Energy decay estimates for abstract evolution equations with time delay

Cristina Pignotti
University of L'Aquila

New Trends in Control Theory and PDEs, Roma, July 3-7, 2017
On the occasion of the 60th birthday of Piermarco Cannarsa

Locally damped wave

Let Ω be an open bounded domain of $\mathbb{R}^{n}, n \geq 1$, with a boundary $\partial \Omega$ of class C^{2}. We denote by $\nu(x)$ the outer unit normal vector at a point $x \in \partial \Omega$. Let m be the standard multiplier, $m(x)=x-x_{0}, x_{0} \in \mathbb{R}^{n}$, and let ω be the intersection between an open neighborhood of the set

$$
\Gamma_{0}=\{x \in \partial \Omega: m(x) \cdot \nu(x)>0\}
$$

and Ω.
It is well-known that the problem

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)=0, \quad \text { in } \Omega \times(0,+\infty) \\
& u(x, t)=0, \quad \text { on } \partial \Omega \times(0,+\infty) \\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in } \Omega
\end{aligned}
$$

whith $a>0$ and initial data $\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, is exponentially stable, that is the energy

$$
E(t):=\frac{1}{2} \int_{\Omega}\left[u_{t}^{2}(x, t)+|\nabla u(x, t)|^{2}\right] d x
$$

Locally damped wave

satisfies the uniform estimate,

$$
E(t) \leq C e^{-C^{\prime} t} E(0), \quad t>0
$$

for all initial data.

- [Zuazua, 1990], [Bardos,Lebeau and Rauch, 1992].

Locally damped wave

satisfies the uniform estimate,

$$
E(t) \leq C e^{-C^{\prime} t} E(0), \quad t>0
$$

for all initial data.

- [Zuazua, 1990], [Bardos,Lebeau and Rauch, 1992].

Exponential stability is not conserved in general in presence of a TIME DELAY!

Delay effects arise in many applications and practical problems and it is well-known that a delay arbitrarily small may destabilize a system which is uniformly asymptotically stable in absence of delay (see e.g.
[Datko,Lagnese and Polis, 1986], [Datko, 1988]).

Locally damped wave with time delay

Let us consider the problem

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+a u_{t}(x, t-\tau)=0, \quad \text { in } \Omega \times(0,+\infty), \\
& u(x, t)=0, \quad \text { on } \partial \Omega \times(0,+\infty), \\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in } \Omega, \\
& u_{t}(x, t)=f(x, t), \quad \text { in } \Omega \times(-\tau, 0),
\end{aligned}
$$

where $\tau>0$ is the time delay and the initial data are taken in suitable spaces.

Locally damped wave with time delay

Let us consider the problem

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+a u_{t}(x, t-\tau)=0, \quad \text { in } \Omega \times(0,+\infty), \\
& u(x, t)=0, \quad \text { on } \partial \Omega \times(0,+\infty), \\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in } \Omega, \\
& u_{t}(x, t)=f(x, t), \quad \text { in } \Omega \times(-\tau, 0),
\end{aligned}
$$

where $\tau>0$ is the time delay and the initial data are taken in suitable spaces. In this case exponential stability FAILS!

Indeed, as shown in [Nicaise and P., 2006] it is possible to find for the above problem a sequence $\left\{\tau_{k}\right\}_{k}$ of delays with $\tau_{k} \rightarrow 0\left(\tau_{k} \rightarrow \infty\right)$ for which the corresponding solutions u_{k} have an increasing energy.

Stabilizing feedback

In [Nicaise and P., 2006] (cfr. [Xu, Yung and Li, 2006] for boundary delay in 1-d) in order to contrast the destabilizing effect of the time delay a "good" (not delayed) damping term is introduced in the first equation. More precisely the problem there considered is

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)+k \chi_{\omega} u_{t}(x, t-\tau)=0, \quad x \in \Omega, t>0 \\
u(x, t)=0, \quad x \in \partial \Omega t>0
\end{array}\right.
$$

with $k, a \in \mathbb{R}, a>0$, and initial data in suitable spaces. If $a>|k|$ the system is uniformly exponentially stable.

Stabilizing feedback

In [Nicaise and P., 2006] (cfr. [Xu, Yung and Li, 2006] for boundary delay in 1-d) in order to contrast the destabilizing effect of the time delay a "good" (not delayed) damping term is introduced in the first equation. More precisely the problem there considered is

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)+k \chi_{\omega} u_{t}(x, t-\tau)=0, \quad x \in \Omega, t>0 \\
u(x, t)=0, \quad x \in \partial \Omega t>0
\end{array}\right.
$$

with $k, a \in \mathbb{R}, a>0$, and initial data in suitable spaces. If $a>|k|$ the system is uniformly exponentially stable.

On the contrary, if $a \leq|k|$ the are sequences of delays, $\left\{\tau_{n}\right\}_{n}, \tau_{n} \rightarrow 0$, for which the corresponding solutions are instable.

Stabilizing feedback

In [Nicaise and P., 2006] (cfr. [Xu, Yung and Li, 2006] for boundary delay
in 1-d) in order to contrast the destabilizing effect of the time delay a "good" (not delayed) damping term is introduced in the first equation.
More precisely the problem there considered is
$\left\{\begin{array}{l}u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)+k \chi_{\omega} u_{t}(x, t-\tau)=0, \quad x \in \Omega, t>0, \\ u(x, t)=0, \quad x \in \partial \Omega t>0,\end{array}\right.$
with $k, a \in \mathbb{R}, a>0$, and initial data in suitable spaces. If $a>|k|$ the system is uniformly exponentially stable.
On the contrary, if $a \leq|k|$ the are sequences of delays, $\left\{\tau_{n}\right\}_{n}, \tau_{n} \rightarrow 0$, for which the corresponding solutions are instable.

CRUCIAL: The delayed term and the 'good' one are acting on the same set ω.

Delay feedback on a larger region

We want to analyze the case of 'good' damping acting on a smaller set than the delayed term.
Let us consider the system

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)+k u_{t}(x, t-\tau)=0, \\
\text { in } \Omega \times(0,+\infty), \\
u(x, t)=0, \quad \text { on } \quad \partial \Omega \times(0,+\infty), \tag{W}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in } \Omega, \\
u_{t}(x, t)=f(x, t), \quad \text { in } \Omega \times(-\tau, 0),
\end{array}\right.
$$

where a, k are real numbers, $a>0$, the time delay $\tau>0$ is a positive constant and the initial data are taken in suitable spaces.

For sake of simplicity we consider the delay term acting in the whole domain Ω. The estimate holds true with analogous proof when the delay term acts in a subdomain $\tilde{\omega}$.

Well-posedness

Let us introduce the function

$$
z(x, \rho, t)=u_{t}(x, t-\tau \rho), \quad x \in \Omega, \rho \in(0,1), t>0
$$

Then, the above problem is equivalent to

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)+k z(x, 1, t)=0, \quad \text { in } \Omega \times(0,+\infty), \\
\tau z_{t}(x, \rho, t)+z_{\rho}(x, \rho, t)=0 \text { in } \Omega \times(0,1) \times(0,+\infty), \\
u(x, t)=0, \text { on } \partial \Omega \times(0,+\infty) \\
z(x, 0, t)=u_{t}(x, t), \quad \text { on } \Omega \times(0,+\infty) \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in } \Omega, \\
z(x, \rho, 0)=f(x,-\rho \tau), \quad \text { in } \Omega \times(0,1) .
\end{array}\right.
$$

Let us denote

$$
U:=\left(u, u_{t}, z\right)^{T}
$$

then

$$
U^{\prime}:=\left(u_{t}, u_{t t}, z_{t}\right)^{T}=\left(u_{t}, \Delta u-a \chi_{\omega} u_{t}-k z(\cdot, 1, \cdot),-\tau^{-1} z_{\rho}\right)^{T} .
$$

