Necessary optimality conditions for infinite dimensional state constrained control problems

Marco Mazzola

Université Pierre et Marie Curie (Paris 6)

H. Frankowska and E. M. Marchini

INdAM Workshop - New Trends in Control Theory and PDEs On the occasion of the birthday of Piermarco Cannarsa Roma, 3 july 2017

Outline of the talk

Distance Estimates to Feasible Trajectories

Examples

Necessary Optimality Conditions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• H. Frankowska, E.M. Marchini, M. M.

Distance estimates for state constrained trajectories of infinite dimensional differential inclusions ESAIM Control Optim. Calc. Var., accepted

• H. Frankowska, E.M. Marchini, M. M. Necessary optimality conditions for infinite dimensional state constrained control problems in preparation

Semilinear Differential Inclusions

We consider the Differential Inclusion

(DI) $x'(t) \in \mathbb{A}x(t) + F(t, x(t))$ a.e. $t \in [t_0, 1], x(t_0) = x_0$

under the State Constraint

(SC) $x(t) \in K$ for $t \in [t_0, 1]$.

- X an infinite dimensional separable Banach space;
- A is the infinitesimal generator of a strongly continuous semigroup S(t) : X → X.
- *F*: *I* × *X* → *X* is a set-valued map with closed non-empty images, *I* = [0, 1] and *t*₀ ∈ *I*;
- K is a nonempty closed subset of X.

Semilinear Differential Inclusions

We consider the Differential Inclusion

(DI) $x'(t) \in \mathbb{A}x(t) + F(t, x(t))$ a.e. $t \in [t_0, 1], x(t_0) = x_0$

under the State Constraint

(SC) $x(t) \in K$ for $t \in [t_0, 1]$.

Example: Control system

 $\left\{ \begin{array}{ll} x'(t)=\mathbb{A}x(t)+f(t,x(t),u(t)) & \text{a.e. } t\in[t_0,1] \\ u(t)\in U \,. \end{array} \right.$

In this case, we set F(t, x) = f(t, x, U).

Semilinear Differential Inclusions

We consider the Differential Inclusion

(DI)
$$x'(t) \in Ax(t) + F(t, x(t))$$
 a.e. $t \in [t_0, 1], x(t_0) = x_0$

under the State Constraint

(SC) $x(t) \in K$ for $t \in [t_0, 1]$.

A function $x \in C([t_0, 1], X)$ is a mild solution of (DI) with initial datum $x(t_0) = x_0$ if there exists a function $f_x \in L^1(t_0, 1; X)$ such that

 $f_x(t) \in F(t, x(t))$ for a.e. $t \in (t_0, 1)$

and

$$x(t) = S(t - t_0) x_0 + \int_{t_0}^t S(t - s) f_x(s) ds \quad \text{for any } t \in [t_0, 1],$$

Assumptions (A)

(A1) $\forall x \in X$ the set-valued map $F(\cdot, x)$ is Lebesgue measurable;

(A2) $\exists k \in L^1(I; \mathbb{R}^+)$ such that, $F(t, \cdot)$ is k(t)-Lipschitz for a.e. $t \in I$, i.e.

$$F(t,x) \subset F(t,y) + k(t) ||x-y||_X B \qquad \forall x,y \in X;$$

(A3) $\exists \phi \in L^1(I; \mathbb{R}^+)$ such that, for a.e. $t \in I$ and any $x \in X$, $F(t, x) \subset \phi(t) (1 + ||x||_X)B$.

Assumptions (A)

(A1) $\forall x \in X$ the set-valued map $F(\cdot, x)$ is Lebesgue measurable;

(A2) $\exists k \in L^1(I; \mathbb{R}^+)$ such that, $F(t, \cdot)$ is k(t)-Lipschitz for a.e. $t \in I$, i.e.

$$F(t,x) \subset F(t,y) + k(t) ||x-y||_X B \qquad \forall x,y \in X;$$

(A3) $\exists \phi \in L^1(I; \mathbb{R}^+)$ such that, for a.e. $t \in I$ and any $x \in X$, $F(t, x) \subset \phi(t) (1 + ||x||_X)B$.

Denote by:

- $S_{[t_0,1]}(x_0)$ the set of solutions of (DI).
- $S_{[t_0,1]}^{K}(x_0)$ the set of solutions of (DI) (SC).

