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Semilinear Differential Inclusions

We consider the Differential Inclusion

(DI) x ′(t) ∈ Ax(t)+F (t, x(t)) a.e. t ∈ [t0, 1] , x(t0) = x0

under the State Constraint

(SC) x(t) ∈ K for t ∈ [t0, 1] .

• X an infinite dimensional separable Banach space;

• A is the infinitesimal generator of a strongly continuous
semigroup S(t) : X → X .

• F : I × X  X is a set-valued map with closed non-empty
images, I = [0, 1] and t0 ∈ I ;

• K is a nonempty closed subset of X .
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Semilinear Differential Inclusions

We consider the Differential Inclusion

(DI) x ′(t) ∈ Ax(t)+F (t, x(t)) a.e. t ∈ [t0, 1] , x(t0) = x0

under the State Constraint

(SC) x(t) ∈ K for t ∈ [t0, 1] .

Example: Control system{
x ′(t) = Ax(t) + f (t, x(t), u(t)) a.e. t ∈ [t0, 1]
u(t) ∈ U .

In this case, we set F (t, x) = f (t, x ,U).
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Semilinear Differential Inclusions

We consider the Differential Inclusion

(DI) x ′(t) ∈ Ax(t)+F (t, x(t)) a.e. t ∈ [t0, 1] , x(t0) = x0

under the State Constraint

(SC) x(t) ∈ K for t ∈ [t0, 1] .

A function x ∈ C([t0, 1],X ) is a mild solution of (DI) with initial datum
x(t0) = x0 if there exists a function fx ∈ L1(t0, 1;X ) such that

fx(t) ∈ F (t, x(t)) for a.e. t ∈ (t0, 1)

and

x(t) = S(t − t0) x0 +

∫ t

t0

S(t − s) fx(s)ds for any t ∈ [t0, 1],



Distance Estimates to Feasible Trajectories Examples Necessary Optimality Conditions

Assumptions (A)

(A1) ∀ x ∈ X the set-valued map F (·, x) is Lebesgue measurable;

(A2) ∃ k ∈ L1(I ; IR+) such that, F (t, ·) is k(t)-Lipschitz for a.e.
t ∈ I , i.e.

F (t, x) ⊂ F (t, y) + k(t)‖x − y‖XB ∀ x , y ∈ X ;

(A3) ∃φ ∈ L1(I ; IR+) such that, for a.e. t ∈ I and any x ∈ X ,

F (t, x) ⊂ φ(t) (1 + ‖x‖X )B .

Denote by:

• S[t0,1](x0) the set of solutions of (DI).

• SK
[t0,1](x0) the set of solutions of (DI) - (SC).
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Neighboring Feasible Trajectories
Definition

The problem (DI) - (SC) satisfies the Neighboring Feasible Trajec-
tories [NFT] property if ∀R > 0, ∃ L > 0 such that ∀ t0 ∈ [0, 1],
∀ x0 ∈ K ∩ RB, ∀ y(·) ∈ S[t0,1](x0), ∃ x(·) ∈ SK

[t0,1](x0) satisfying

‖x(·)− y(·)‖C([t0,1],X ) ≤ L max
t∈[t0,1]

distK (y(t)).

K
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Neighboring Feasible Trajectories
Definition

The problem (DI) - (SC) satisfies the Neighboring Feasible Trajec-
tories [NFT] property if ∀R > 0, ∃ L > 0 such that ∀ t0 ∈ [0, 1],
∀ x0 ∈ K ∩ RB, ∀ y(·) ∈ S[t0,1](x0), ∃ x(·) ∈ SK

[t0,1](x0) satisfying

‖x(·)− y(·)‖C([t0,1],X ) ≤ L max
t∈[t0,1]

distK (y(t)).