Well-posedness

Hence, the problem can be rewritten as

$$
\left\{\begin{array}{l}
U^{\prime}=\mathcal{A} U \\
U(0)=\left(u_{0}, u_{1}, f(\cdot,-\cdot \tau)\right)^{T}
\end{array}\right.
$$

(PW)
where the operator \mathcal{A} is defined by

$$
\mathcal{A}\left(\begin{array}{l}
u \\
v \\
z
\end{array}\right):=\left(\begin{array}{l}
v \\
\Delta u-a \chi_{\omega} v-k z(\cdot, 1) \\
-\tau^{-1} z_{\rho}
\end{array}\right)
$$

with domain

$$
\begin{gathered}
\mathcal{D}(\mathcal{A}):=\left\{(u, v, z)^{T} \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; H^{1}(0,1)\right):\right. \\
v=z(\cdot, 0) \text { in } \Omega\} .
\end{gathered}
$$

Well-posedness

Denote by \mathcal{H} the Hilbert space

$$
\mathcal{H}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega \times(0,1)),
$$

equipped with the inner product

$$
\begin{aligned}
\left\langle\left(\begin{array}{c}
u \\
v \\
z
\end{array}\right),\left(\begin{array}{c}
\tilde{u} \\
\tilde{v} \\
\tilde{z}
\end{array}\right)\right\rangle:= & \int_{\Omega}\{\nabla u(x) \nabla \tilde{u}(x)+v(x) \tilde{v}(x)\} d x \\
& +\xi \tau \int_{\Omega} \int_{0}^{1} z(x, \rho) \tilde{z}(x, \rho) d \rho d x
\end{aligned}
$$

where ξ is any fixed positive number.

Proposition [P., 2012]

For any initial datum $U_{0} \in \mathcal{H}$ there exists a unique solution $U \in C([0,+\infty), \mathcal{H})$ of problem $(\mathbf{P W})$. Moreover, if $U_{0} \in \mathcal{D}(\mathcal{A})$, then

$$
U \in C([0,+\infty), \mathcal{D}(\mathcal{A})) \cap C^{1}([0,+\infty), \mathcal{H})
$$

Stability result

Let us introduce the energy of any solution of problem (W) as

$$
\begin{aligned}
E(t):=E(u, t)= & \frac{1}{2} \int_{\Omega}\left\{u_{t}^{2}(x, t)+|\nabla u(x, t)|^{2}\right\} d x \\
& +\frac{\xi}{2} \int_{t-\tau}^{t} \int_{\Omega} u_{t}^{2}(x, s) d s d x,
\end{aligned}
$$

where ξ is a suitable positive constant.

Stability result

Let us introduce the energy of any solution of problem (W) as

$$
\begin{aligned}
E(t):=E(u, t)= & \frac{1}{2} \int_{\Omega}\left\{u_{t}^{2}(x, t)+|\nabla u(x, t)|^{2}\right\} d x \\
& +\frac{\xi}{2} \int_{t-\tau}^{t} \int_{\Omega} u_{t}^{2}(x, s) d s d x
\end{aligned}
$$

where ξ is a suitable positive constant.
By differentiating the energy,

$$
\begin{gathered}
E^{\prime}(t) \leq-\left(a-\frac{|k|+\xi}{2}\right) \int_{\omega} u_{t}^{2}(x, t) d x-\frac{\xi-|k|}{2} \int_{\Omega} u_{t}^{2}(x, t-\tau) d x \\
+\frac{\xi+|k|}{2} \int_{\Omega \backslash \omega} u_{t}^{2}(x, t) d x .
\end{gathered}
$$

Then, choose ξ in the definition of the energy such that

$$
|k|<\xi<a
$$

Stability result

This gives a first restriction $|k|<a$ for our argument.

Stability result

This gives a first restriction $|k|<a$ for our argument.
Assuming this and choosing ξ as before, we observe that the coefficients of the first two integrals are negative. On the contrary, it remains a positive contribution related to the subdomain $\Omega \backslash \omega$ where only the delayed damping acts.

Stability result

This gives a first restriction $|k|<a$ for our argument.
Assuming this and choosing ξ as before, we observe that the coefficients of the first two integrals are negative. On the contrary, it remains a positive contribution related to the subdomain $\Omega \backslash \omega$ where only the delayed damping acts.

THEOREM [P., 2012]

There exists $k_{0} \in(0, a)$ such that for every k with $|k|<k_{0}$, there are positive constants K, μ for which

$$
E(t) \leq K e^{-\mu t} E(0), \quad t>0
$$

for every solution of (W).

The auxiliary problem

In order to overcome the difficulty due to the fact that the energy is not decreasing, we introduce the auxiliary problem

$$
\left\{\begin{aligned}
\varphi_{t t}(x, t)-\Delta \varphi(x, t)+a \chi_{\omega} \varphi_{t}(x, t)+ & k \varphi_{t}(x, t-\tau)+\xi \chi_{\Omega \backslash \omega} \varphi_{t}(x, t)=0 \\
& \operatorname{in} \Omega \times(0,+\infty)
\end{aligned}\right.
$$

$$
\varphi(x, t)=0, \quad \text { on } \quad \partial \Omega \times(0,+\infty)
$$

$$
\varphi(x, 0)=\varphi_{0}(x), \quad \varphi_{t}(x, 0)=\varphi_{1}(x), \quad \text { in } \Omega
$$

$$
\varphi_{t}(x, t)=g(x, t), \quad \text { in } \Omega \times(-\tau, 0)
$$

For solutions of problem ($\tilde{\mathbf{W}})$ the energy $F(\cdot)$,
$F(t):=F(\varphi, t)=\frac{1}{2} \int_{\Omega}\left\{\varphi_{t}^{2}(x, t)+|\nabla \varphi(x, t)|^{2}\right\} d x+\frac{\xi}{2} \int_{t-\tau}^{t} \int_{\Omega} \varphi_{t}^{2}(x, s) d s d x$,
with ξ satisfying $|k|<\xi<a$, is decreasing in time.

Stability of the auxiliary problem

\Rightarrow We can prove an exponential stability result for the perturbed problem (W), for all $|k|<a$.

Stability of the auxiliary problem

\Rightarrow We can prove an exponential stability result for the perturbed problem $(\tilde{\mathbf{W}})$, for all $|k|<a$.

Now, we look at the former problem (W)

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+a \chi_{\omega} u_{t}(x, t)+k u_{t}(x, t-\tau)=0 \\
& + \text { B.C. and I.C. }
\end{aligned}
$$

as a bounded perturbation of the auxiliary one ($\tilde{\mathbf{W}}$)

$$
\begin{aligned}
& \varphi_{t t}(x, t)-\Delta \varphi(x, t)+a \chi_{\omega} \varphi_{t}(x, t)+k \varphi_{t}(x, t-\tau)+\xi \chi_{\Omega \backslash \omega} \varphi_{t}(x, t)=0, \\
& + \text { B.C. and I.C. }
\end{aligned}
$$

Stability result

Now,
Theorem [Pazy] Let X be a Banach space and let A be the infinitesimal generator of a C_{0} semigroup $T(t)$ on X, satisfying $\|T(t)\| \leq M e^{\omega t}$. If B is a bounded linear operator on X then $A+B$ is the infinitesimal generator of a C_{0} semigroup $S(t)$ on X, satisfying $\|S(t)\| \leq M e^{(\omega+M\|B\|) t}$.

Stability result

Now,
Theorem [Pazy] Let X be a Banach space and let A be the infinitesimal generator of a C_{0} semigroup $T(t)$ on X, satisfying $\|T(t)\| \leq M e^{\omega t}$. If B is a bounded linear operator on X then $A+B$ is the infinitesimal generator of a C_{0} semigroup $S(t)$ on X, satisfying $\|S(t)\| \leq M e^{(\omega+M\|B\|) t}$.

$$
+
$$

careful estimates on the involved constants

Stability result

Now,
Theorem [Pazy] Let X be a Banach space and let A be the infinitesimal generator of a C_{0} semigroup $T(t)$ on X, satisfying $\|T(t)\| \leq M e^{\omega t}$. If B is a bounded linear operator on X then $A+B$ is the infinitesimal generator of a C_{0} semigroup $S(t)$ on X, satisfying $\|S(t)\| \leq M e^{(\omega+M\|B\|) t}$.
careful estimates on the involved constants
\Longrightarrow exponential stability of problem (W) when the coefficient $|k|$ satisfies a suitable smallness condition.