Neighboring Feasible Trajectories

Definition

The problem (DI) - (SC) satisfies the Neighboring Feasible Trajectories [NFT] property if $\forall R > 0$, $\exists L > 0$ such that $\forall t_0 \in [0,1]$, $\forall x_0 \in K \cap RB$, $\forall y(\cdot) \in S_{[t_0,1]}(x_0)$, $\exists x(\cdot) \in S_{[t_0,1]}^{\mathcal{K}}(x_0)$ satisfying

$$\|x(\cdot)-y(\cdot)\|_{\mathcal{C}([t_0,1],X)}\leq L\max_{t\in[t_0,1]}dist_{\mathcal{K}}(y(t)).$$

Neighboring Feasible Trajectories

Definition

The problem (DI) - (SC) satisfies the Neighboring Feasible Trajectories [NFT] property if $\forall R > 0$, $\exists L > 0$ such that $\forall t_0 \in [0, 1]$, $\forall x_0 \in K \cap RB$, $\forall y(\cdot) \in S_{[t_0,1]}(x_0)$, $\exists x(\cdot) \in S_{[t_0,1]}^{K}(x_0)$ satisfying

$$\|x(\cdot)-y(\cdot)\|_{\mathcal{C}([t_0,1],X)} \leq L \max_{t \in [t_0,1]} dist_{\mathcal{K}}(y(t))$$

Applications to finite dimensional optimal control problems:

- Regularity of the value function
- Dynamical programming
- Sensitivity relations
- Normality of the Pontryagin Maximum Principle
- Optimal synthesis
- Differential games

Neighboring Feasible Trajectories

Definition

The problem (DI) - (SC) satisfies the Neighboring Feasible Trajectories [NFT] property if $\forall R > 0$, $\exists L > 0$ such that $\forall t_0 \in [0,1]$, $\forall x_0 \in K \cap RB$, $\forall y(\cdot) \in S_{[t_0,1]}(x_0)$, $\exists x(\cdot) \in S_{[t_0,1]}^{\mathcal{K}}(x_0)$ satisfying

$$\|x(\cdot)-y(\cdot)\|_{\mathcal{C}([t_0,1],X)} \leq L \max_{t\in[t_0,1]} dist_{\mathcal{K}}(y(t)).$$

NFT Theorems have been proved in the finite dimensional case under different assumptions by several authors: P. Bettiol, A. Bressan, P. Cardaliaguet, G. Facchi, F. Forcellini, H. Frankowska, M. Quincampoix, F. Rampazzo, R. Vinter,...

Some notations

• given a non-empty closed $Q \subset X$,

$$d_Q(x) = \begin{cases} \inf_{q \in Q} \|x - q\|_X & \text{if } x \notin Q \\ -\inf_{q \in (X \setminus Q)} \|x - q\|_X & \text{otherwise} \end{cases}$$

denotes the oriented distance from $x \in X$ to Q;

- for a Lipschitz continuous map f : X → R, let ∂f(x) denote the Clarke generalized gradient at the point x ∈ X.
- for any $x \in X$, set

$$\sigma(x;y) = \sup_{\xi \in \partial d_{\mathcal{K}}(x)} \langle \xi, y \rangle, \quad \forall y \in X.$$

Inward Pointing Condition. Finite dimension

 $\forall R > 0, \exists \rho > 0 \text{ such that } \forall \overline{x} \in \partial K \cap RB,$ if $\sigma(\overline{x}; v) \ge 0$ for some $t \in I, v \in F(t, \overline{x}),$ then $\inf_{w \in F(t, \overline{x})} \sigma(\overline{x}; w - v) \le -\rho.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Inward Pointing Condition. Finite dimension

$$\forall R > 0, \exists \rho > 0 \text{ such that } \forall \bar{x} \in \partial K \cap RB,$$

if $\sigma(\bar{x}; v) \ge 0$ for some $t \in I, v \in F(t, \bar{x}),$
then $\inf_{w \in F(t, \bar{x})} \sigma(\bar{x}; w - v) \le -\rho.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Inward Pointing Condition. Finite dimension

$$\forall R > 0, \exists \rho > 0 \text{ such that } \forall \bar{x} \in \partial K \cap RB,$$

