Mayer Control Problem with Probabilistic Uncertainty on Initial Positions and Velocities

> Marc Quincampoix Université de Brest Roma, July 2017

A. Marigonda, M. Q., Mayer Control Problem with Probabilistic Uncertainty on Initial Positions and Velocities,) (2017), (to be submitted)

$$\dot{x}(t) = f(x(t), u(t)), \ u(t) \in U, \ t \in [0, T],$$

<u>Goal</u>: Minimize $J(x(\cdot)) = g(x(T))$ over solutions s.t. $x(0) = x_0$,

- The initial position x_0 is not exactly known but only μ_0 a probabilistic description is available. ($\forall A \subseteq \mathbb{R}^d$, $\mu_0(A)$ is the probability that the initial position lies in the set A.)
- At every point of $supp(\mu_0)$ may correspond different controlshence different velocities.
- Possibility of "division of mass" from x_0 can start different trajectories with total probability is equal to one.

The conservation of mass along the trajectory $\mu = {\mu_t}_{t \in [0,T]}$

 $\begin{cases} \partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0, & t \in [0, T] \\ \mu|_{t=0} = \mu_0, & \\ v_t(x) \in F(x) := f(x, U), & \text{for } \mu_t\text{-almost every } x \in \mathbb{R}^d, \\ \text{Minimize } \mathcal{J}(\boldsymbol{\mu}) := \mathcal{G}(\mu_T) := \int_{\mathbb{R}^d} g(x) \, d\mu_T(x). \\ \text{\underline{Remark } If } v_t(\cdot) \text{ is Lipschitz then } \mu_t \text{ is the image measure } \\ \text{of } \mu_0 \text{ by the flow at time } t \text{ of the ODE } \dot{x}(t) = v_t(x(t)). \end{cases}$

Objectives

Study the corresponding value function

$$V(s,\mu) = \inf \left\{ \mathcal{G}(\mu_T) : \{\mu_t\}_{t \in [s,T]} \in \mathcal{A}^F_{[s,T]}(\mu) \right\}$$

- Regularity
- Dynamic Programming Principle
- Hamilton Jacobi characterization
- Extension to differential games

Bibliographical comments

- Continuity equation Ambrosio-Gigli-Savare
- Control case Cavagnari-Marigonda, Applications in Bressan-Zhang, Colombo-Lecureux-Mercier
- Hamilton Jacobi Equation on the Wasserstein space, Cardaliaguet-Quincampoix, Ambrosio-Gigli-Savare
 - Differential games Jimenez-Quincampoix

Contents

- 1. Preliminaries
- 2. The dynamical system on Wasserstein space
- 3. Value function and Dynamical Programming
- 4. Hamilton Jacobi Equation
- 5. Characterization of the value
- 6. A differential game problem

The trajectories $\mu = {\mu_t}_{t \in [0,T]}$ can be represented as a superposition of trajectories defined in [0,T] of a given differential inclusions

$$\dot{x}(t) \in F(x(t))$$

weighted by a probability measure μ on the initial state

- (*F*) $F : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ is a Lipschitz continuous set-valued map with nonempty compact convex values;
- $(\mathcal{G}) \ \mathcal{G} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is bounded and Lipschitz continuous w.r.t. W_2 metric.

$$\mathcal{P}_2(\mathbb{R}^d) = \{ \mu \in \mathcal{P}(\mathbb{R}^d) : m_2(\mathbb{R}^d) := \int_{\mathbb{R}^d} \|x\|^2 d\mu(x) < +\infty \}$$

For $\mu_1, \mu_2 \in \mathcal{P}_2(\mathbb{R}^d)$. We define the set of *admissible trans*port plans between μ_1 and μ_2 by setting

$$\Pi(\mu_1,\mu_2) = \{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \pi_i \sharp \gamma = \mu_i, \ i = 1, 2 \}.$$

$$W_2^2(\mu_1, \mu_2) = \inf_{\gamma \in \Pi(\mu_1, \mu_2)} \int_{\mathbb{R}^d \times \mathbb{R}^2} |x_1 - x_2|^2 \, d\gamma(x_1, x_2).$$

If $\mu_1, \mu_2 \in \mathcal{P}_2(\mathbb{R}^d)$ then the above infimum is actually a minimum, and we define $\prod_o(\mu_1, \mu_2)$ the set of optimal γ .