Abstract second order evolution equations

Let H be a real Hilbert space with norm and inner product $\|\cdot\|_{H}$ and $\langle\cdot, \cdot\rangle_{H}$ and let

$$
A: \mathcal{D}(A) \rightarrow H
$$

be a positive self-adjoint operator with a compact inverse in H. Denote by $V:=\mathcal{D}\left(A^{\frac{1}{2}}\right)$. Moreover, for $i=1,2$, let U_{i} be real Hilbert spaces with norm and inner product $\|\cdot\|_{u_{i}}$ and $\left.\langle\cdot, \cdot\rangle\right\rangle_{U_{i}}$ and let

$$
B_{i}: U_{i} \rightarrow V^{\prime}
$$

be linear operators. In this setting we consider the problem

$$
\begin{array}{lr}
u_{t t}(t)+A u(t)+B_{1} B_{1}^{*} u_{t}(t)+B_{2} B_{2}^{*} u_{t}(t-\tau)=0 \quad t>0, \\
u(0)=u_{0} \text { and } u_{t}(0)=u_{1}, & (\mathbf{P}) \tag{P}\\
B_{2}^{*} u_{t}(t)=f^{0}(t) \quad t \in(-\tau, 0),
\end{array}
$$

where the constant $\tau>0$ is the time delay. We assume that the delay feedback operator B_{2} is bounded, that is $B_{2} \in \mathcal{L}\left(U_{2}, H\right)$, while the standard one $B_{1} \in \mathcal{L}\left(U_{1}, V^{\prime}\right)$ may be unbounded,

Abstract second order evolution equations

Inspired to previous result for locally damped wave, we are interested in giving stability results for the above problem under a suitable assumption on the size of the feedback operator B_{2}, when the feedback B_{1} is a stabilizing one.
Assuming that an observability inequality holds for (\mathbf{P}) when $B_{2}=0$, through the definition of a suitable energy we obtain sufficient conditions ensuring exponential stability [S. Nicaise \& P., 2014].

Abstract second order evolution equations

Inspired to previous result for locally damped wave, we are interested in giving stability results for the above problem under a suitable assumption on the size of the feedback operator B_{2}, when the feedback B_{1} is a stabilizing one.
Assuming that an observability inequality holds for (\mathbf{P}) when $B_{2}=0$, through the definition of a suitable energy we obtain sufficient conditions ensuring exponential stability [S. Nicaise \& P., 2014].

Our abstract framework includes several concrete examples.

Wave equation with internal and boundary dampings

Let $\Omega \subset \mathbb{R}$ be an open bounded domain with a Lipschitz boundary $\partial \Omega$. We assume $\partial \Omega=\Gamma_{0} \cup \Gamma_{1}$, where Γ_{0}, Γ_{1} are closed subsets of $\partial \Omega$ with $\Gamma_{0} \cap \Gamma_{1}=\emptyset$. Moreover we assume that Γ_{0} and Γ_{1} have an non empty interior (on $\partial \Omega$).
Given $k \in L^{\infty}\left(\Gamma_{0}\right)$ and $b \in L^{\infty}(\Omega)$ such that $b(x) \geq 0$ a.e. $x \in \Omega$ and

$$
k(x) \geq k_{0}>0 \text { a.e. } x \in \Gamma_{0}
$$

then the problem

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+b(x) u_{t}(x, t-\tau)=0, \quad x \in \Omega, t>0 \\
& u(x, t)=0, \quad x \in \Gamma_{1}, t>0 \\
& \frac{\partial u}{\partial \nu}(x, t)=-k(x) u_{t}(x, t), \quad x \in \Gamma_{0}, t>0 \\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \\
& u_{t}(x, t)=f^{0}(x, t), \quad x \in \Omega, t \in(-\tau, 0)
\end{aligned}
$$

with initial data in a suitable space, enters in the abstract framework.

Wave equation with internal and boundary dampings

Let $\Omega \subset \mathbb{R}$ be an open bounded domain with a Lipschitz boundary $\partial \Omega$. We assume $\partial \Omega=\Gamma_{0} \cup \Gamma_{1}$, where Γ_{0}, Γ_{1} are closed subsets of $\partial \Omega$ with $\Gamma_{0} \cap \Gamma_{1}=\emptyset$. Moreover we assume that Γ_{0} and Γ_{1} have an non empty interior (on $\partial \Omega$).
Given $k \in L^{\infty}\left(\Gamma_{0}\right)$ and $b \in L^{\infty}(\Omega)$ such that $b(x) \geq 0$ a.e. $x \in \Omega$ and

$$
k(x) \geq k_{0}>0 \text { a.e. } x \in \Gamma_{0}
$$

then the problem

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+b(x) u_{t}(x, t-\tau)=0, \quad x \in \Omega, t>0 \\
& u(x, t)=0, \quad x \in \Gamma_{1}, t>0 \\
& \frac{\partial u}{\partial \nu}(x, t)=-k(x) u_{t}(x, t), \quad x \in \Gamma_{0}, t>0 \\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \\
& u_{t}(x, t)=f^{0}(x, t), \quad x \in \Omega, t \in(-\tau, 0)
\end{aligned}
$$

with initial data in a suitable space, enters in the abstract framework.
\Longrightarrow The stability result applies if $\|b\|_{\infty}$ satisfies a suitable smallness condition.

Viscoelastic wave equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set with a smooth boundary.

$$
\begin{align*}
& \begin{array}{r}
u_{t t}(x, t)-\Delta u(x, t)+\int_{0}^{\infty} \mu(s) \Delta u(x, t-s) d s \\
\\
+k u_{t}(x, t-\tau)=0
\end{array} \\
& \begin{array}{l}
u(x, t)=0 \quad \text { on } \partial \Omega \times(0,+\infty) \\
u(x, t)=u_{0}(x, t) \quad \text { in } \Omega \times(-\infty, 0]
\end{array}
\end{align*}
$$

where k is a real number, $\tau>0$ is the time delay, the initial datum u_{0} belongs to a suitable space and the memory kernel $\mu:[0,+\infty) \rightarrow[0,+\infty)$ is a locally absolutely continuous function satisfying
i) $\mu(0)=\mu_{0}>0$;
ii) $\int_{0}^{+\infty} \mu(t) d t=\tilde{\mu}<1$;
iii) $\mu^{\prime}(t) \leq-\alpha \mu(t), \quad$ for some $\alpha>0$.

Memory against small delay feedback

We know that the above problem is exponentially stable for $k=0$ (see e.g. [Giorgi, Munõz Rivera \& Pata, 2001]). Since the viscoelastic damping is a stabilizing one, it is natural to investigate if it prevails with respect the time delay term.

Memory against small delay feedback

We know that the above problem is exponentially stable for $k=0$ (see e.g. [Giorgi, Munõz Rivera \& Pata, 2001]). Since the viscoelastic damping is a stabilizing one, it is natural to investigate if it prevails with respect the time delay term.

We can show [Alabau-Boussouira, Nicaise \& P., 2014], using the perturbative approach introduced in [P., 2012] and adapting some multiplier estimates in [Alabau-Boussouira, Cannarsa \& Sforza, 2008)], that even if a time delay generates instability, an exponential stability result still holds if the delay parameter k satisfies a suitable smallness condition.

Memory against small delay feedback

We know that the above problem is exponentially stable for $k=0$ (see e.g. [Giorgi, Munõz Rivera \& Pata, 2001]). Since the viscoelastic damping is a stabilizing one, it is natural to investigate if it prevails with respect the time delay term.

