Mayer Control Problem with Probabilistic Uncertainty on Initial Positions and Velocities

Marc Quincampoix Université de Brest
Roma, July 2017

A. Marigonda, M. Q., Mayer Control Problem with Probabilistic Uncertainty on Initial Positions and Velocities,) (2017) ,(to be submitted)

$$
\dot{x}(t)=f(x(t), u(t)), u(t) \in U, t \in[0, T],
$$

Goal: Minimize $J(x(\cdot))=g(x(T))$ over solutions s.t. $x(0)=x_{0}$, - The initial position x_{0} is not exactly known but only μ_{0} a probabilistic description is available. $\left(\forall A \subseteq \mathbb{R}^{d}, \mu_{0}(A)\right.$ is the probability that the initial position lies in the set A.)

- At every point of $\operatorname{supp}\left(\mu_{0}\right)$ may correspond different controlshence different velocities.
- Possibility of "division of mass" from x_{0} can start different trajectories with total probability is equal to one.

Dynamical system on $\mathcal{P}\left(\mathbb{R}^{d}\right)$

The conservation of mass along the trajectory $\boldsymbol{\mu}=\left\{\mu_{t}\right\}_{t \in[0, T]}$
$\left\{\begin{array}{l}\partial_{t} \mu_{t}+\operatorname{div}\left(v_{t} \mu_{t}\right)=0, \quad t \in[0, T] \\ \left.\mu\right|_{t=0}=\mu_{0}, \\ v_{t}(x) \in F(x):=f(x, U),\end{array}\right.$
for μ_{t}-almost every $x \in \mathbb{R}^{d}$,
Minimize $\mathcal{J}(\boldsymbol{\mu}):=\mathcal{G}\left(\mu_{T}\right):=\int_{\mathbb{R}^{d}} g(x) d \mu_{T}(x)$.
Remark If $v_{t}(\cdot)$ is Lipschitz then μ_{t} is the image measure of μ_{0} by the flow at time t of the ODE $\dot{x}(t)=v_{t}(x(t))$.

Objectives

Study the corresponding value function

$$
V(s, \mu)=\inf \left\{\mathcal{G}\left(\mu_{T}\right):\left\{\mu_{t}\right\}_{t \in[s, T]} \in \mathcal{A}_{[s, T]}^{F}(\mu)\right\}
$$

- Regularity
- Dynamic Programming Principle
- Hamilton Jacobi characterization
- Extension to differential games

Bibliographical comments

- Continuity equation Ambrosio-Gigli-Savare
- Control case Cavagnari-Marigonda, Applications in BressanZhang, Colombo-Lecureux-Mercier
- Hamilton Jacobi Equation on the Wasserstein space, Cardaliaguet-Quincampoix, Ambrosio-Gigli-Savare
- Differential games Jimenez-Quincampoix

Contents

1. Preliminaries
2. The dynamical system on Wasserstein space
3. Value function and Dynamical Programming
4. Hamilton Jacobi Equation
5. Characterization of the value
6. A differential game problem

Assumptions and Preliminaries

The trajectories $\boldsymbol{\mu}=\left\{\mu_{t}\right\}_{t \in[0, T]}$ can be represented as a superposition of trajectories defined in $[0, T]$ of a given differential inclusions

$$
\dot{x}(t) \in F(x(t))
$$

weighted by a probability measure μ on the initial state
$(\boldsymbol{F}) F: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ is a Lipschitz continuous set-valued map with nonempty compact convex values;
$(\mathcal{G}) \mathcal{G}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is bounded and Lipschitz continuous w.r.t. W_{2} metric.