Admissible trajectories

Let $a < b, \ \mu \in \mathcal{P}_2(\mathbb{R}^d)$. $\mu = \{\mu_t\}_{t \in [a,b]} \subseteq \mathcal{P}_2(\mathbb{R}^d)$ is an *admissible trajectory* starting from μ on [a,b] if there exists a family of vector-valued measures $\vec{\nu} = \{\vec{\nu}_t\}_{t \in [a,b]} \subseteq \mathcal{M}(\mathbb{R}^d;\mathbb{R}^d)$ such that

- $\partial_t \mu_t + \operatorname{div} \vec{\nu}_t = 0$ in the sense of distributions, and $\mu_a = \mu$,
- $|\vec{\nu}_t| \ll \mu_t$ for a.e. $t \in [a, b]$, i.e., the total variation $|\vec{\nu}_t|$ of $\vec{\nu}_t$ is absolutely continuous w.r.t. μ_t for a.e. t;

•
$$\frac{\nu_t}{\mu_t}(x) \in F(x)$$
 for a.e. $t \in [a, b]$ and μ_t -a.e. $x \in \mathbb{R}^d$.

(we will say that μ is *driven* by $\vec{\nu}$) $\mathcal{A}_{[a,b]}^F(\mu)$ is the set of all admissible trajectories.

- Superposition Principle: For any trajectory $\boldsymbol{\mu} = {\{\mu_t\}_{t \in [0,T]} \in \mathcal{A}_T^F \text{ there exists a probability measure } \boldsymbol{\eta} \in \mathcal{P}(\mathbb{R}^d \times \Gamma_T), \text{ with}$ $\Gamma_T = C^0([0,T];\mathbb{R}^d) \text{ endowed with the sup norm such that}$

(i) η is concentrated on the pairs (x, γ) such that γ is a solution to

 $\dot{\gamma}(t) \in F(\gamma(t)), \ \gamma(0) = x.$

(ii) $\mu_t = e_t \sharp \boldsymbol{\eta}$ for all $t \in [0, T]$,

where $e_t(x, \gamma) := \gamma(t)$.

- <u>Closedness</u> $\mathcal{A}_{[0,T]}^F(\mu)$ is closed for the distance $d(\mu, \mu') := \sup_{t \in [0,T]} W_2(\mu_t, \mu'_t)$
 - <u>Compactness</u> If $\mu^n \in \mathcal{A}^F_{[0,T]}(\mu^n_0)$ and $\sup_n m_2(\mu^n_0) < +\infty$ then
- $(\mu^n)_n$ has a convergent subsequence for d.
 - <u>Concatenation</u>
 - <u>Estimate</u> If] $\mu_t = e_t \sharp \eta$ for all $t \in [a, b]$, then for $s_1, s_2 \in [a, b]$

$$\|e_{s_1} - e_{s_2}\|_{L^2_{\boldsymbol{\eta}}} \le C e^{2(b-a)C} \left(1 + \min_{i=1,2} m_2^{1/2}(\mu_{s_i})\right) |s_1 - s_2|,$$

Estimates for trajectories

Proposition 1 (Gronwall-like estimate in W_2) Assume that F satisfies (F). Let $a, b \in \mathbb{R}$ with a < b. Then there exists K > 0 such that given $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, $\mu = {\mu_t}_{t \in [a,b]} \in \mathcal{A}_{[a,b]}(\mu)$ it is possible to find $\nu = {\nu_t}_{t \in [a,b]} \in A_{[a,b]}(\nu)$ satisfying

 $W_2(\mu_t, \nu_t) \le K \cdot W_2(\mu, \nu), \text{ for all } t \in [a, b].$

Proposition 2 Let $a, b \in \mathbb{R}$, a < b, $\mu \in \mathcal{P}_2(\mathbb{R}^d)$, Then for every $v_a \in L^2_{\mu}(\mathbb{R}^d)$ such that $v_a(x) \in F(x)$ for μ -a.e. $x \in \mathbb{R}^d$ there exist $\eta \in \mathcal{P}(\mathbb{R}^d \times \Gamma_{[a,b]})$ such that $\mu = \{e_t \sharp \eta\}_{t \in [a,b]} \in \mathcal{A}^F_{[a,b]}(\mu)$ and

$$\lim_{t \to a^+} \int_{\mathbb{R}^d \times \Gamma_{[a,b]}} \langle \varphi \circ e_0(x,\gamma), \frac{e_t(x,\gamma) - e_a(x,\gamma)}{t-a} \rangle \, d\eta(x,\gamma)$$
$$= \int_{\mathbb{R}^d} \langle \varphi(x), v_a(x) \rangle \, d\mu(x).$$