We can show [Alabau-Boussouira, Nicaise \& P., 2014], using the perturbative approach introduced in [P., 2012] and adapting some multiplier estimates in [Alabau-Boussouira, Cannarsa \& Sforza, 2008)], that even if a time delay generates instability, an exponential stability result still holds if the delay parameter k satisfies a suitable smallness condition.

See also [P., 2016] for stability results for viscoelastic wave equation with intermittent delay feedback. Stability estimates are obtained under a condition on the L^{1}-norm of the (time-variable) coefficient $k(\cdot)$. Extension to $k=k_{1}+k_{2}, k_{1} \in L^{1}$ and $k_{2} \in L^{\infty}$ in [Komornik \& P., in preparation].

Abstract result

Let \mathcal{H} be a fixed Hilbert space with norm $\|\cdot\|$, and consider an operator \mathcal{A} from \mathcal{H} into itself that generates a C_{0}-semigroup $(S(t))_{t \geq 0}$ that is exponentially stable, i.e., there exist two positive constants M and ω such that

$$
\|S(t)\|_{\mathcal{L}(\mathcal{H})} \leq M e^{-\omega t}, \forall t \geq 0
$$

For a fixed delay parameter τ, a fixed bounded operator \mathcal{B} from \mathcal{H} into itself and for a real parameter k, we consider the evolution equation

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A} U(t)+F(U(t))+k \mathcal{B} U(t-\tau) \quad \text { in }(0,+\infty) \tag{PA}\\
U(0)=U_{0}, \mathcal{B} U(t-\tau)=f(t), \quad \forall t \in(0, \tau),
\end{array}\right.
$$

where $F: \mathcal{H} \rightarrow \mathcal{H}$ satisfies some Lipschitz conditions, the initial datum U_{0} belongs to \mathcal{H} and $f \in C([0, \tau] ; \mathcal{H})$.

Abstract result

Motivated by previous examples we are interested in giving an exponential stability result for such a problem under a suitable condition between the constant k and the constants M, ω, τ, the norm of \mathcal{B} and the nonlinear term F.

Abstract result

Motivated by previous examples we are interested in giving an exponential stability result for such a problem under a suitable condition between the constant k and the constants M, ω, τ, the norm of \mathcal{B} and the nonlinear term F.

For particular examples (see e.g. [Bátkai \& Piazzera (2005), Ammari, Nicaise \& P. (2010), P. (2012), Said-Houari \& Soufyane (2012), Alabau-Boussouira, Nicaise \& P. (2014), Dai \& Yang (2014), (2016)]) we know that the above problem, under certain smallness conditions on the delay feedback $k \mathcal{B}$, is exponentially stable, the proof being from time to time quite technical because some observability inequalities or perturbation methods are used.

Abstract result

Hence our main goal is to furnish a direct proof of this stability result by using the so-called Duhamel's formula (or variation of parameters formula).

Abstract result

Hence our main goal is to furnish a direct proof of this stability result by using the so-called Duhamel's formula (or variation of parameters formula).

Note that our proof is simpler with respect to the ones used so far for particular models. Moreover, we emphasize its generality. Indeed, it applies to every model in the previous abstract form when the operator \mathcal{A} generates an exponentially stable semigroup.

Well-posedness

Now, we assume that F is globally Lipschitz continuous, namely
$\exists \gamma>0 \quad$ such that $\quad\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\| \leq \gamma\left\|U_{1}-U_{2}\right\|, \quad \forall U_{1}, U_{2} \in \mathcal{H}$.
Moreover, we assume that $F(0)=0$.
The following well-posedness result holds.

Proposition

For any initial datum $U_{0} \in \mathcal{H}$ and $f \in C([0, \tau] ; \mathcal{H})$, there exists a unique (mild) solution $U \in C([0,+\infty), \mathcal{H})$ of problem $(P A)$. Moreover,

$$
\begin{equation*}
U(t)=S(t) U_{0}+\int_{0}^{t} S(t-s)[F(U(s))+k \mathcal{B} U(s-\tau)] d s \tag{D}
\end{equation*}
$$

Well-posedness

Proof. We use an iterative argument. Namely in the interval $(0, \tau)$, problem (PA) can be seen as an inhomogeneous evolution problem

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A} U(t)+F(U(t))+g_{0}(t) \quad \text { in }(0, \tau) \\
U(0)=U_{0}
\end{array}\right.
$$

where $g_{0}(t)=k f(t)$. This problem has a unique solution $U \in C([0, \tau], \mathcal{H})$ (see [Th. 1.2, Ch. 6 of Pazy (1983)]) satisfying

$$
U(t)=S(t) U_{0}+\int_{0}^{t} S(t-s)\left[F(U(s))+g_{0}(s)\right] d s
$$

This yields $U(t)$, for $t \in[0, \tau]$.

Well-posedness

Therefore on $(\tau, 2 \tau)$, problem (PA) can be seen as an inhomogeneous evolution problem

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A} U(t)+F(U(t))+g_{1}(t) \quad \text { in }(\tau, 2 \tau) \\
U(\tau)=U(\tau-)
\end{array}\right.
$$

where $g_{1}(t)=k \mathcal{B} \cup(t-\tau)$. Hence, this problem has a unique solution $U \in C([\tau, 2 \tau], \mathcal{H})$ given by

$$
U(t)=S(t-\tau) U(\tau-)+\int_{\tau}^{t} S(t-s)\left[F(U(s))+g_{1}(s)\right] d s, \forall t \in[\tau, 2 \tau]
$$

By iteration, we obtain a global solution U satisfying (F).

Exponential stability result

The following exponential stability result holds.
THEOREM [Nicaise \& P., 2015]
There is a positive constant k_{0} such that for k satisfying

$$
|k|<k_{0}:=\frac{e^{\tau \omega}-1}{\tau\|\mathcal{B}\|_{\mathcal{L}(\mathcal{H})} M e^{\tau \omega}}
$$

and for $\gamma<\gamma(|k|)$, where $\gamma(|k|)$ is a suitable constant depending on $|k|$, there exist $\omega^{\prime}>0$ and $M^{\prime}>0$ such that the solution $U \in C([0,+\infty), \mathcal{H})$ of problem (P), with $U_{0} \in \mathcal{H}$ and $f \in C([0, \tau] ; \mathcal{H})$, satisfies

$$
\|U(t)\|_{\mathcal{H}} \leq M^{\prime} e^{-\omega^{\prime} t}\left(\left\|U_{0}\right\|_{\mathcal{H}}+\int_{0}^{\tau} e^{\omega s}\|f(s)\|_{\mathcal{H}} d s\right), \quad \forall t \geq \tau
$$

From its definition the constant k_{0} depends only on M, ω, τ and the norm of \mathcal{B}.

Exponential stability result

The following exponential stability result holds.
THEOREM [Nicaise \& P., 2015]
There is a positive constant k_{0} such that for k satisfying

$$
|k|<k_{0}:=\frac{e^{\tau \omega}-1}{\tau\|\mathcal{B}\|_{\mathcal{L}(\mathcal{H})} M e^{\tau \omega}}
$$

and for $\gamma<\gamma(|k|)$, where $\gamma(|k|)$ is a suitable constant depending on $|k|$, there exist $\omega^{\prime}>0$ and $M^{\prime}>0$ such that the solution $U \in C([0,+\infty), \mathcal{H})$ of problem (P), with $U_{0} \in \mathcal{H}$ and $f \in C([0, \tau] ; \mathcal{H})$, satisfies

$$
\|U(t)\|_{\mathcal{H}} \leq M^{\prime} e^{-\omega^{\prime} t}\left(\left\|U_{0}\right\|_{\mathcal{H}}+\int_{0}^{\tau} e^{\omega s}\|f(s)\|_{\mathcal{H}} d s\right), \quad \forall t \geq \tau
$$

From its definition the constant k_{0} depends only on M, ω, τ and the norm of \mathcal{B}.