Transport plan and Wasserstein distance

$\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right): \mathrm{m}_{2}\left(\mathbb{R}^{d}\right):=\int_{\mathbb{R}^{d}}\|x\|^{2} d \mu(x)<+\infty\right\}$
For $\mu_{1}, \mu_{2} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. We define the set of admissible transport plans between μ_{1} and μ_{2} by setting

$$
\begin{aligned}
\Pi\left(\mu_{1}, \mu_{2}\right) & =\left\{\gamma \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right): \pi_{i} \sharp \gamma=\mu_{i}, i=1,2\right\} . \\
W_{2}^{2}\left(\mu_{1}, \mu_{2}\right) & =\inf _{\gamma \in \Pi\left(\mu_{1}, \mu_{2}\right)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{2}}\left|x_{1}-x_{2}\right|^{2} d \gamma\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

If $\mu_{1}, \mu_{2} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ then the above infimum is actually a minimum, and we define $\Pi_{o}\left(\mu_{1}, \mu_{2}\right)$ the set of optimal γ.

Admissible trajectories

Let $a<b, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) . \boldsymbol{\mu}=\left\{\mu_{t}\right\}_{t \in[a, b]} \subseteq \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is an admissible trajectory starting from μ on $[a, b]$ if there exists a family of vector-valued measures $\overrightarrow{\boldsymbol{\nu}}=\left\{\vec{\nu}_{t}\right\}_{t \in[a, b]} \subseteq \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that

- $\partial_{t} \mu_{t}+\operatorname{div} \overrightarrow{\nu_{t}}=0$ in the sense of distributions, and $\mu_{a}=\mu$,
- $\left|\vec{\nu}_{t}\right| \ll \mu_{t}$ for a.e. $t \in[a, b]$, i.e., the total variation $\left|\vec{\nu}_{t}\right|$ of $\vec{\nu}_{t}$ is absolutely continuous w.r.t. μ_{t} for a.e. t;
- $\frac{\vec{\nu}_{t}}{\mu_{t}}(x) \in F(x)$ for a.e. $t \in[a, b]$ and μ_{t}-a.e. $x \in \mathbb{R}^{d}$.
(we will say that $\boldsymbol{\mu}$ is driven by $\overrightarrow{\boldsymbol{\nu}}$) $\mathcal{A}_{[a, b]}^{F}(\mu)$ is the set of all admissible trajectories.

Properties of Admissible Trajectories

- Superposition Principle: For any trajectory $\boldsymbol{\mu}=\left\{\mu_{t}\right\}_{t \in[0, T]} \in$ $\mathcal{A}_{T}^{\bar{F}}$ there exists a probability measure $\boldsymbol{\eta} \in \mathcal{P}\left(\mathbb{R}^{d} \times \Gamma_{T}\right)$, with $\Gamma_{T}=C^{0}\left([0, T] ; \mathbb{R}^{d}\right)$ endowed with the sup norm such that
(i) η is concentrated on the pairs (x, γ) such that γ is a solution to

$$
\dot{\gamma}(t) \in F(\gamma(t)), \gamma(0)=x
$$

(ii) $\mu_{t}=e_{t} \sharp \boldsymbol{\eta}$ for all $t \in[0, T]$,
where $e_{t}(x, \gamma):=\gamma(t)$.

- Closedness $\mathcal{A}_{[0, T]}^{F}(\mu)$ is closed for the distance $d\left(\mu, \mu^{\prime}\right):=$ $\sup _{t \in[0, T]} W_{2}\left(\mu_{t}, \mu_{t}^{\prime}\right)$
- Compactness If $\mu^{n} \in \mathcal{A}_{[0, T]}^{F}\left(\mu_{0}^{n}\right)$ and $\sup _{n} m_{2}\left(\mu_{0}^{n}\right)<+\infty$ then $\left(\mu^{n}\right)_{n}$ has a convergent subsequence for d.
- Concatenation
- Estimate If $] \mu_{t}=e_{t} \sharp \boldsymbol{\eta}$ for all $t \in[a, b]$, then for $s_{1}, s_{2} \in[a, b]$

$$
\left\|e_{s_{1}}-e_{s_{2}}\right\|_{L_{\eta}^{2}} \leq C e^{2(b-a) C}\left(1+\min _{i=1,2} \mathrm{~m}_{2}^{1 / 2}\left(\mu_{s_{i}}\right)\right)\left|s_{1}-s_{2}\right|
$$

