} e^{\frac{1}{2 \gamma_{\max }^{2} T}}=\frac{\cdots}{\left|r_{\alpha, 1}\right|} e^{\frac{c}{(2-\alpha)^{4 / 3} T}}
$$

hence

$$
e^{\frac{C}{(2-\alpha)^{4 / 3} T}} \leq C(\alpha, T) \leq e^{\frac{C}{(2-\alpha)^{2} T}} .
$$

Hence $C(\alpha, T) \rightarrow \infty$ as $\alpha \rightarrow 2^{-}$, BUT gap between $\frac{4}{3}$ and $2 \ldots$

Additionnal property of the zeros of Bessel functions

The gap $\left(j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n}\right)_{n \geq 1}$ decays

- from $j_{\nu_{\alpha}, 2}-j_{\nu_{\alpha}, 1} \sim a \nu_{\alpha}^{1 / 3}$ (large)
- to π.

Hence certainly :

$$
\exists N_{\nu}, \forall n \geq N_{\nu}, \quad j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n} \leq 2 \pi
$$

but this was not taken into account. The value of N_{ν} :

Lemma

(CMV (2017)

$$
\forall \nu \geq \frac{1}{2}, \forall n>\nu, \quad j_{\nu_{\alpha}, n+1}-j_{\nu_{\alpha}, n} \leq 2 \pi .
$$

Proof : oscillation theorem of Sturm for second order ODE, in the spirit of Komornik-Loreti (2005).

Lower bound under some asymptotic 'gap-max' condition

Theorem

Assume that $\lambda_{1} \geq 0$, and that there are $0<\gamma_{\text {min }} \leq \gamma_{\text {max }}^{*} \leq \gamma_{\text {max }}$ such that

$$
\forall n \geq 1, \quad \gamma_{\min } \leq \sqrt{\lambda_{n+1}}-\sqrt{\lambda_{n}} \leq \gamma_{\max },
$$

and

$$
\forall n \geq N_{*}, \quad \sqrt{\lambda_{n+1}}-\sqrt{\lambda_{n}} \leq \gamma_{\max }^{*} .
$$

Then any family $\left(\sigma_{m}^{+}\right)_{m \geq 1}$ which is biorthogonal to the family $\left(e^{\lambda_{n} t}\right)_{n \geq 1}$ in $L^{2}(0, T)$ satisfies :

$$
\left\|\sigma_{m}^{+}\right\|_{L^{2}(0, T)}^{2} \geq e^{-2 \lambda_{m} T} e^{\frac{2}{T\left(\gamma_{\max }^{*}\right)^{2}}} b^{*}\left(T, \gamma_{\max }, \gamma_{\max }^{*}, N_{*}, \lambda_{1}, m\right)^{2}
$$

(where b^{*} is explictly given in our paper).

Application

Applying the previous result with the asymptotic gap of the zeros of Bessel functions :

- $\gamma_{\text {max }}=j_{\nu_{\alpha}, 2}-j_{\nu_{\alpha}, 1} \sim a \nu_{\alpha}^{1 / 3}$,
- $\gamma_{\text {max }}^{*}=2 \pi$,
- $N_{*}=\left[\nu_{\alpha}\right]+1$,
we obtain

$$
e^{-\frac{1}{c} \frac{1}{(2-\alpha)^{4 / 3}}\left(\ln \frac{1}{2-\alpha}+\ln \frac{1}{T}\right)} e^{\frac{c}{T(2-\alpha)^{2}}} \leq C(\alpha, T) \leq e^{\frac{c}{T(2-\alpha)^{2}}} .
$$

The locally distributed control problem

$$
\left\{\begin{array}{l}
u_{t}-\left(x^{\alpha} u_{x}\right)_{x}=h(x, t) \chi_{(a, b)}(x), \quad x \in(0,1), t>0 \\
\left(x^{\alpha} u_{x}(x, t)\right)_{/ x=0}=0=u(1, t)
\end{array}\right.
$$

Similar:

- NC holds iff $\alpha<2$;
- formally admissible control :

$$
h(x, t)=h(x, t):=\sum_{m \geq 1}-\left(u_{0}, \Phi_{\alpha, m}\right) \sigma_{\alpha, m}^{+}(t) \frac{\Phi_{\alpha, m}(x)}{\int_{a}^{b} \Phi_{\alpha, m}^{2}}
$$

- hence information needed for upper estimate of the NC cost : lower bound of $\int_{a}^{b} \Phi_{\alpha, m}^{2}$;
- classical (Lagnese (1983)) : $\inf _{m} \int_{a}^{b} \Phi_{\alpha, m}^{2}>0$, but not sufficient to estimate $\|h\|$ in function of α;
- we prove the following :

Proposition

There exists $\gamma_{0}^{*}>0$ independent of $\alpha \in[1,2)$ and of $m \geq 1$ s.t.

$$
\forall \alpha \in[1,2), \forall m \geq 1, \quad \int_{a}^{b} \Phi_{\alpha, m}^{2} \geq \gamma_{0}^{*}(2-\alpha) ;
$$

Difficulties

- in our case

$$
\int_{a}^{b} \phi_{\alpha, m}^{2}=\frac{2}{j_{\nu_{\alpha}, m}^{2}\left|J_{\nu_{\alpha}}^{\prime}\left(j_{\nu_{\alpha}, m}\right)\right|^{2}} \int_{j_{\nu_{\alpha}, m} a^{\kappa \alpha}}^{j_{\nu_{\alpha}, m} b^{\kappa \alpha}} y J_{\nu_{\alpha}}(y)^{2} d y
$$

- known : $J_{\nu}(y)$ either as $y \rightarrow+\infty$ or as $\nu \rightarrow+\infty$,
- but here y and ν go to $+\infty$ simultaneously;
- and proof:
- the Bessel ODE,
- integral representation of solutions (keeping in mind ν_{α} large)
- classical properties of sin (Haraux (1978))
- and then similar upper and lower estimates for the NC cost.

So to conclude :

- many properties of Bessel functions to use,
- some of them to complete,
- and explicit and quite practical results for biorthogonal sequences under global/asymptotic gap conditions.
(The reaction of my son, a few years ago, when he opened the Watson's book:)

Figure - (Bonne fête, Florent !)

Works in progress and open questions

- degeneracy inside the domain : NC and its cost in function of the degeneracy parameter (joint work with P. Cannarsa and Roberto Ferretti)
- inverse square potential : precise estimates of the cost in function of the parameter μ (joint work with J. Vancostenoble)
- some of this useful to prove the optimality of the minimal time for the Grushin operator ? ? guess in

Works in progress and open questions

- degeneracy inside the domain : NC and its cost in function of the degeneracy parameter (joint work with P. Cannarsa and Roberto Ferretti)
- inverse square potential : precise estimates of the cost in function of the parameter μ (joint work with J. Vancostenoble)
- some of this useful to prove the optimality of the minimal time for the Grushin operator ??
guess if

Works in progress and open questions

- degeneracy inside the domain : NC and its cost in function of the degeneracy parameter (joint work with P. Cannarsa and Roberto Ferretti)
- inverse square potential : precise estimates of the cost in function of the parameter μ (joint work with J. Vancostenoble)
- some of this useful to prove the optimality of the minimal time for the Grushin operator ??
- (more difficult) pick a number n between 1 and 10 , and try to guess in which country (continent!) Piermarco will be in n weeks;-)

Thank you for your attention, and most of all

Happy birthday, Piermarco!