The proof relies again on an iterative argument and uses the Duhamel's formula and the Gronwall's Lemma.

The case F locally Lipschitz

Now we consider that F is only locally Lipschitz. More precisely, we assume that for every constant c there exists a positive constant $L(c)$ such that

$$
\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\| \leq L(c)\left\|U_{1}-U_{2}\right\|,
$$

for all $U_{1}, U_{2} \in \mathcal{H}$ with $\left\|U_{1}\right\| \leq c,\left\|U_{2}\right\| \leq c$.
Moreover, we assume that there exists an increasing continuous function $\chi:[0,+\infty) \rightarrow[0,+\infty)$, with $\chi(0)=0$, such that

$$
\|F(U)\| \leq \chi(\|U\|)\|U\|, \quad \forall U \in \mathcal{H}
$$

We can give an exponential stability result under a well-posedness assumption for small initial data. This assumption is satisfied for a quite large class of examples.

The case F locally Lipschitz

THEOREM [Nicaise \& P., 2015]

Suppose that for $|k|$ sufficiently small
$\exists \rho_{0}>0$ and $C_{\rho_{0}}>0$ such that
$\forall U_{0} \in \mathcal{H}, f \in C([0, \tau] ; \mathcal{H})$ with $\left(\left\|U_{0}\right\|^{2}+\int_{0}^{\tau}|k|\|f(s)\|^{2} d s\right)^{1 / 2}<\rho_{0}$,
there exists a unique global solution
(HW)

$$
U \in C\left([0,+\infty, \mathcal{H}) \text { with }\|U(t)\| \leq C_{\rho_{0}}<\chi^{-1}\left(\frac{\omega^{\prime}}{\tilde{M}}\right), \forall t>0\right.
$$

where ω^{\prime} and \tilde{M} are the constants of the exponential decay estimate of the linear part of the model.
Then there exists $\tilde{k}>0$ such that if $|k|<\tilde{k}$, for every $U_{0} \in \mathcal{H}$, $f \in C([0, \tau] ; \mathcal{H})$ satisfying the assumption from (H), the solution U satisfies the exponential decay estimate

$$
\|U(t)\|_{\mathcal{H}} \leq \tilde{M} e^{-\tilde{\omega} t}\left(\left\|U_{0}\right\|_{\mathcal{H}}+\int_{0}^{\tau} e^{\omega s}\|f(s)\|_{\mathcal{H}} d s\right), \quad \forall t \geq \tau
$$

More general

As before, let \mathcal{H} be a fixed Hilbert space with norm $\|\cdot\|$, and consider an operator \mathcal{A} from \mathcal{H} into itself that generates a C_{0}-semigroup $(S(t))_{t \geq 0}$ that is exponentially stable, i.e., there exist two positive constants M and ω such that

$$
\|S(t)\|_{\mathcal{L}(\mathcal{H})} \leq M e^{-\omega t}, \forall t \geq 0
$$

More general

As before, let \mathcal{H} be a fixed Hilbert space with norm $\|\cdot\|$, and consider an operator \mathcal{A} from \mathcal{H} into itself that generates a C_{0}-semigroup $(S(t))_{t \geq 0}$ that is exponentially stable, i.e., there exist two positive constants M and ω such that

$$
\|S(t)\|_{\mathcal{L}(\mathcal{H})} \leq M e^{-\omega t}, \forall t \geq 0
$$

We consider the evolution equation

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A} U(t)+\sum_{i=1}^{l} F_{i}\left(U(t), U\left(t-\tau_{i}\right)\right) \quad \text { in }(0,+\infty) \\
U(t-\tau)=U_{0}(t), \quad \forall t \in(0, \tau]
\end{array}\right.
$$

where I is a positive natural number and $\tau_{i}>0, i=1, \cdots, I$, are time delays.

More general

Without loss of generality we can suppose that the delays are different from each other and that

$$
\tau_{i}<\tau=\tau_{1}, \quad \forall i=2, \cdots, l
$$

More general

Without loss of generality we can suppose that the delays are different from each other and that

$$
\tau_{i}<\tau=\tau_{1}, \forall i=2, \cdots, l
$$

The nonlinear terms $F_{i}: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$ satisfy some Lipschitz conditions, while the initial datum U_{0} satisfies $U_{0} \in C([0, \tau] ; \mathcal{H})$.
We denote by U^{0} the initial datum at $t=0$, namely $U^{0}=U_{0}(\tau) \in \mathcal{H}$.

F_{i} Lipschitz continuous

Let the functions $F_{i}, i=1, \ldots, l$, be globally Lipschitz continuous, namely for every $i=1, \ldots, l$,

$$
\begin{aligned}
& \exists \gamma_{i}>0 \quad \text { such that } \\
& \quad\left\|F_{i}\left(U_{1}, U_{2}\right)-F_{i}\left(U_{1}^{*}, U_{2}^{*}\right)\right\|_{\mathcal{H}} \leq \gamma_{i}\left(\left\|U_{1}-U_{1}^{*}\right\|_{\mathcal{H}}+\left\|U_{2}-U_{2}^{*}\right\|_{\mathcal{H}}\right), \\
& \forall\left(U_{1}, U_{2}\right),\left(U_{1}^{*}, U_{2}^{*}\right) \in \mathcal{H} \times \mathcal{H} .
\end{aligned}
$$

F_{i} Lipschitz continuous

Let the functions $F_{i}, i=1, \ldots, I$, be globally Lipschitz continuous, namely for every $i=1, \ldots, l$,

$$
\begin{aligned}
& \exists \gamma_{i}>0 \quad \text { such that } \\
& \quad\left\|F_{i}\left(U_{1}, U_{2}\right)-F_{i}\left(U_{1}^{*}, U_{2}^{*}\right)\right\|_{\mathcal{H}} \leq \gamma_{i}\left(\left\|U_{1}-U_{1}^{*}\right\|_{\mathcal{H}}+\left\|U_{2}-U_{2}^{*}\right\|_{\mathcal{H}}\right) \\
& \forall\left(U_{1}, U_{2}\right),\left(U_{1}^{*}, U_{2}^{*}\right) \in \mathcal{H} \times \mathcal{H}
\end{aligned}
$$

The following well-posedness result holds.
Proposition [Nicaise \& P., 2017]
For any initial datum $U_{0} \in C([0, \tau] ; \mathcal{H})$, there exists a unique (mild) solution $U \in C([0,+\infty), \mathcal{H})$ of problem $(P N)$.
Moreover,

$$
U(t)=S(t) U^{0}+\int_{0}^{t} S(t-s) \sum_{i=1}^{I} F_{i}\left(U(s), U\left(s-\tau_{i}\right)\right) d s
$$

F_{i} Lipschitz continuous: stability result

Theorem [Nicaise \& P., 2017]

Assume that the functions F_{i} satisfy also $F_{i}(0,0)=0$, for all $i=1, \ldots, l$. With M, ω as before, we assume that

$$
\gamma=\sum_{i=1}^{l} \gamma_{i}<\frac{\omega}{2 M}
$$

If the time delay τ satisfies the smallness condition

$$
\tau<\tau_{0}:=\frac{1}{\omega} \ln \left(\frac{\omega}{M \gamma}-1\right),
$$

then there exists $\omega^{\prime}>0$ such that the solution $U \in C([0,+\infty), \mathcal{H})$ of problem $(P N)$, with $U_{0} \in C([0, \tau] ; \mathcal{H})$, satisfies

$$
\|U(t)\|_{\mathcal{H}} \leq M e^{-\omega^{\prime} t}\left(\left\|U_{0}\right\|_{\mathcal{H}}+\sum_{i=1}^{l} \gamma_{i} \int_{0}^{\tau_{i}} e^{\omega s}\left\|U\left(s-\tau_{i}\right)\right\|_{\mathcal{H}} d s\right), \quad \forall t \geq 0
$$

Example: damped wave equation

Let Ω be a bounded domain in \mathbb{R}^{n} with a boundary Γ of class C^{2}. Let $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ be globally Lipschitz continuous functions, $j=1,2$, satisfying $f_{1}(0)=f_{2}(0)=0$. Let us consider the following semilinear damped wave equation:

$$
\begin{aligned}
& u_{t t}(x, t)-\Delta u(x, t)+a(x) u_{t}(x, t)=f_{1}(u(x, t))+f_{2}(u(x, t-\tau)) \\
& \\
& \quad \text { in } \Omega \times(0,+\infty) \\
& u(x, t)=0 \quad \text { in } \Omega \times(0,+\infty) \\
& u(x, t-\tau)=u_{0}(x, t), \quad u_{t}(x, t-\tau)=u_{1}(x, t) \quad \text { in } \Omega \times(0, \tau]
\end{aligned}
$$

where $\tau>0$ is the time delay and the damping coefficient $a \in L^{\infty}(\Omega)$ satisfies

$$
a(x) \geq a_{0}>0, \quad \text { a.e. } x \in \omega
$$

for some nonempty open subset ω of Ω satisfying some control geometric property (see e.g. [Bardos, Lebeau \& Rauch (1992)]).