Estimates for trajectories

Proposition 1 (Gronwall-like estimate in W_{2}) Assume that F satisfies (\boldsymbol{F}). Let $a, b \in \mathbb{R}$ with $a<b$. Then there exists $K>0$ such that given $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \boldsymbol{\mu}=\left\{\mu_{t}\right\}_{t \in[a, b]} \in \mathcal{A}_{[a, b]}(\mu)$ it is possible to find $\boldsymbol{\nu}=\left\{\nu_{t}\right\}_{t \in[a, b]} \in A_{[a, b]}(\nu)$ satisfying

$$
W_{2}\left(\mu_{t}, \nu_{t}\right) \leq K \cdot W_{2}(\mu, \nu), \text { for all } t \in[a, b] .
$$

Existence of trajectories with prescribed initial velocity

Proposition 2 Let $a, b \in \mathbb{R}, a<b, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, Then for every $v_{a} \in L_{\mu}^{2}\left(\mathbb{R}^{d}\right)$ such that $v_{a}(x) \in F(x)$ for μ-a.e. $x \in \mathbb{R}^{d}$ there exist $\boldsymbol{\eta} \in \mathcal{P}\left(\mathbb{R}^{d} \times \Gamma_{[a, b]}\right)$ such that $\boldsymbol{\mu}=\left\{e_{t} \sharp \boldsymbol{\eta}\right\}_{t \in[a, b]} \in \mathcal{A}_{[a, b]}^{F}(\mu)$ and

$$
\begin{aligned}
& \lim _{t \rightarrow a^{+}} \int_{\mathbb{R}^{d} \times \Gamma_{[a, b]}}\left\langle\varphi \circ e_{0}(x, \gamma), \frac{e_{t}(x, \gamma)-e_{a}(x, \gamma)}{t-a}\right\rangle d \boldsymbol{\eta}(x, \gamma) \\
&=\int_{\mathbb{R}^{d}}\left\langle\varphi(x), v_{a}(x)\right\rangle d \mu(x)
\end{aligned}
$$

Regularity of the Value

The value function $V:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
V(s, \mu)=\inf \left\{\mathcal{G}\left(\mu_{T}\right):\left\{\mu_{t}\right\}_{t \in[s, T]} \in \mathcal{A}_{[s, T]}^{F}(\mu)\right\} .
$$

is bounded and for every $K \geq 0$, it is Lipschitz continuous on the set

$$
\left\{(t, \mu) \in[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathrm{m}_{2}(\mu) \leq K\right\}
$$

Dynamic Programming Principle

For all $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\tau \in[0, T]$ we have

$$
V(\tau, \mu)=\inf \left\{V\left(s, \mu_{s}\right):\left\{\mu_{t}\right\}_{t \in[\tau, T]} \in \mathcal{A}_{[\tau, T]}^{F}(\mu), s \in[\tau, T]\right\}
$$

i.e., $V\left(\tau, \mu_{\tau}\right) \leq V\left(s, \mu_{s}\right)$ for all $\tau \leq s \leq T$ and $\left\{\mu_{t}\right\}_{t \in[\tau, T]} \in$ $\mathcal{A}_{[\tau, T]}^{F}(\mu)$, and $V\left(\tau, \mu_{\tau}\right)=V\left(s, \mu_{s}\right)$ for all $\tau \leq s \leq T$ if and only if $\left\{\mu_{t}\right\}_{t \in[\tau, T]}$ is an optimal trajectory for μ.