if $\sigma(\bar{x}; v) \ge 0$ for some $t \in I, v \in F(t, \bar{x}),$
then $\inf_{w \in F(t, \bar{x})} \sigma(\bar{x}; w - v) \le -\rho.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Inward Pointing Condition. Finite dimension

$$\forall R > 0, \exists \rho > 0 \text{ such that } \forall \bar{x} \in \partial K \cap RB,$$

if $\sigma(\bar{x}; v) \ge 0$ for some $t \in I, v \in F(t, \bar{x}),$
then $\inf_{w \in F(t, \bar{x})} \sigma(\bar{x}; w - v) \le -\rho.$

Inward Pointing Condition. Finite dimension

$$\forall R > 0, \exists \rho > 0 \text{ such that } \forall \bar{x} \in \partial K \cap RB,$$

if $\sigma(\bar{x}; v) \ge 0$ for some $t \in I, v \in F(t, \bar{x}),$
then $\inf_{w \in F(t, \bar{x})} \sigma(\bar{x}; w - v) \le -\rho.$

Remark: If ∂K is of class C^1 , then the above condition is equivalent to the Soner inward pointing condition: $\forall R > 0, \exists \rho > 0$ such that

 $\inf_{w \in F(t,\bar{x})} \langle \nabla d_{\mathcal{K}}(\bar{x}), w \rangle \leq -\rho \quad \forall (t,\bar{x}) \in I \times (\partial \mathcal{K} \cap \mathcal{RB}).$

Inward pointing condition (IPC). Infinite dimension

For any R > 0, there exist $\eta, \rho > 0$ such that for any $t \in I$, any $x \in RB \cap \partial^{\eta}K$, any $v \in F(t, x)$ satisfying

 $\Sigma_{\eta}(x; v) \geq 0,$

there exists $w \in F(t, x)$ satisfying

$$\max\left\{\Sigma_{\eta}(x;w-v);\Sigma_{\eta}(x;w)\right\}\leq -\rho.$$

where, for any $\eta > 0$ and $x \in X$, we set

- $\partial^{\eta} K = \{ x \in K + \eta B : S(\tau) x \in \partial K + \eta B \text{ for some } \tau \in [0, \eta] \},\$
- $\mathcal{A}^{\eta}(x) = \{(\tau, z) \in [0, \eta] \times X : S(\tau) x \in \partial K + \eta B, z \in B(S(\tau)x, \eta)\},\$
- $\Sigma_{\eta}(x;\cdot): X \to [-\infty, +\infty): v \mapsto \sup_{(\tau,z) \in \mathcal{A}^{\eta}(x)} \sigma(z; S(\tau) v).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Inward pointing condition (IPC). Infinite dimension

If some compactness is present, then the inward pointing condition can be replaced by the following "finite dimensional" version:

 $\forall R > 0, \exists \rho > 0 \text{ such that } \forall \overline{x} \in \partial K \cap RB,$ if $\sigma(\overline{x}; v) \ge 0$ for some $t \in I, v \in F(t, \overline{x})$, then $\inf_{w \in F(t, \overline{x})} \sigma(\overline{x}; w - v) \le -\rho.$

Inward pointing condition (IPC). Infinite dimension

If some compactness is present, then the inward pointing condition can be replaced by the following "finite dimensional" version:

 $\forall R > 0, \exists \rho > 0 \text{ such that } \forall \bar{x} \in \partial K \cap RB,$ if $\sigma(\bar{x}; v) \ge 0$ for some $t \in I, v \in F(t, \bar{x})$, then $\inf_{w \in F(t, \bar{x})} \sigma(\bar{x}; w - v) \le -\rho.$

Examples: (1) Suppose that $F(\cdot, \bar{x})$ is continuous for all $\bar{x} \in X$ and that

 $F(t, \bar{x})$ is compact for any $t \in I$ and $\bar{x} \in \partial K$.