Example: damped wave equation

The initial datum $\left(u_{0}, u_{1}\right)$ is taken in $C\left([0, \tau], H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right)$.

Example: damped wave equation

The initial datum $\left(u_{0}, u_{1}\right)$ is taken in $C\left([0, \tau], H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right)$.
Setting $U=\left(u, u_{t}\right)^{T}$, this problem can be rewritten in abstract form with $\mathcal{H}=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$,

$$
\mathcal{A}=\left(\begin{array}{rr}
0 & 1 \\
\Delta & -a
\end{array}\right)
$$

and $F_{1}(U(t), U(t-\tau))=\left(0, f_{1}(u(t))+f_{2}(u(t-\tau))\right)^{T}$.

Example: damped wave equation

The initial datum $\left(u_{0}, u_{1}\right)$ is taken in $C\left([0, \tau], H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right)$.
Setting $U=\left(u, u_{t}\right)^{T}$, this problem can be rewritten in abstract form with $\mathcal{H}=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$,

$$
\mathcal{A}=\left(\begin{array}{rr}
0 & 1 \\
\Delta & -a
\end{array}\right)
$$

and $F_{1}(U(t), U(t-\tau))=\left(0, f_{1}(u(t))+f_{2}(u(t-\tau))\right)^{T}$.
It is well-known that \mathcal{A} generates a strongly continuous semigroup which is exponentially stable (see e.g. [Zuazua (1990)]), thus the assumptions on f_{1}, f_{2} ensure that the well-posedness and the stability results apply to this model giving an exponential decay estimate of the energy for small values of the time delay τ.

More general nonlinearities

We consider a more general class of nonlinearities but assume that \mathcal{A} is a negative selfadjoint operator in \mathcal{H}.

More general nonlinearities

We consider a more general class of nonlinearities but assume that \mathcal{A} is a negative selfadjoint operator in \mathcal{H}.
In this case, \mathcal{A} generates an analytic semigroup and existence results for problem (PN) can be obtained for nonlinear terms satisfying the next hypothesis (H1).

More general nonlinearities

We consider a more general class of nonlinearities but assume that \mathcal{A} is a negative selfadjoint operator in \mathcal{H}.
In this case, \mathcal{A} generates an analytic semigroup and existence results for problem (PN) can be obtained for nonlinear terms satisfying the next hypothesis (H1).
More precisely, we recall that $\mathcal{V}=D\left((-\mathcal{A})^{\frac{1}{2}}\right)$ is a Hilbert space with the norm

$$
\|U\|_{\mathcal{V}}^{2}=\left((-\mathcal{A})^{\frac{1}{2}} U,(-\mathcal{A})^{\frac{1}{2}} U\right), \quad \forall U \in \mathcal{V}
$$

More general nonlinearities

We consider a more general class of nonlinearities but assume that \mathcal{A} is a negative selfadjoint operator in \mathcal{H}.
In this case, \mathcal{A} generates an analytic semigroup and existence results for problem (PN) can be obtained for nonlinear terms satisfying the next hypothesis (H1).
More precisely, we recall that $\mathcal{V}=D\left((-\mathcal{A})^{\frac{1}{2}}\right)$ is a Hilbert space with the norm

$$
\|U\|_{\mathcal{V}}^{2}=\left((-\mathcal{A})^{\frac{1}{2}} U,(-\mathcal{A})^{\frac{1}{2}} U\right), \quad \forall U \in \mathcal{V}
$$

Furthermore if λ_{1} is the smallest eigenvalue of $-\mathcal{A}$, we have

$$
\lambda_{1}\|U\|_{\mathcal{H}}^{2} \leq\|U\|_{\mathcal{V}}^{2}, \quad \forall U \in \mathcal{V} .
$$

More general nonlinearities

We assume that there exist a positive real number $\beta<\frac{1}{2}$, a constant C_{0} and two continuous functions h_{1}, h_{2} from $[0, \infty)^{4}$ to $[0, \infty)$ such that, for all $i=1, \ldots$, ,

$$
\begin{align*}
& \left\|F_{i}\left(U_{1}, V_{1}\right)-F_{i}\left(U_{2}, V_{2}\right)\right\|_{\mathcal{H}} \leq C_{0}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}} \\
& \quad+h_{1}\left(\left\|U_{1}\right\| \mathcal{V},\left\|U_{2}\right\|_{\mathcal{V}},\left\|V_{1}\right\|_{\mathcal{V}},\left\|V_{2}\right\|_{\mathcal{V}}\right)\left\|U_{1}-U_{2}\right\| \mathcal{V} \tag{H1}\\
& \quad+h_{2}\left(\left\|U_{1}\right\|_{\mathcal{V}},\left\|U_{2}\right\|_{\mathcal{V}},\left\|V_{1}\right\|_{\mathcal{V}},\left\|V_{2}\right\|_{\mathcal{V}}\right)\left\|V_{1}-V_{2}\right\|_{D\left((-\mathcal{A})^{\beta}\right)}
\end{align*}
$$

for all $\left(U_{1}, U_{2}\right),\left(V_{1}, V_{2}\right) \in \mathcal{V} \times \mathcal{V}$.

Well-posedness

The following local existence result holds.

Well-posedness

The following local existence result holds.

Proposition [Nicaise \& P., 2017]

Assume that the functions F_{i} satisfy $(\mathrm{H} 1)$. Then for any initial datum $U_{0} \in C([0, \tau] ; \mathcal{V}) \cap C^{0, \theta}\left([0, \tau], D\left((-\mathcal{A})^{\beta}\right)\right)$, with $\beta<\frac{1}{2}$ from the assumption $(H 1)$ and $\theta=\min \left\{\beta, \frac{1}{2}-\beta\right\}$, there exist a time $T_{\infty} \in(0,+\infty]$ and a unique solution

$$
U \in C\left(\left[0, T_{\infty}\right), \mathcal{V}\right) \cap C^{1}\left(\left(0, T_{\infty}\right), \mathcal{H}\right)
$$

of problem (PN). If $T_{\infty}<+\infty$, then

$$
\lim _{t \rightarrow T_{\infty}^{-}}\|U(t)\| \mathcal{V}=+\infty
$$

Exponential stability for small data

We now give an exponential stability result for small initial data.

Exponential stability for small data

We now give an exponential stability result for small initial data. Note that we do not require here any restriction on the size of the time delays.