Representation of Optimal Plan

Lemma 3 Let $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \gamma \in \Pi_{o}(\mu, \nu)$. Then

- $\exists!p_{\gamma}^{\mu} \in L_{\mu}^{2}\left(\mathbb{R}^{d}\right)$ and $q_{\gamma}^{\nu} \in L_{\nu}^{2}\left(\mathbb{R}^{d}\right)$ such that for all $\varphi \in$ $L_{\mu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \cap L_{\nu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ we have

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle\varphi(x), x-y\rangle d \gamma(x, y)=\int_{\mathbb{R}^{d}}\left\langle\varphi, p_{\gamma}^{\mu}\right\rangle d \mu=\int_{\mathbb{R}^{d}}\left\langle\varphi, q_{\gamma}^{\mu}\right\rangle d \nu
$$

- we have $p_{\gamma}^{\mu}=\operatorname{Id}_{\mathbb{R}^{d}}-\operatorname{Bar}_{1}(\gamma), q_{\gamma}^{\nu}=\operatorname{Id}_{\mathbb{R}^{d}}-\operatorname{Bar}_{1}\left(\gamma^{-1}\right)$ where

$$
\operatorname{Bar}_{1}(\gamma)\left(x_{1}\right)=\int_{\mathbb{R}^{d}} y d \gamma_{x_{1}}(y), \text { for } \mu \text {-a.e. } x_{1} \in \mathbb{R}^{d}
$$

with $\gamma=\mu \otimes \gamma_{x_{1}}$.

On Viscosity Superdifferential

Let $\left.w:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R},(\bar{t}, \bar{\mu}) \in\right] 0, T\left[\times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right.$,
How to make a variation on μ variable ?
Naive Idea : $(I+\varphi) \sharp \bar{\mu}$ for $\varphi \in L_{\bar{\mu}}^{2}\left(\mathbb{R}^{d}\right)$

- it works with $\varphi(x)=f(x, u)$

But

- in general $\varphi(x)=f\left(x, u_{x}\right)$
- division of mass $\varphi(x)$ is not "single valued" at x

Viscosity δ-Superdifferential

Definition 4 Let $\left.w:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R},(\bar{t}, \bar{\mu}) \in\right] 0, T\left[\times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right.$, $\delta>0 .\left(p_{\bar{t}}, p_{\bar{\mu}}\right) \in \mathbb{R} \times L_{\bar{\mu}}^{2}\left(\mathbb{R}^{d}\right)$ belongs to $D_{\delta}^{+} w(\bar{t}, \bar{\mu})$ if
i.) $\exists \bar{\nu}, \gamma \in \Pi_{o}(\bar{\mu}, \bar{\nu}) \forall \varphi \in L_{\mu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \cap L_{\nu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ we have

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle\varphi(x), x-y\rangle d \gamma(x, y)=\int_{\mathbb{R}^{d}}\left\langle\varphi(x), p_{\bar{\mu}}(x)\right\rangle d \mu(x)
$$

ii.) for all $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{gathered}
w(t, \mu)-w(\bar{t}, \bar{\mu}) \leq p_{t}(t-\bar{t})+\int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}}\left\langle x_{2}, x_{3}-x_{1}\right\rangle d \tilde{\mu}\left(x_{1}, x_{2}, x_{3}\right)+ \\
+\delta \sqrt{(t-\bar{t})^{2}+W_{2, \tilde{\mu}}^{2}(\bar{\mu}, \mu)}+o\left(|t-\bar{t}|+W_{2, \tilde{\mu}}(\bar{\mu}, \mu)\right)
\end{gathered}
$$

$\forall \tilde{\mu} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ s.t. $\pi_{12} \sharp \tilde{\mu}=\left(\operatorname{Id}_{\mathbb{R}^{d}}, p_{\bar{\mu}}\right) \sharp \bar{\mu}, \pi_{13} \sharp \tilde{\mu} \in \Pi(\bar{\mu}, \mu)$.

Viscosity δ-Subdifferential

$$
D_{\delta}^{-} w(\bar{t}, \bar{\mu})=D_{\delta}^{+}(-w)(\bar{t}, \bar{\mu})
$$

Transport Multi plan

Let $\gamma \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a transport plan, and let $\mu_{3} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. We set $\mu_{1}=\pi_{1} \sharp \gamma$ and

$$
\Pi\left(\gamma, \mu_{3}\right):=\left\{\tilde{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right): \pi_{12} \sharp \tilde{\mu}=\gamma, \pi_{3} \sharp \tilde{\mu}=\mu_{3}\right\}
$$