Regularity of the Value

The value function $V : [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ given by

$$V(s,\mu) = \inf \left\{ \mathcal{G}(\mu_T) : \{\mu_t\}_{t \in [s,T]} \in \mathcal{A}^F_{[s,T]}(\mu) \right\}$$

is bounded and for every $K \ge 0$, it is Lipschitz continuous on the set

$$\{(t,\mu)\in[0,T]\times\mathcal{P}_2(\mathbb{R}^d),\ \mathrm{m}_2(\mu)\leq K\}$$

For all
$$\mu \in \mathcal{P}_2(\mathbb{R}^d)$$
 and $\tau \in [0,T]$ we have
 $V(\tau,\mu) = \inf \left\{ V(s,\mu_s) : \{\mu_t\}_{t \in [\tau,T]} \in \mathcal{A}^F_{[\tau,T]}(\mu), s \in [\tau,T] \right\},$
i.e., $V(\tau,\mu_{\tau}) \leq V(s,\mu_s)$ for all $\tau \leq s \leq T$ and $\{\mu_t\}_{t \in [\tau,T]} \in \mathcal{A}^F_{[\tau,T]}(\mu)$, and $V(\tau,\mu_{\tau}) = V(s,\mu_s)$ for all $\tau \leq s \leq T$ if and only
if $\{\mu_t\}_{t \in [\tau,T]}$ is an optimal trajectory for μ .

Lemma 3 Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, $\gamma \in \Pi_o(\mu, \nu)$. Then • $\exists ! p_{\gamma}^{\mu} \in L^2_{\mu}(\mathbb{R}^d)$ and $q_{\gamma}^{\nu} \in L^2_{\nu}(\mathbb{R}^d)$ such that for all $\varphi \in$ $L^{2}_{\mu}(\mathbb{R}^{d},\mathbb{R}^{d})\cap L^{2}_{\nu}(\mathbb{R}^{d},\mathbb{R}^{d})$ we have $\int_{\mathbb{R}^d \times \mathbb{R}^d} \langle \varphi(x), x - y \rangle \, d\gamma(x, y) = \int_{\mathbb{R}^d} \langle \varphi, p_\gamma^\mu \rangle \, d\mu = \int_{\mathbb{R}^d} \langle \varphi, q_\gamma^\mu \rangle \, d\nu.$ • we have $p_{\gamma}^{\mu} = \operatorname{Id}_{\mathbb{R}^d} - \operatorname{Bar}_1(\gamma)$, $q_{\gamma}^{\nu} = \operatorname{Id}_{\mathbb{R}^d} - \operatorname{Bar}_1(\gamma^{-1})$ where Bar₁(γ)(x_1) = $\int_{\mathbb{T}^d} y \, d\gamma_{x_1}(y)$, for μ -a.e. $x_1 \in \mathbb{R}^d$, with $\gamma = \mu \otimes \gamma_{x_1}$.

Let
$$w : [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$$
, $(\bar{t},\bar{\mu}) \in]0, T[\times \mathcal{P}_2(\mathbb{R}^d)$,
How to make a variation on μ variable ?
Naive Idea : $(I + \varphi) \sharp \bar{\mu}$ for $\varphi \in L^2_{\bar{\mu}}(\mathbb{R}^d)$
• it works with $\varphi(x) = f(x,u)$
But