Exponential stability for small data

We now give an exponential stability result for small initial data. Note that we do not require here any restriction on the size of the time delays.
For that purpose, we need the additional assumption on our nonlinear functions, namely we suppose that there exist a positive constant C_{1} and a continuous function h_{3} from $[0, \infty)^{I+1}$ to $[0, \infty)$ satisfying $h_{3}(0)=0$ and such that

$$
\begin{align*}
& \left|\sum_{i=1}^{l}\left(W, F_{i}\left(U, V_{i}\right)\right)_{\mathcal{H}}\right| \\
& \quad \leq\|W\|_{\mathcal{H}}\left(C_{1}\|U\|_{\mathcal{H}}+h_{3}\left(\|U\|_{\mathcal{V}},\left\|V_{1}\right\|_{\mathcal{V}}, \cdots,\left\|V_{l}\right\| \mathcal{V}\right)\|U\|_{\mathcal{V}}\right) \tag{H2}
\end{align*}
$$

for all $W \in \mathcal{H}, U, V_{i} \in \mathcal{V}, i=1, \cdots, l$.

Exponential stability for small data

Theorem [Nicaise \& P., 2017]

Assume that $(H 1)$ and $(H 2)$ are satisfied. With C_{1} from the assumption $(\mathrm{H} 2)$, we assume that

$$
\frac{C_{1}}{\lambda_{1}}-1<0
$$

Then there exist $K_{0}>0$ small enough and $\gamma_{0}<1$ (depending on K_{0}) such that for all $K \in\left(0, K_{0}\right]$ and $U_{0} \in C([0, \tau] ; \mathcal{V})$ satisfying

$$
\left\|U_{0}(t)\right\| \mathcal{V}<\gamma_{0} K, \forall t \in[-\tau, 0]
$$

problem ($P N$) has a global solution U that satisfies the exponential decay estimate

$$
\|U(t)\|_{\mathcal{H}} \leq M e^{-\tilde{\omega} t} \quad \forall t \geq 0
$$

for a positive constant M depending on U_{0} and a suitable positive constant $\tilde{\omega}$.

Delay diffusion equations

We consider the semilinear diffusion equation with time delay

$$
\begin{array}{ll}
u_{t}(t)-\Delta u(t)=f(u(t), u(t-\tau)) & \text { in } \Omega \times(0,+\infty), \\
B u(x, t)=0 \text { on } \Gamma \times(0,+\infty), & \\
u(x, t))=u_{0}(x, t) \quad \text { in } \Omega \times[-\tau, 0],
\end{array}
$$

where the constant $\tau>0$ is the time delay and the initial datum u_{0} belongs to the space $C\left([0, \tau] ; L^{2}(\Omega)\right)$. The operator B is in the form

$$
B u=\alpha \partial_{n} u+\alpha^{\prime} u,
$$

with either $\alpha=0$ and $\alpha^{\prime}=1$ corresponding to the case of Dirichlet boundary conditions or $\alpha=1$ and $\alpha^{\prime} \geq 0$ (with $\alpha^{\prime} \in L^{\infty}(\partial \Omega)$) corresponding to the case of Neumann-Robin boundary conditions.

Delay diffusion equations

For further uses, in the case of Neumann conditions ($\alpha=1, \alpha^{\prime}=0$), we fix a positive real parameter ε (that may depend on f), otherwise we set $\varepsilon=0$.

Delay diffusion equations

For further uses, in the case of Neumann conditions ($\alpha=1, \alpha^{\prime}=0$), we fix a positive real parameter ε (that may depend on f), otherwise we set $\varepsilon=0$.
Now we assume that the nonlinearity $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the following assumption:

Delay diffusion equations

For further uses, in the case of Neumann conditions ($\alpha=1, \alpha^{\prime}=0$), we fix a positive real parameter ε (that may depend on f), otherwise we set $\varepsilon=0$.
Now we assume that the nonlinearity $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the following assumption:
there exist a non-negative constant α_{0} (that may depend on ε) and two polynomials P_{1} and P_{2} (of one real variable) of degree n_{1} and n_{2} in the form

$$
P_{i}(X)=\sum_{j=1}^{n_{i}} \alpha_{i, j} X^{j}
$$

with non negative real numbers $\alpha_{i, j}$ such that

$$
\begin{aligned}
& \left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)+\varepsilon\left(x_{1}-x_{2}\right)\right| \\
& \quad \leq \alpha_{0}\left|x_{1}-x_{2}\right|+P_{1}\left(\left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right|\right)\left|x_{1}-x_{2}\right| \quad(H D \\
& \quad+P_{2}\left(\left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right|\right)\left|y_{1}-y_{2}\right|, \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
\end{aligned}
$$

Delay diffusion equations

For further uses, in the case of Neumann conditions ($\alpha=1, \alpha^{\prime}=0$), we fix a positive real parameter ε (that may depend on f), otherwise we set $\varepsilon=0$.
Now we assume that the nonlinearity $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the following assumption:
there exist a non-negative constant α_{0} (that may depend on ε) and two polynomials P_{1} and P_{2} (of one real variable) of degree n_{1} and n_{2} in the form

$$
P_{i}(X)=\sum_{j=1}^{n_{i}} \alpha_{i, j} X^{j}
$$

with non negative real numbers $\alpha_{i, j}$ such that

$$
\begin{aligned}
& \left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)+\varepsilon\left(x_{1}-x_{2}\right)\right| \\
& \quad \leq \alpha_{0}\left|x_{1}-x_{2}\right|+P_{1}\left(\left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right|\right)\left|x_{1}-x_{2}\right| \quad(H D \\
& \quad+P_{2}\left(\left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right|\right)\left|y_{1}-y_{2}\right|, \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
\end{aligned}
$$

In particular this assumption means that f is only locally Lipschitz.

Delay diffusion equations

Under this assumption, problem (DD) enters in the previous abstract framework.

Delay diffusion equations

Under this assumption, problem (DD) enters in the previous abstract framework.
Indeed in such a situation, we take $\mathcal{H}=L^{2}(\Omega)$ and define \mathcal{A} as follows:

Delay diffusion equations

Under this assumption, problem (DD) enters in the previous abstract framework.
Indeed in such a situation, we take $\mathcal{H}=L^{2}(\Omega)$ and define \mathcal{A} as follows:

$$
D(\mathcal{A}):=\left\{u \in H^{1}(\Omega): \Delta u \in L^{2}(\Omega) \text { and satisfying } B u=0 \text { on } \Gamma\right\}
$$

and

$$
\mathcal{A} u=\Delta u-\varepsilon u, \quad \forall u \in D(\mathcal{A})
$$

Delay diffusion equations

Under this assumption, problem (DD) enters in the previous abstract framework.
Indeed in such a situation, we take $\mathcal{H}=L^{2}(\Omega)$ and define \mathcal{A} as follows:

$$
D(\mathcal{A}):=\left\{u \in H^{1}(\Omega): \Delta u \in L^{2}(\Omega) \text { and satisfying } B u=0 \text { on } \Gamma\right\}
$$

and

$$
\mathcal{A} u=\Delta u-\varepsilon u, \quad \forall u \in D(\mathcal{A})
$$

Note that for any $u \in\left\{u \in H^{1}(\Omega): \Delta u \in L^{2}(\Omega)\right\}$, Bu has a meaning (as element of $H^{-\frac{1}{2}}(\Gamma)$ if $\alpha>0$). It is not difficult to show that $-\mathcal{A}$ is a positive selfadjoint operator in \mathcal{H} since it is the Friedrichs extension of the triple $(\mathcal{H}, \mathcal{V}, a)$ where $\mathcal{V}=H_{0}^{1}(\Omega)$ in case of Dirichlet boundary conditions otherwise $\mathcal{V}=H^{1}(\Omega)$, and the sesquilinear form a is defined by

$$
a(u, v)=\int_{\Omega}(\nabla u \cdot \nabla \bar{v}+\varepsilon u \cdot \bar{v}) d x+\int_{\Gamma} \alpha^{\prime} u \cdot \bar{v} d \sigma(x)
$$

Delay diffusion equations

that is symmetric, continuous and strongly coercive on \mathcal{V}.

Delay diffusion equations

that is symmetric, continuous and strongly coercive on \mathcal{V}.
Let us notice that in the case of Neumann boundary conditions, the smallest eigenvalue λ_{1} of $-\mathcal{A}$ is ε, otherwise it does not depend on ε and corresponds to the smallest eigenvalue of the Dirichlet problem or to the Robin eigenvalue problem.