$\Pi_{o}\left(\gamma, \mu_{3}\right):=\left\{\tilde{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right): \pi_{12} \sharp \tilde{\mu}=\gamma, \pi_{13} \sharp \tilde{\mu} \in \Pi_{o}\left(\mu_{1}, \mu_{3}\right)\right\}$.
Given $\tilde{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right), i, j=1,2,3$, we set $\mu_{i}=\pi_{i \sharp} \tilde{\mu}$ and

$$
W_{2, \tilde{\mu}}^{2}\left(\mu_{i}, \mu_{j}\right)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}}\left|x_{i}-x_{j}\right|^{2} d \tilde{\mu}\left(x_{1}, x_{2}, x_{3}\right)
$$

Clearly, $W_{2, \tilde{\mu}}\left(\mu_{i}, \mu_{j}\right) \geq W_{2}\left(\mu_{i}, \mu_{j}\right)$ for all $i, j=1,2,3$.

Lemma 5 Let $\gamma_{12}, \gamma_{13} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be such that $\pi_{1} \sharp \gamma_{12}=$ $\pi_{1} \sharp \gamma_{13}=\mu_{1} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$. Then there exists $\tilde{\mu} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that $\pi_{12} \sharp \tilde{\mu}=\gamma_{12}$ and $\pi_{13} \sharp \tilde{\mu}=\gamma_{13}$. In particular, if $\gamma_{12}=\mu_{1} \otimes \gamma_{12}^{x_{1}}, \gamma_{13}=\mu_{1} \otimes \gamma_{13}^{x_{1}}$, and $\tilde{\mu}=\mu_{1} \otimes \tilde{\mu}_{x_{1}}$, we have $\tilde{\mu}_{x_{1}} \in \Pi\left(\gamma_{12}^{x_{1}}, \gamma_{13}^{x_{1}}\right)$ for μ_{1}-a.e. $x_{1} \in \mathbb{R}^{d}$. The measure $\tilde{\mu}$ is unique if γ_{12} or γ_{13} are induced by a transport map.

Remarks on subdifferential

If ii.) of Definition to hold only for $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ induced by a transport map $\mu=(\operatorname{Id}+\varphi) \sharp \bar{\mu}$, Then $\exists!\tilde{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that $\pi_{12} \sharp \tilde{\mu}=\left(\operatorname{Id}, p_{\bar{\mu}}\right) \sharp \bar{\mu}$ and $\pi_{13}=(\operatorname{Id}, \operatorname{Id}+\varphi) \sharp \bar{\mu}$, and we have $\tilde{\mu}=\left(\operatorname{Id}, p_{\bar{\mu}}, \operatorname{Id}+\varphi\right) \sharp \bar{\mu}$. Then $W_{2, \tilde{\mu}}(\bar{\mu}, \mu)=\|\varphi\|_{L_{\bar{\mu}}}$, and we recover the same $\mathrm{d} \delta$-superdifferential of Cardaliaguet-Quincampoix (cf $\bar{\mu} \ll \mathcal{L}^{d}$).
More generally, in item ii.) of Definition we consider absolutely continuous $\boldsymbol{\mu}=\left\{\mu_{s}\right\}_{s \in[0, t]}$ curves $\bar{\mu}$ to μ, represented by $\boldsymbol{\eta} \in \mathcal{P}\left(\mathbb{R}^{d} \times \Gamma_{t}\right)$ satisfying $\mu_{s}=e_{s} \sharp \boldsymbol{\eta}$, then we can choose $\tilde{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ to be $\tilde{\mu}=\left(e_{0}, p_{\bar{\mu}} \circ e_{0}, e_{t}\right) \sharp \boldsymbol{\eta}$, recovering the same δ-superdifferential of Cavagnari-Marigonda-Nguyen

Hamilton Jacobi Equation

$$
\begin{equation*}
\partial_{t} w(t, \mu)+\mathcal{H}(\mu, D w(t, \mu))=0 \tag{1}
\end{equation*}
$$

where $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $p \in L_{\mu}^{2}\left(\mathbb{R}^{d}\right) . w:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is

- a subsolution of (1) if w is u.s.c. and $\exists C>0$ s.t.

$$
p_{t}+\mathcal{H}\left(\mu, p_{\mu}\right) \geq-C \delta
$$

for all $(t, \mu) \in] 0, T\left[\times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right),\left(p_{t}, p_{\mu}\right) \in D_{\delta}^{+} w\left(t_{0}, \mu_{0}\right)\right.$, and $\delta>0$.