• in general
$$\varphi(x) = f(x, u_x)$$

 \bullet division of mass $\varphi(x)$ is not "single valued" at x

Viscosity δ -Superdifferential

Definition 4 Let $w : [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}, \ (\bar{t},\bar{\mu}) \in]0, T[\times \mathcal{P}_2(\mathbb{R}^d),$ $\delta > 0.$ $(p_{\bar{t}}, p_{\bar{\mu}}) \in \mathbb{R} \times L^2_{\bar{\mu}}(\mathbb{R}^d)$ belongs to $D^+_{\lambda}w(\bar{t}, \bar{\mu})$ if *i.)* $\exists \bar{\nu}, \gamma \in \Pi_o(\bar{\mu}, \bar{\nu}) \quad \forall \varphi \in L^2_{\mu}(\mathbb{R}^d, \mathbb{R}^d) \cap L^2_{\nu}(\mathbb{R}^d, \mathbb{R}^d) \quad we have$ $\int_{\mathbb{R}^d \times \mathbb{R}^d} \langle \varphi(x), x - y \rangle \, d\gamma(x, y) = \int_{\mathbb{R}^d} \langle \varphi(x), p_{\bar{\mu}}(x) \rangle \, d\mu(x).$ ii.) for all $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ we have $w(t,\mu) - w(\bar{t},\bar{\mu}) \le p_t(t-\bar{t}) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_1 \rangle \, d\tilde{\mu}(x_1, x_2, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_2, x_3 - x_3 \rangle \, d\tilde{\mu}(x_1, x_3, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_3 - x_3 \rangle \, d\tilde{\mu}(x_1, x_3, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_3 - x_3 \rangle \, d\tilde{\mu}(x_1, x_3, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_3 - x_3 \rangle \, d\tilde{\mu}(x_1, x_3, x_3) + \int_{\mathbb{D}^d \times \mathbb{D}^d} \langle x_1, x_3 - x_3 \rangle \, d\tilde{\mu}(x_1, x_3, x_3$ $+ \delta \sqrt{(t-\bar{t})^2 + W_{2,\tilde{\mu}}^2(\bar{\mu},\mu)} + o(|t-\bar{t}| + W_{2,\tilde{\mu}}(\bar{\mu},\mu)),$ $\forall \tilde{\mu} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d) \text{ s.t. } \pi_{12} \sharp \tilde{\mu} = (\mathrm{Id}_{\mathbb{R}^d}, p_{\bar{\mu}}) \sharp \bar{\mu}, \pi_{13} \sharp \tilde{\mu} \in \Pi(\bar{\mu}, \mu).$

Viscosity δ -Subdifferential

$$D_{\delta}^{-}w(\bar{t},\bar{\mu}) = D_{\delta}^{+}(-w)(\bar{t},\bar{\mu})$$

Let $\gamma \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d)$ be a transport plan, and let $\mu_3 \in \mathcal{P}_2(\mathbb{R}^d)$. We set $\mu_1 = \pi_1 \sharp \gamma$ and $\Pi(\gamma, \mu_3) := \{ \tilde{\mu} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d) : \pi_{12} \sharp \tilde{\mu} = \gamma, \pi_3 \sharp \tilde{\mu} = \mu_3 \},$ $\Pi_o(\gamma, \mu_3) := \{ \tilde{\mu} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d) : \pi_{12} \sharp \tilde{\mu} = \gamma, \pi_{13} \sharp \tilde{\mu} \in \Pi_o(\mu_1, \mu_3) \}.$ Given $\tilde{\mu} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d), i, j = 1, 2, 3$, we set $\mu_i = \pi_i \sharp \tilde{\mu}$ and $W_{2,\tilde{\mu}}^2(\mu_i, \mu_j) = \int_{\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d} |x_i - x_j|^2 d\tilde{\mu}(x_1, x_2, x_3).$

Clearly, $W_{2,\tilde{\mu}}(\mu_i, \mu_j) \ge W_2(\mu_i, \mu_j)$ for all i, j = 1, 2, 3.

Lemma 5 Let $\gamma_{12}, \gamma_{13} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$ be such that $\pi_1 \sharp \gamma_{12} = \pi_1 \sharp \gamma_{13} = \mu_1 \in \mathcal{P}(\mathbb{R}^d)$. Then there exists $\tilde{\mu} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$ such that $\pi_{12} \sharp \tilde{\mu} = \gamma_{12}$ and $\pi_{13} \sharp \tilde{\mu} = \gamma_{13}$. In particular, if $\gamma_{12} = \mu_1 \otimes \gamma_{12}^{x_1}$, $\gamma_{13} = \mu_1 \otimes \gamma_{13}^{x_1}$, and $\tilde{\mu} = \mu_1 \otimes \tilde{\mu}_{x_1}$, we have $\tilde{\mu}_{x_1} \in \Pi(\gamma_{12}^{x_1}, \gamma_{13}^{x_1})$ for μ_1 -a.e. $x_1 \in \mathbb{R}^d$. The measure $\tilde{\mu}$ is unique if γ_{12} or γ_{13} are induced by a transport map.