Inward pointing condition (IPC). Infinite dimension

If some compactness is present, then the inward pointing condition can be replaced by the following "finite dimensional" version:

 $\forall R > 0, \exists \rho > 0 \text{ such that } \forall \overline{x} \in \partial K \cap RB,$ if $\sigma(\overline{x}; v) \ge 0$ for some $t \in I, v \in F(t, \overline{x})$, then $\inf_{w \in F(t, \overline{x})} \sigma(\overline{x}; w - v) \le -\rho.$

Examples: (1) Suppose that $F(\cdot, \bar{x})$ is continuous for all $\bar{x} \in X$ and that

 $F(t, \bar{x})$ is compact for any $t \in I$ and $\bar{x} \in \partial K$.

For instance:

$$\begin{cases} x'(t) = \mathbb{A}x(t) + \sum_{i=1}^{m} u_i(t) f_i(x(t)) & \text{a.e. } t \in [t_0, 1] \\ u(t) \in \overline{J}, \ J \subset I. \end{cases}$$

Inward pointing condition (IPC). Infinite dimension

If some compactness is present, then the inward pointing condition can be replaced by the following "finite dimensional" version:

> $\forall R > 0, \exists \rho > 0 \text{ such that } \forall \overline{x} \in \partial K \cap RB,$ if $\sigma(\overline{x}; v) \ge 0$ for some $t \in I, v \in F(t, \overline{x}),$ then $\inf_{w \in F(t, \overline{x})} \sigma(\overline{x}; w - v) \le -\rho.$

Examples: (2) Suppose that $F(\cdot, \bar{x})$ is continuous for all $\bar{x} \in \partial X$ and that

- X is a reflexive space
- $F(t, \bar{x})$ is convex, for any $t \in I$ and $\bar{x} \in \partial K$;
- for any t ∈ I and x̄ ∈ ∂K the set-valued map x → ∂d_K(·) is upper semicontinuous at x̄ and ∂d_K(x̄) is compact.

Neighboring Feasible Trajectories. Infinite dimension

We say that K is invariant by the semigroup S(t) if

 $S(t) K \subset K \qquad \forall t \in I.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neighboring Feasible Trajectories. Infinite dimension

We say that K is invariant by the semigroup S(t) if

 $S(t) K \subset K \qquad \forall t \in I.$

Theorem

Assume (A), (IPC) and that K is invariant by the semigroup S(t). Then the problem (DI) - (SC) satisfies the [NFT] property.

Neighboring Feasible Trajectories. Infinite dimension

We say that K is invariant by the semigroup S(t) if

 $S(t) K \subset K \qquad \forall t \in I.$

Theorem

Assume (A), (IPC) and that K is invariant by the semigroup S(t). Then the problem (DI) - (SC) satisfies the [NFT] property.

Corollary

Under the same assumptions, given a locally Lipschitz continuous cost function $g: X \to R$, the corresponding value function

 $V: I \times X \to \mathbf{R} \cup \{+\infty\} : (t_0, y_0) \mapsto \inf \{g(x(1)) : x \in \mathcal{S}_{[t_0, 1]}^{\mathcal{K}}(y_0)\},\$

is continuous on $I \times K$ and the map $y_0 \mapsto V(t_0, y_0)$ is locally Lipschitz continuous on K uniformly in time.

Outline of the talk

Distance Estimates to Feasible Trajectories

Examples

Necessary Optimality Conditions

(1) A diffusion equation

$$\begin{cases} \partial_t u \in \Delta u + F(t, u) & \text{ in } (0, 1) \times \Omega \\ \partial_\nu u = 0 & \text{ on } (0, 1) \times \partial \Omega, \end{cases}$$

where $u = u(t, \mathbf{x})$ and Ω is a bounded domain of \mathbf{R}^N with smooth boundary.

State constraint:

$$\mathcal{K} = \left\{ u \in \mathcal{C}(\overline{\Omega}) : -1 \leq u(\mathbf{x}) \leq 1, \ \mathbf{x} \in \overline{\Omega}
ight\}.$$

The operator associated to the system generates a C_0 semigroup in $X = C(\overline{\Omega})$.

(2) A one-dimensional heat equation

Consider the differential inclusion in $X = H^1(0, 1)$

 $\dot{x}(t,s)\in\partial_{ss}x(t,s)-x(t,s)+F(t,x(t,s))$ $(t,s)\in[0,1] imes[0,1],$

endowed with the Neumann boundary condition.

The set $K = \{x \in X : x \ge 0\}$ is invariant by the semigroup generated by the associated linear operator.