- a supersolution of (1) if w is l.s.c. and $\exists C>0$ s.t.

$$
p_{t}+\mathcal{H}\left(\mu, p_{\mu}\right) \leq C \delta
$$

for all $(t, \mu) \in] 0, T\left[\times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right),\left(p_{t}, p_{\mu}\right) \in D_{\delta}^{-} w\left(t_{0}, \mu_{0}\right)\right.$, and $\delta>0$.

Comparison Theorem

Consider an Hamiltonian function \mathcal{H} satisfying

- positive homogeneity: for every $\lambda \geq 0, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, $p \in$ $L_{\mu}^{2}\left(\mathbb{R}^{d}\right)$ we have $\mathcal{H}(\mu, \lambda p)=\lambda \mathcal{H}(\mu, p)$;
- dissipativity: $\exists k \geq 0, \forall \mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \gamma \in \Pi_{o}(\mu, \nu)$, defined $p_{\gamma}^{\mu}=\operatorname{Id}_{\mathbb{R}^{d}}-\operatorname{Bar}_{1}(\gamma), q_{\gamma}^{\nu}=\operatorname{Id}_{\mathbb{R}^{d}}-\operatorname{Bar}_{1}\left(\gamma^{-1}\right)$, we have

$$
\mathcal{H}_{F}\left(\mu, p_{\mu}\right)-\mathcal{H} F\left(\nu, q_{\nu}\right) \leq k W_{2}^{2}(\mu, \nu)
$$

Let w_{1} and w_{2} be a bounded and Lipschitz continuous sub and super solution respectively. Then

$$
\inf _{(s, \mu) \in[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} w_{2}(s, \mu)-w_{1}(s, \mu)=\inf _{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} w_{2}(T, \mu)-w_{1}(T, \mu) .
$$

HJB Equation and Mayer's problem

$\inf \left\{\int_{\mathbb{R}^{d}}\left\langle p_{\mu}(x), v_{\mu}(x)\right\rangle d \mu(x): \begin{array}{l}v_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \text { Borel map } \\ v_{\mu}(x) \in F(x) \text { for } \mu \text {-a.e. } x \in \mathbb{R}^{d}\end{array}\right\}$.
Proposition The Hamiltonian satisfies regularity properties need for the Comparison Theorem

Main result

Theorem 6 Let $T>0, F: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ be a Lipschitz continuous set-valued map with nonempty compact convex values, $\mathcal{G}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ be a bounded and Lipschitz continuous map. Then for any $K \geq 0$, the value function $V(\cdot)$ is the unique Lipschitz continuous solution of the equation

$$
\left\{\begin{array}{l}
\partial_{t} w(t, \mu)+\mathcal{H}_{F}(\mu, D w(t, \mu))=0 \tag{2}\\
w(T, \mu)=\mathcal{G}(\mu)
\end{array}\right.
$$

stated on the set $\left\{(t, \mu) \in[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), m_{2}(\mu) \leq K\right\}$.

Differential Games

First player acts on the system

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(v_{t} \mu_{t}\right)=0, v_{t}(x) \in F(x), \text { for } \mu_{t} \text { a.e. } x \in \mathbb{R}^{d} t \in[0, T],
$$

while the second player controls the system

$$
\partial_{t} \nu_{t}+\operatorname{div}\left(\theta_{t} \nu_{t}\right)=0, \theta_{t}(x) \in G(x), \text { for } \nu_{t} \text { a.e. } x \in \mathbb{R}^{d} t \in[0, T] .
$$

Associated to both above dynamics, the following cost is defined

$$
\mathcal{J}:=\mathcal{G}\left(\mu_{T}, \nu_{T}\right),
$$

that the first and the second player wish to minimize and maximize, respectively.