Applications to finite dimensional optimal control problems:

• Regularity of the value function

• Dynamical programming

• Sensitivity relations

• Normality of the Pontryagin Maximum Principle

• Optimal synthesis

• Differential games
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Neighboring Feasible Trajectories
Definition

The problem (DI) - (SC) satisfies the Neighboring Feasible Trajec-
tories [NFT] property if ∀R > 0, ∃ L > 0 such that ∀ t0 ∈ [0, 1],
∀ x0 ∈ K ∩ RB, ∀ y(·) ∈ S[t0,1](x0), ∃ x(·) ∈ SK

[t0,1](x0) satisfying

‖x(·)− y(·)‖C([t0,1],X ) ≤ L max
t∈[t0,1]

distK (y(t)).

NFT Theorems have been proved in the finite dimensional case
under different assumptions by several authors: P. Bettiol, A.
Bressan, P. Cardaliaguet, G. Facchi, F. Forcellini, H. Frankowska,
M. Quincampoix, F. Rampazzo, R. Vinter,...
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Some notations

• given a non-empty closed Q ⊂ X ,

dQ(x) =

{
infq∈Q ‖x − q‖X if x /∈ Q
− infq∈(X\Q) ‖x − q‖X otherwise

denotes the oriented distance from x ∈ X to Q;

• for a Lipschitz continuous map f : X → IR , let ∂f (x) denote
the Clarke generalized gradient at the point x ∈ X .

• for any x ∈ X , set

σ(x ; y) = sup
ξ∈∂dK (x)

〈ξ, y〉, ∀y ∈ X .
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Inward Pointing Condition. Finite dimension

∀ R > 0, ∃ ρ > 0 such that ∀x̄ ∈ ∂K ∩ RB,

if σ(x̄ ; v) ≥ 0 for some t ∈ I , v ∈ F (t, x̄),

then inf
w∈F (t,x̄)

σ(x̄ ;w − v) ≤ −ρ.

K
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Inward Pointing Condition. Finite dimension

∀ R > 0, ∃ ρ > 0 such that ∀x̄ ∈ ∂K ∩ RB,

if σ(x̄ ; v) ≥ 0 for some t ∈ I , v ∈ F (t, x̄),

then inf
w∈F (t,x̄)

σ(x̄ ;w − v) ≤ −ρ.

Remark : If ∂K is of class C 1, then the above condition is
equivalent to the Soner inward pointing condition:
∀ R > 0, ∃ ρ > 0 such that

inf
w∈F (t,x̄)

〈∇dK (x̄),w〉 ≤ −ρ ∀ (t, x̄) ∈ I × (∂K ∩ RB).
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Inward pointing condition (IPC). Infinite dimension

For any R > 0, there exist η, ρ > 0 such that for any t ∈ I , any
x ∈ RB ∩ ∂ηK , any v ∈ F (t, x) satisfying

Ση(x ; v) ≥ 0,

there exists w ∈ F (t, x) satisfying

max
{

Ση(x ;w − v); Ση(x ;w)
}
≤ −ρ .

where, for any η > 0 and x ∈ X , we set

• ∂ηK =
{
x ∈ K + ηB : S(τ) x ∈ ∂K + ηB for some τ ∈ [0, η]

}
,

• Aη(x) =
{

(τ, z) ∈ [0, η]× X : S(τ) x ∈ ∂K + ηB, z ∈
B(S(τ)x , η)

}
,

• Ση(x ; ·) : X → [−∞,+∞) : v 7→ sup(τ,z)∈Aη(x) σ(z ;S(τ) v).
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Inward pointing condition (IPC). Infinite dimension
If some compactness is present, then the inward pointing condition
can be replaced by the following ”finite dimensional” version:

∀ R > 0, ∃ ρ > 0 such that ∀x̄ ∈ ∂K ∩ RB,

if σ(x̄ ; v) ≥ 0 for some t ∈ I , v ∈ F (t, x̄), then

inf
w∈F (t,x̄)

σ(x̄ ;w − v) ≤ −ρ.

Examples: (1) Suppose that F (·, x̄) is continuous for all x̄ ∈ X
and that

F (t, x̄) is compact for any t ∈ I and x̄ ∈ ∂K .