Remarks on subdifferential

If ii.) of Definition to hold only for $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ induced by a transport map $\mu = (\mathrm{Id} + \varphi) \sharp \bar{\mu}$, Then $\exists ! \tilde{\mu} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$ such that $\pi_{12} \sharp \tilde{\mu} = (\mathrm{Id}, p_{\bar{\mu}}) \sharp \bar{\mu}$ and $\pi_{13} = (\mathrm{Id}, \mathrm{Id} + \varphi) \sharp \bar{\mu}$, and we have $\tilde{\mu} = (\mathrm{Id}, p_{\bar{\mu}}, \mathrm{Id} + \varphi) \sharp \bar{\mu}$. Then $W_{2,\tilde{\mu}}(\bar{\mu}, \mu) = \|\varphi\|_{L^2_{\bar{\mu}}}$, and we recover the same d δ -superdifferential of Cardaliaguet-Quincampoix (cf $\bar{\mu} \ll \mathcal{L}^d$).

More generally, in item ii.) of Definition we consider absolutely continuous $\mu = {\mu_s}_{s \in [0,t]}$ curves $\bar{\mu}$ to μ , represented by $\eta \in \mathcal{P}(\mathbb{R}^d \times \Gamma_t)$ satisfying $\mu_s = e_s \sharp \eta$, then we can choose $\tilde{\mu} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$ to be $\tilde{\mu} = (e_0, p_{\bar{\mu}} \circ e_0, e_t) \sharp \eta$, recovering the same δ -superdifferential of Cavagnari-Marigonda-Nguyen (1) $\partial_t w(t,\mu) + \mathcal{H}(\mu, Dw(t,\mu)) = 0,$ where $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ and $p \in L^2_\mu(\mathbb{R}^d)$. $w : [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is • a subsolution of (1) if w is u.s.c. and $\exists C > 0$ s.t. $p_t + \mathcal{H}(\mu, p_\mu) \ge -C\delta,$ for all $(t,\mu) \in]0, T[\times \mathcal{P}_2(\mathbb{R}^d), (p_t, p_\mu) \in D^+_\delta w(t_0, \mu_0), \text{ and } \delta > 0.$ • a supersolution of (1) if w is l.s.c. and $\exists C > 0$ s.t. $p_t + \mathcal{H}(\mu, p_\mu) \le C\delta,$

for all $(t,\mu) \in]0, T[\times \mathcal{P}_2(\mathbb{R}^d), (p_t, p_\mu) \in D_{\delta}^- w(t_0, \mu_0), \text{ and } \delta > 0.$

Consider an Hamiltonian function ${\mathcal H}$ satisfying

- positive homogeneity: for every $\lambda \geq 0$, $\mu \in \mathcal{P}_2(\mathbb{R}^d)$, $p \in L^2_{\mu}(\mathbb{R}^d)$ we have $\mathcal{H}(\mu, \lambda p) = \lambda \mathcal{H}(\mu, p)$;
- dissipativity: $\exists k \geq 0, \forall \mu, \nu \in \mathcal{P}_2(\mathbb{R}^d), \gamma \in \Pi_o(\mu, \nu)$, defined $p_{\gamma}^{\mu} = \mathrm{Id}_{\mathbb{R}^d} - \mathrm{Bar}_1(\gamma), q_{\gamma}^{\nu} = \mathrm{Id}_{\mathbb{R}^d} - \mathrm{Bar}_1(\gamma^{-1}),$ we have $\mathcal{H}_F(\mu, p_{\mu}) - \mathcal{H}F(\nu, q_{\nu}) \leq kW_2^2(\mu, \nu).$

Let w_1 and w_2 be a bounded and Lipschitz continuous sub and super solution respectively. Then