(2) A one-dimensional heat equation

Consider the differential inclusion in $X = H^1(0, 1)$

 $\dot{x}(t,s)\in\partial_{ss}x(t,s)-x(t,s)+F(t,x(t,s))$ $(t,s)\in[0,1] imes[0,1],$

endowed with the Neumann boundary condition.

The set $K = \{x \in X : x \ge 0\}$ is invariant by the semigroup generated by the associated linear operator.

Here, the set $\{\xi \in \partial d_K(\bar{x}) \mid \bar{x} \in \partial K\}$ is pre-compact !!

The "finite dimensional" version of the inward pointing condition can be considered.

(3) A model for Boltzmann viscoelasticity¹

Given an elastic body occupying a region $\Omega \subset \mathbb{R}^3$, a bounded domain with smooth boundary $\partial \Omega$, consider the inclusion

$$\begin{cases} \ddot{x}(t) - \Delta \Big[x(t) - \int_0^\infty \mu(s) x(t-s) \, \mathrm{d}s \Big] \in F(t, x(t)), & t > 0 \\ x(0) = x_0 \ , & \dot{x}(0) = y_0 \ , & x(-s)|_{s > 0} = \varphi_0(s) \\ x(t)_{|\partial\Omega} = 0 \ , \end{cases}$$

with
$$x_0 \in H^1_0(\Omega), y_0 \in L^2(\Omega), \varphi_0 \in L^2_\mu(\mathbb{R}^+; H^1_0(\Omega)).$$

The memory kernel μ is a nonnegative nonincreasing and summable function on \mathbb{R}^+ , with total mass $\kappa = \int_0^\infty \mu(s) ds \in (0, 1)$.

¹P. Cannarsa, H. Frankowska and E.M. Marchini, Optimal control for evolution equations with memory, J. Evol. Equ., 2013

A model for Boltzmann viscoelasticity

Introducing the auxiliary variable

 $\eta = \eta^t(s) = x(t) - x(t-s), \qquad t \ge 0, \ s > 0,$

we recast the problem as the system

$$egin{aligned} &\dot{x}(t) - \Delta \Big[(1-\kappa) x(t) + \int_0^\infty \mu(s) \eta^t(s) \mathrm{d}s \Big] \in F(t,x(t)), \ &\dot{\eta} = -\eta' + \dot{x}(t), \end{aligned}$$

with

$$x(0) = x_0, \quad \dot{x}(0) = y_0, \quad \eta^0(s) = x_0 - \varphi_0(s),$$

in the product space $X = L^2(\Omega) \times H^1_0(\Omega) \times L^2_\mu(\mathbb{R}^+; H^1_0(\Omega)).$

The above operator generates a C_0 -semigroup of contractions².

²C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 1970

Examples

Necessary Optimality Conditions

Outline of the talk

Distance Estimates to Feasible Trajectories

Examples

Necessary Optimality Conditions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Constrained Mayer problem

We consider the Mayer Problem

(MP) minimize g(x(1))

over the set of trajectories $x : I \to X$ satisfying

(CS) $\begin{cases} \dot{x}(t) = \mathbb{A}x(t) + f(t, x(t), u(t)) & \text{a.e. } t \in I, \\ x(0) \in Q_0, \quad x(t) \in K \quad \forall t \in I. \end{cases}$

- X an infinite dimensional separable Banach space,
 - Z a complete separable metric space;
- u is a measurable selection of $U: I \rightsquigarrow Z$;
- A is the infinitesimal generator of a strongly continuous semigroup S(t) : X → X;
- $f: I \times X \times Z \to X$, $g: X \to \mathbb{R}$;
- Q_0 and K are nonempty closed subset of X.

Assumptions (H)

- U : I → Z is measurable with nonempty closed values;
 f is measurable in t, Fréchet differentiable in x and continuous in u;
 g is Fréchet differentiable;
- *F* : (*t*, *x*) → *f*(*t*, *x*, *U*(*t*)) satisfies assumptions (A);
- K is invariant with respect to the semigroup S(t);
- K and $\overline{co}F$ satisfy (IPC).