Strategies and Values

A strategy for the first player $\alpha: \mathcal{A}_{\left[t_{0}, T\right]}^{G} \rightarrow \mathcal{A}_{\left[t_{0}, T\right]}^{F}$. is nonanticipative with delay τ if $\exists \tau>0$ such that given $t_{0} \leq s \leq T, \nu^{i}=\left\{\nu_{t}^{i}\right\}_{t \in\left[t_{0}, T\right]} \in \mathcal{A}_{\left[t_{0}, T\right]}^{G}, i=1,2$, satisfying $\nu_{t}^{1}=\nu_{t}^{2}$ for all $t_{0} \leq t \leq s$, and set $\alpha\left(\boldsymbol{\nu}^{i}\right)=\left\{\mu_{t}^{i}\right\}_{t \in\left[t_{0}, T\right]}, i=1,2$, we have $\mu_{t}^{1}=\mu_{t}^{2} \forall t_{0} \leq t \leq \min \{s+\tau, T\}$.
$\mathcal{A}\left(t_{0}, \mu_{0}\right)$ is a set of strategies for the initial measure μ_{0}
Lemma 7 (Normal form) Let $t_{0}<\tau<T$. For any $(\alpha, \beta) \in$ $\mathcal{A}_{\tau}\left(t_{0}\right) \times \mathcal{B}_{\tau}\left(t_{0}\right)$ there is a unique pair $(\boldsymbol{\mu}, \boldsymbol{\nu}) \in \mathcal{A}_{\left[t_{0}, b\right]}^{F} \times \mathcal{A}_{\left[t_{0}, b\right]}^{G}$ such that $\alpha(\boldsymbol{\nu})=\boldsymbol{\mu}$ and $\beta(\boldsymbol{\mu})=\boldsymbol{\nu}$.

Strategies and Values

$$
\begin{gathered}
J\left(t_{0}, \mu_{0}, \nu_{0}, \alpha, \beta\right)=\mathcal{G}\left(\mu_{T}, \nu_{T}\right), \\
V^{+}\left(t_{0}, \mu_{0}, \nu_{0}\right)=\inf _{\alpha \in \mathcal{A}\left(t_{0}, \mu_{0}\right)} \sup _{\beta \in \mathcal{B}\left(t_{0}, \nu_{0}\right)} J\left(t_{0}, \mu_{0}, \nu_{0}, \alpha, \beta\right) \\
V^{-}\left(t_{0}, \mu_{0}, \nu_{0}\right)=\sup _{\beta \in \mathcal{B}\left(t_{0}, \nu_{0}\right)} \inf _{\alpha \in \mathcal{A}\left(t_{0}, \mu_{0}\right)} J\left(t_{0}, \mu_{0}, \nu_{0}, \alpha, \beta\right) .
\end{gathered}
$$

Proposition $V^{ \pm}(\cdot)$ are bounded and locally Lipschitz continuous.