For instance:{
x ′(t) = Ax(t) +

∑m
i=1 ui (t)fi (x(t)) a.e. t ∈ [t0, 1]

u(t) ∈ J̄, J ⊂ I .
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Inward pointing condition (IPC). Infinite dimension
If some compactness is present, then the inward pointing condition
can be replaced by the following ”finite dimensional” version:

∀ R > 0, ∃ ρ > 0 such that ∀x̄ ∈ ∂K ∩ RB,

if σ(x̄ ; v) ≥ 0 for some t ∈ I , v ∈ F (t, x̄), then

inf
w∈F (t,x̄)

σ(x̄ ;w − v) ≤ −ρ.

Examples: (2) Suppose that F (·, x̄) is continuous for all x̄ ∈ ∂X
and that

• X is a reflexive space

• F (t, x̄) is convex, for any t ∈ I and x̄ ∈ ∂K ;

• for any t ∈ I and x̄ ∈ ∂K the set-valued map x  ∂dK (·) is
upper semicontinuous at x̄ and ∂dK (x̄) is compact.
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Neighboring Feasible Trajectories. Infinite dimension

We say that K is invariant by the semigroup S(t) if

S(t)K ⊂ K ∀ t ∈ I .

Theorem

Assume (A), (IPC) and that K is invariant by the semigroup S(t).
Then the problem (DI) - (SC) satisfies the [NFT] property.

Corollary

Under the same assumptions, given a locally Lipschitz continuous cost
function g : X → IR, the corresponding value function

V : I × X → IR ∪ {+∞} : (t0, y0) 7→ inf
{
g(x(1)) : x ∈ SK[t0,1](y0)

}
,

is continuous on I × K and the map y0 7→ V (t0, y0) is locally Lipschitz
continuous on K uniformly in time.
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(1) A diffusion equation

{
∂tu ∈ ∆u + F (t, u) in (0, 1)× Ω
∂νu = 0 on (0, 1)× ∂Ω,

where u = u(t, x) and Ω is a bounded domain of IRN with smooth
boundary.

State constraint:

K =
{
u ∈ C(Ω) : −1 ≤ u(x) ≤ 1, x ∈ Ω

}
.

The operator associated to the system generates a C0 semigroup in
X = C(Ω).
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(2) A one-dimensional heat equation

Consider the differential inclusion in X = H1(0, 1)

ẋ(t, s) ∈ ∂ssx(t, s)−x(t, s)+F (t, x(t, s)) (t, s) ∈ [0, 1]× [0, 1],

endowed with the Neumann boundary condition.

The set K =
{
x ∈ X : x ≥ 0

}
is invariant by the semigroup

generated by the associated linear operator.

Here, the set {ξ ∈ ∂dK (x̄) | x̄ ∈ ∂K} is pre-compact !!

The ”finite dimensional” version of the inward pointing condition
can be considered.
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(3) A model for Boltzmann viscoelasticity1

Given an elastic body occupying a region Ω ⊂ IR3, a bounded
domain with smooth boundary ∂Ω, consider the inclusion

ẍ(t)−∆
[
x(t)−

∫∞
0 µ(s)x(t − s) ds

]
∈ F (t, x(t)), t > 0

x(0) = x0 , ẋ(0) = y0 , x(−s)|s>0 = ϕ0(s)
x(t)|∂Ω = 0 ,

with x0 ∈ H1
0 (Ω), y0 ∈ L2(Ω), ϕ0 ∈ L2

µ(IR+;H1
0 (Ω)).

The memory kernel µ is a nonnegative nonincreasing and summable
function on IR+, with total mass κ =

∫∞
0 µ(s)ds ∈ (0, 1).

1P. Cannarsa, H. Frankowska and E.M. Marchini, Optimal control for evolution
equations with memory, J. Evol. Equ., 2013
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A model for Boltzmann viscoelasticity
Introducing the auxiliary variable

η = ηt(s) = x(t)− x(t − s), t ≥ 0, s > 0 ,

we recast the problem as the systemẍ(t)−∆
[
(1− κ)x(t) +

∫ ∞
0

µ(s)ηt(s)ds
]
∈ F (t, x(t)),

η̇ = −η′ + ẋ(t),

with
x(0) = x0, ẋ(0) = y0, η0(s) = x0 − ϕ0(s),

in the product space X = L2(Ω)× H1
0 (Ω)× L2

µ(IR+;H1
0 (Ω)).