 $\inf_{(s,\mu)\in[0,T]\times\mathcal{P}_2(\mathbb{R}^d)} w_2(s,\mu) - w_1(s,\mu) = \inf_{\mu\in\mathcal{P}_2(\mathbb{R}^d)} w_2(T,\mu) - w_1(T,\mu).$

HJB Equation and Mayer's problem

$$\begin{aligned} &\mathcal{H}_{F}(\mu, p_{\mu}) := \\ &\inf\left\{\int_{\mathbb{R}^{d}} \langle p_{\mu}(x), v_{\mu}(x) \rangle \, d\mu(x) : \begin{array}{l} v_{\mu} : \mathbb{R}^{d} \to \mathbb{R}^{d} \text{ Borel map} \\ &v_{\mu}(x) \in F(x) \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^{d} \end{array} \right\}. \end{aligned}$$

<u>Proposition</u> The Hamiltonian satisfies regularity properties need for the Comparison Theorem

Main result

Theorem 6 Let T > 0, $F : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ be a Lipschitz continuous set-valued map with nonempty compact convex values, $\mathcal{G} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be a bounded and Lipschitz continuous map. Then for any $K \ge 0$, the value function $V(\cdot)$ is the unique Lipschitz continuous solution of the equation

(2)
$$\begin{cases} \partial_t w(t,\mu) + \mathcal{H}_F(\mu, Dw(t,\mu)) = 0, \\ w(T,\mu) = \mathcal{G}(\mu), \end{cases}$$

stated on the set $\{(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d), m_2(\mu) \leq K \}$.

Differential Games

First player acts on the system

 $\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0, \ v_t(x) \in F(x), \text{ for } \mu_t \text{ a.e. } x \in \mathbb{R}^d \ t \in [0, T],$ while the second player controls the system

 $\partial_t \nu_t + \operatorname{div}(\theta_t \nu_t) = 0, \ \theta_t(x) \in G(x), \ \text{for } \nu_t \text{ a.e. } x \in \mathbb{R}^d \ t \in [0, T].$

Associated to both above dynamics, the following cost is defined

$$\mathcal{J} := \mathcal{G}(\mu_T, \nu_T),$$

that the first and the second player wish to minimize and maximize, respectively.

A strategy for the first player $\alpha : \mathcal{A}_{[t_0,T]}^G \to \mathcal{A}_{[t_0,T]}^F$. is nonanticipative with delay τ if $\exists \tau > 0$ such that given $t_0 \leq s \leq T, \ \boldsymbol{\nu}^i = \{\nu_t^i\}_{t \in [t_0,T]} \in \mathcal{A}_{[t_0,T]}^G, \ i = 1, 2$, satisfying $\nu_t^1 = \nu_t^2$ for all $t_0 \leq t \leq s$, and set $\alpha(\boldsymbol{\nu}^i) = \{\mu_t^i\}_{t \in [t_0,T]}, \ i = 1, 2$, we have $\mu_t^1 = \mu_t^2 \ \forall t_0 \leq t \leq \min\{s + \tau, T\}.$

 $\mathcal{A}(t_0,\mu_0)$ is a set of strategies for the initial measure μ_0

Lemma 7 (Normal form) Let $t_0 < \tau < T$. For any $(\alpha, \beta) \in \mathcal{A}_{\tau}(t_0) \times \mathcal{B}_{\tau}(t_0)$ there is a unique pair $(\boldsymbol{\mu}, \boldsymbol{\nu}) \in \mathcal{A}_{[t_0,b]}^F \times \mathcal{A}_{[t_0,b]}^G$ such that $\alpha(\boldsymbol{\nu}) = \boldsymbol{\mu}$ and $\beta(\boldsymbol{\mu}) = \boldsymbol{\nu}$.

$$J(t_0, \mu_0, \nu_0, \alpha, \beta) = \mathcal{G}(\mu_T, \nu_T),$$

$$V^+(t_0, \mu_0, \nu_0) = \inf_{\substack{\alpha \in \mathcal{A}(t_0, \mu_0) \ \beta \in \mathcal{B}(t_0, \nu_0)}} \sup_{\substack{\beta \in \mathcal{B}(t_0, \nu_0) \ \alpha \in \mathcal{A}(t_0, \mu_0)}} J(t_0, \mu_0, \nu_0, \alpha, \beta),$$

Proposition $V^{\pm}(\cdot)$ are bounded and locally Lipschitz continuous.