Delay diffusion equations

that is symmetric, continuous and strongly coercive on \mathcal{V}.
Let us notice that in the case of Neumann boundary conditions, the smallest eigenvalue λ_{1} of $-\mathcal{A}$ is ε, otherwise it does not depend on ε and corresponds to the smallest eigenvalue of the Dirichlet problem or to the Robin eigenvalue problem.

By introducing the function

$$
F_{1}(x, y)=f(x, y)+\varepsilon x
$$

we see that problem (DD) can be written as (PN) with $I=1$, $U(t)=u(\cdot, t)$ and $U_{0}(t)=u_{0}(\cdot, t)$.

Delay diffusion equations

that is symmetric, continuous and strongly coercive on \mathcal{V}.
Let us notice that in the case of Neumann boundary conditions, the smallest eigenvalue λ_{1} of $-\mathcal{A}$ is ε, otherwise it does not depend on ε and corresponds to the smallest eigenvalue of the Dirichlet problem or to the Robin eigenvalue problem.

By introducing the function

$$
F_{1}(x, y)=f(x, y)+\varepsilon x
$$

we see that problem (DD) can be written as (PN) with $I=1$, $U(t)=u(\cdot, t)$ and $U_{0}(t)=u_{0}(\cdot, t)$.
Consequently the next local existence result follows from the abstract result.

Delay diffusion equations

Proposition [S. Nicaise e P., 2017]

Assume that (HD1) holds and that d satisfies

$$
\begin{equation*}
d \leq 2\left(1+\frac{1}{n_{1}}\right) \quad \text { and } \quad d<2\left(1+\frac{1}{n_{2}}\right) . \tag{HD2}
\end{equation*}
$$

Then there exists $\beta \in\left(0, \frac{1}{2}\right)$ such that for any initial datum

$$
u_{0} \in C([0, \tau] ; \mathcal{V}) \cap C^{0, \theta}\left([0, \tau], D\left((-\mathcal{A})^{\beta}\right)\right)
$$

with $\theta=\min \left\{\beta, \frac{1}{2}-\beta\right\}$, there exist a time $T_{\infty} \in(0,+\infty]$ and a unique solution

$$
u \in C\left(\left[0, T_{\infty}\right), \mathcal{V}\right) \cap C^{1}\left(\left(0, T_{\infty}\right), \mathcal{H}\right)
$$

of problem ($D D$).

Delay diffusion equations

Theorem [S. Nicaise and P., 2017]
Assume that conditions (HD1), (HD2) as well as

$$
f(0, y)=0, \quad \forall y \in \mathbb{R}
$$

are satisfied. With α_{0} from the assumption (HD1), we assume that

$$
\alpha_{0}<\varepsilon
$$

in the case of Neumann boundary conditions, and

$$
\alpha_{0}<\lambda_{1},
$$

otherwise.

Delay diffusion equations

Theorem [S. Nicaise and P., 2017]
Assume that conditions (HD1), (HD2) as well as

$$
f(0, y)=0, \quad \forall y \in \mathbb{R}
$$

are satisfied. With α_{0} from the assumption (HD1), we assume that

$$
\alpha_{0}<\varepsilon
$$

in the case of Neumann boundary conditions, and

$$
\alpha_{0}<\lambda_{1},
$$

otherwise. Then there exist $K_{0}>0$ small enough and $\gamma_{0}<1$ (depending on $\left.K_{0}\right)$ such that for all $K \in\left(0, K_{0}\right]$ and $u_{0} \in C([0, \tau] ; \mathcal{V})$ satisfying

$$
\left\|u_{0}(t)\right\| \mathcal{V}<\gamma_{0} K, \quad \forall t \in[-\tau, 0]
$$

problem ($D D$) has a global solution u that satisfies the exponential decay estimate

Delay diffusion equations

$$
\|u(t)\|_{\mathcal{H}} \leq M e^{-\tilde{\omega} t} \quad \forall t \geq 0
$$

for a positive constant M depending on u_{0} and a suitable positive constant $\tilde{\omega}$.

Delay diffusion equations

$$
\|u(t)\|_{\mathcal{H}} \leq M e^{-\tilde{\omega} t} \quad \forall t \geq 0
$$

for a positive constant M depending on u_{0} and a suitable positive constant $\tilde{\omega}$.

Concrete examples

1. Diffusive logistic equations with delay.

$$
f(x, y)=a x-b x^{2}+c x y
$$

with $a, b, c \in L^{\infty}(\Omega)$.

Delay diffusion equations

$$
\|u(t)\|_{\mathcal{H}} \leq M e^{-\tilde{\omega} t} \quad \forall t \geq 0
$$

for a positive constant M depending on u_{0} and a suitable positive constant $\tilde{\omega}$.

Concrete examples

1. Diffusive logistic equations with delay.

$$
f(x, y)=a x-b x^{2}+c x y
$$

with $a, b, c \in L^{\infty}(\Omega)$.
In such a case, the condition (HD1) holds with $\alpha_{0}=\sup _{\Omega}|a+\varepsilon|$, and $n_{1}=n_{2}=1$. Hence local existence holds for any $d \leq 3$, while exponentiel decay for sufficiently small initial data holds under the additional assumption that

$$
\sup _{\Omega} a<0,
$$

in the case of Neumann boundary conditions,

Delay diffusion equations

and

$$
\sup _{\Omega}|a|<\lambda_{1}
$$

in the other cases.

Delay diffusion equations

and

$$
\sup _{\Omega}|a|<\lambda_{1},
$$

in the other cases.
2. The modified Hutchinson equation.

In that case, f is given by (see [Memory (1991), Friesecke (1993)])

$$
f(x, y)=\alpha x\left(1+\beta y+\gamma y^{2}+\delta y^{3}\right)
$$

with $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. In such a case, the condition (HD1) holds with $\alpha_{0}=|\alpha+\varepsilon|$, and $n_{1}=n_{2}=3$. Hence local existence holds for any $d \leq 2$, while exponentiel decay for sufficiently small initial data holds under the additional assumption $\alpha<0$ in the case of Neumann boundary conditions, and $-\lambda_{1}<\alpha<\lambda_{1}$ in the other cases.

Delay diffusion equations

3. A cubic nonlinearity. The case where f is given by

$$
f(x, y)=-x^{2} y
$$

considered in [Lighbourne and Rankin (1981), Friesecke (1993)] is also covered by our setting in the case of Dirichlet or Robin boundary conditions, since (HD1) holds with $\alpha_{0}=0$ and $n_{1}=n_{2}=2$. Therefore local existence and exponentiel decay for sufficiently small initial data hold for any $d \leq 2$.

Delay diffusion equations

3. A cubic nonlinearity. The case where f is given by

$$
f(x, y)=-x^{2} y
$$

considered in [Lighbourne and Rankin (1981), Friesecke (1993)] is also covered by our setting in the case of Dirichlet or Robin boundary conditions, since (HD1) holds with $\alpha_{0}=0$ and $n_{1}=n_{2}=2$. Therefore local existence and exponentiel decay for sufficiently small initial data hold for any $d \leq 2$.

- Prey predator models and models for competitive species can be also considered.

Delay diffusion equations

3. A cubic nonlinearity. The case where f is given by

$$
f(x, y)=-x^{2} y
$$

considered in [Lighbourne and Rankin (1981), Friesecke (1993)] is also covered by our setting in the case of Dirichlet or Robin boundary conditions, since (HD1) holds with $\alpha_{0}=0$ and $n_{1}=n_{2}=2$. Therefore local existence and exponentiel decay for sufficiently small initial data hold for any $d \leq 2$.

- Prey predator models and models for competitive species can be also considered.
- If f is globally Lipschitz, i.e., $P_{1}=0$ and P_{2} is a positive constant, we can alternatively use the last abstract theorem and obtain exponential decay for small delays.

Thank you for your attention

Thank you for your attention

... e auguri Piermarco!