The above operator generates a C0-semigroup of contractions2.

2C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration.
Mech. Anal., 1970
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Constrained Mayer problem
We consider the Mayer Problem

(MP) minimize g(x(1))

over the set of trajectories x : I → X satisfying

(CS)

{
ẋ(t) = A x(t) + f (t, x(t), u(t)) a.e. t ∈ I ,

x(0) ∈ Q0 , x(t) ∈ K ∀ t ∈ I .

• X an infinite dimensional separable Banach space,
Z a complete separable metric space;

• u is a measurable selection of U : I  Z ;

• A is the infinitesimal generator of a strongly continuous
semigroup S(t) : X → X ;

• f : I × X × Z → X , g : X → IR ;

• Q0 and K are nonempty closed subset of X .
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Assumptions (H)

• U : I  Z is measurable with nonempty closed values;

f is measurable in t, Fréchet differentiable in x and
continuous in u;

g is Fréchet differentiable;

• F : (t, x) f (t, x ,U(t)) satisfies assumptions (A);

• K is invariant with respect to the semigroup S(t);

• K and coF satisfy (IPC).
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Tangent cones

• the contingent cone to Q ⊂ X at x ∈ Q is defined by

TQ(x) =
{
v ∈ X : lim inf

h→0+

distQ(x + hv)

h
= 0
}

;

• the Clarke tangent cone to Q at x ∈ Q is defined by

CQ(x) =
{
v ∈ X : lim

h→0+,x ′→Qx

distQ(x ′ + hv)

h
= 0
}
.
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A Fermat’s Rule

Given an optimal pair (x̄ , ū) for (MP), set

T (t) = Tcof (t,x̄(t),U(t))(f (t, x̄(t), ū(t))) ∀ t ∈ I ,

D =
{
w ∈ C(I ,X ) : w(t) ∈ CK (x̄(t)) , ∀ t ∈ I

}
.

Theorem

Assume (H). Then every solution of{
ẇ(t) ∈ Aw(t) + ∂x f (t, x̄(t), ū(t))w(t) + T (t) a.e. t ∈ I ,

w(0) ∈ TK∩Q0(x̄(0)),

belonging to D, satisfies

〈∇g(x̄(1)),w(1)〉 ≥ 0.
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A constrained Maximum Principle
Given an optimal pair (x̄ , ū) for (MP), let S be the solution
operator associated to

ẇ(t) = Aw(t) + ∂x f (t, x̄(t), ū(t))w(t) .

Theorem

Assume (H) and and let C0 be any closed convex cone contained in
TK∩Q0(x̄(0)). Then, there exist λ ∈

{
0, 1
}

and a measure γ ∈ D−
such that the function z : I → X ∗ defined by

z(s) = S(1, s)∗λ∇g(x̄(1)) +

∫ 1

s
S(t, s)∗γ(dt)

satisfies

〈z(t), f (t, x̄(t), ū(t))〉 = min
u∈U(t)

〈z(t), f (t, x̄(t), u)〉 for a.e. t ∈ I

z(0) ∈ −C−0 .
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Normality of the Maximum Principle

For every x ∈ K we introduce the cone

DK (x) =

{ {
v ∈ X : σ(x ; v) < 0

}
if x ∈ ∂K

X otherwise .

Lemma

Assume (H). Then ∀w0 ∈ DK (x̄(0)) there exists a solution of{
ẇ(t) ∈ Aw(t) + ∂x f (t, x̄(t), ū(t))w(t) + T (t) a.e. t ∈ I ,

w(0) = w0 ,

that belongs to Int D.

Theorem (...continuation)

If DK (x̄(0)) ∩ C0 6= ∅, we can set λ = 1 in the maximum principle.
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