Examples

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Tangent cones

• the contingent cone to $Q \subset X$ at $x \in Q$ is defined by

$${\mathcal T}_Q(x)=\left\{v\in X: \liminf_{h
ightarrow 0^+}rac{dist_Q(x+hv)}{h}=0
ight\};$$

• the Clarke tangent cone to Q at $x \in Q$ is defined by

$$C_Q(x) = \left\{ v \in X : \lim_{h \to 0^+, x' \to Q^X} \frac{dist_Q(x' + hv)}{h} = 0 \right\}.$$

A Fermat's Rule

Given an optimal pair (\bar{x}, \bar{u}) for (MP), set

$$\mathcal{T}(t) = \mathcal{T}_{\overline{\mathrm{cof}}(t,\bar{x}(t),U(t))}(f(t,\bar{x}(t),\bar{u}(t))) \quad \forall t \in I,$$
$$\mathcal{D} = \left\{ w \in \mathcal{C}(I,X) : w(t) \in \mathcal{C}_{\mathcal{K}}(\bar{x}(t)), \forall t \in I \right\}.$$

Theorem

Assume (H). Then every solution of

$$\dot{w}(t) \in \mathbb{A} w(t) + \partial_x f(t, \bar{x}(t), \bar{u}(t)) w(t) + \mathcal{T}(t) \quad \text{a.e. } t \in I,$$

 $w(0) \in \mathcal{T}_{\mathcal{K} \cap \mathcal{Q}_0}(\bar{x}(0)),$

belonging to \mathcal{D} , satisfies

 $\langle \nabla g(\bar{x}(1)), w(1) \rangle \geq 0.$

A constrained Maximum Principle

Given an optimal pair (\bar{x}, \bar{u}) for (MP), let S be the solution operator associated to

$$\dot{w}(t) = \mathbb{A} w(t) + \partial_x f(t, \bar{x}(t), \bar{u}(t)) w(t).$$

Theorem

Assume (H) and and let C_0 be any closed convex cone contained in $T_{K \cap Q_0}(\bar{x}(0))$. Then, there exist $\lambda \in \{0,1\}$ and a measure $\gamma \in \mathcal{D}^-$ such that the function $z: I \to X^*$ defined by

$$z(s) = \mathcal{S}(1,s)^* \lambda
abla g(ar{x}(1)) + \int_s^1 \mathcal{S}(t,s)^* \gamma(\mathrm{d}t)$$

satisfies

 $\langle z(t), f(t, \bar{x}(t), \bar{u}(t)) \rangle = \min_{u \in U(t)} \langle z(t), f(t, \bar{x}(t), u) \rangle$ for a.e. $t \in I$

$$z(0) \in -C_0^-$$
.

Normality of the Maximum Principle

For every $x \in K$ we introduce the cone

$$D_{\mathcal{K}}(x) = \begin{cases} \{v \in X : \sigma(x; v) < 0\} & \text{if } x \in \partial \mathcal{K} \\ X & \text{otherwise} . \end{cases}$$

Lemma

Assume (H). Then $\forall w_0 \in D_{\mathcal{K}}(\bar{x}(0))$ there exists a solution of

$$\begin{cases} \dot{w}(t) \in \mathbb{A} w(t) + \partial_x f(t, \bar{x}(t), \bar{u}(t)) w(t) + \mathcal{T}(t) & \text{a.e. } t \in I, \\ w(0) = w_0, \end{cases}$$

that belongs to $Int \mathcal{D}$.

Normality of the Maximum Principle

For every $x \in K$ we introduce the cone

$$D_{\mathcal{K}}(x) = \begin{cases} \{v \in X : \sigma(x; v) < 0\} & \text{if } x \in \partial \mathcal{K} \\ X & \text{otherwise} . \end{cases}$$

Lemma

Assume (H). Then $\forall w_0 \in D_{\mathcal{K}}(\bar{x}(0))$ there exists a solution of

$$\left\{ \begin{array}{ll} \dot{w}(t) \in \mathbb{A} \ w(t) + \partial_x f(t, \bar{x}(t), \bar{u}(t)) \ w(t) + \mathcal{T}(t) & \text{a.e.} \ t \in I \ , \\ w(0) = w_0 \ , \end{array} \right.$$

that belongs to $Int \mathcal{D}$.

Theorem (...continuation)

If $D_{\mathcal{K}}(\bar{x}(0)) \cap C_0 \neq \emptyset$, we can set $\lambda = 1$ in the maximum principle.