A nonanticipative Lemma

$T>0, t_{0} \in[0, T], \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) . \quad \exists \xi_{t_{0}}^{F, \bar{\mu}}: \mathcal{A}_{\left[t_{0}, T\right]}^{F} \rightarrow \mathcal{A}_{\left[t_{0}, T\right]}^{F}(\bar{\mu})$ $\exists K>0$ s.t. given $\boldsymbol{\mu}^{(i)}=\left\{\mu_{t}^{(i)}\right\}_{t \in[0, T]} \in \mathcal{A}_{\left[t_{0}, T\right]}^{F}, i=1,2$, and set $\boldsymbol{\mu}^{(3)}=\left\{\mu_{t}^{(3)}\right\}_{t \in[0, T]}=\xi_{t_{0}}^{F, \mu}\left(\boldsymbol{\mu}^{(1)}\right), \boldsymbol{\mu}^{(4)}=\left\{\mu_{t}^{(4)}\right\}_{t \in[0, T]}=\xi_{t_{0}}^{F,{ }_{\mu}}\left(\boldsymbol{\mu}^{(2)}\right)$,
i.) $W_{2}\left(\mu_{t}^{(1)}, \mu_{t}^{(3)}\right) \leq K W_{2}\left(\mu_{t_{0}}^{(1)}, \mu_{t_{0}}^{(3)}\right)$ for all $t \in\left[t_{0}, T\right]$;
ii.) if there exists $t_{0}<s<T$ such that $\mu_{t}^{(2)}=\mu_{t}^{(1)}$ for all $t \in\left[t_{0}, s\right]$ then $\mu_{t}^{(4)}=\mu_{t}^{(3)}$ for all $t \in\left[t_{0}, s\right]$.
Notice that $\mu_{t_{0}}^{(3)}=\bar{\mu}$; moreover, $\forall \alpha \in \mathcal{A}_{\tau}\left(t_{0}\right), \xi_{t_{0}}^{F, \bar{\mu} \circ \alpha: \mathcal{A}_{\left[t_{0}, T\right]}^{G} \rightarrow}$ $\mathcal{A}_{\left[t_{0}, T\right]}^{F}(\mu)$ is a nonanticipative strategy with delay τ.

Dynamic Programming Principle

$$
\begin{gathered}
V^{+}\left(t_{0}, \mu^{0}, \nu^{0}\right)= \\
\inf _{\alpha \in \mathcal{A}\left(t_{0}, \mu^{0}\right)} \sup _{\beta \in \mathcal{B}\left(t_{0}, \nu^{0}\right)}\left\{V^{+}\left(t_{1}, \mu_{t_{1}}, \nu_{t_{1}}\right): \begin{array}{l}
\boldsymbol{\mu}=\left\{\mu_{t}\right\}_{t \in\left[t_{0}, T\right]}=\alpha(\boldsymbol{\nu}) \\
\boldsymbol{\nu}=\left\{\nu_{t}\right\}_{t \in\left[t_{0}, T\right]}=\beta(\boldsymbol{\mu})
\end{array}\right\},
\end{gathered}
$$

Hamiltonian

(3) $\left.\mathcal{H}_{(\mu, \nu}, p_{\mu}, p_{\nu}\right)=$

$$
\begin{aligned}
& \inf _{\substack{v(\cdot) \in L_{\mu}^{2}\left(\mathbb{R}^{d}\right) \\
v(x) \in F(x) \mu \text {-a.e. } x}} \int_{\mathbb{R}^{d}}\left\langle p_{\mu}(x), v(x)\right\rangle d \mu(x) \\
& \quad+\sup _{\substack{w(\cdot) \in L_{\nu}^{2}\left(\mathbb{R}^{d}\right) \\
w(x) \in G(x) \nu \text {-a.e. } x}} \int_{\mathbb{R}^{d}}\left\langle p_{\nu}(x), w(x)\right\rangle d \nu(x) .
\end{aligned}
$$

Second Main Result

Theorem 8 (Existence of a value and its characterization) The game has a value, i.e., $V^{+}=V^{-}=: V$ and V is the unique Lipschitz continuous viscosity solution of the Hamilton-Jacobi-Bellman equation $\partial_{t} V+\mathcal{H}_{P E}\left(\mu, \nu, D_{\mu} V, D_{\nu} V\right)=0, V(T, \mu, \nu)$ $\mathcal{G}(\mu, \nu)$.

Extensions

- Bolza Problem
- Cost with congestion

$$
\mathcal{J}(\mu)=\mathcal{G}\left(\mu_{T}\right)+\int_{0}^{T} L\left(\mu_{t}\right) d t
$$

with
$L(\mu)=\int_{I R^{d}} h\left(x, \frac{\mu}{\lambda}(x)\right) d \lambda$ if $\mu \ll \lambda$
and $L(\mu)=+\infty$ else

Thank you for your attention