A nonanticipative Lemma

$$\begin{split} T > 0, \ t_0 \in [0,T], \ \bar{\mu} \in \mathcal{P}_2(\mathbb{R}^d). \quad \exists \xi_{t_0}^{F,\bar{\mu}} : \mathcal{A}_{[t_0,T]}^F \to \mathcal{A}_{[t_0,T]}^F(\bar{\mu}) \\ \exists K > 0 \text{ s.t. given } \mu^{(i)} = \{\mu_t^{(i)}\}_{t \in [0,T]} \in \mathcal{A}_{[t_0,T]}^F, \ i = 1,2, \text{ and set} \\ \mu^{(3)} = \{\mu_t^{(3)}\}_{t \in [0,T]} = \xi_{t_0}^{F,\mu}(\mu^{(1)}), \ \mu^{(4)} = \{\mu_t^{(4)}\}_{t \in [0,T]} = \xi_{t_0}^{F,\bar{\mu}}(\mu^{(2)}), \\ \mathbf{i.} \} W_2(\mu_t^{(1)}, \mu_t^{(3)}) \leq K W_2(\mu_{t_0}^{(1)}, \mu_{t_0}^{(3)}) \text{ for all } t \in [t_0,T]; \\ \mathbf{ii.}) \text{ if there exists } t_0 < s < T \text{ such that } \mu_t^{(2)} = \mu_t^{(1)} \text{ for all} \\ t \in [t_0,s] \text{ then } \mu_t^{(4)} = \mu_t^{(3)} \text{ for all } t \in [t_0,s]. \\ \mathbf{Notice that} \mu_{t_0}^{(3)} = \bar{\mu}; \text{ moreover}, \forall \alpha \in \mathcal{A}_\tau(t_0), \xi_{t_0}^{F,\bar{\mu}} \circ \alpha : \mathcal{A}_{[t_0,T]}^G \to \mathcal{A}_{[t_0,T]}^F(\mu) \text{ is a nonanticipative strategy with delay } \tau. \end{split}$$

Dynamic Programming Principle

$$V^{+}(t_{0}, \mu^{0}, \nu^{0}) = \\ \inf_{\alpha \in \mathcal{A}(t_{0}, \mu^{0})} \sup_{\beta \in \mathcal{B}(t_{0}, \nu^{0})} \left\{ V^{+}(t_{1}, \mu_{t_{1}}, \nu_{t_{1}}) : \begin{array}{l} \boldsymbol{\mu} = \{\mu_{t}\}_{t \in [t_{0}, T]} = \alpha(\boldsymbol{\nu}) \\ \boldsymbol{\nu} = \{\nu_{t}\}_{t \in [t_{0}, T]} = \beta(\boldsymbol{\mu}) \end{array} \right\},$$

Hamiltonian

(3)
$$\mathcal{H}_{(\mu,\nu,p_{\mu},p_{\nu})} = \inf_{\substack{v(\cdot)\in L^{2}_{\mu}(\mathbb{R}^{d})\\v(x)\in F(x) \mu - \mathbf{a.e.} x}} \int_{\mathbb{R}^{d}} \langle p_{\mu}(x), v(x) \rangle \, d\mu(x) + \sup_{\substack{v(\cdot)\in L^{2}_{\nu}(\mathbb{R}^{d})\\w(x)\in G(x) \nu - \mathbf{a.e.} x}} \int_{\mathbb{R}^{d}} \langle p_{\nu}(x), w(x) \rangle \, d\nu(x).$$

Second Main Result

Theorem 8 (Existence of a value and its characterization) The game has a value, i.e., $V^+ = V^- =: V$ and V is the unique Lipschitz continuous viscosity solution of the Hamilton-Jacobi-Bellman equation $\partial_t V + \mathcal{H}_{PE}(\mu, \nu, D_{\mu}V, D_{\nu}V) = 0$, $V(T, \mu, \nu)$ $\mathcal{G}(\mu, \nu)$.

Extensions

- Bolza Problem
- Cost with congestion

$$\mathcal{J}(\mu) = \mathcal{G}(\mu_T) + \int_0^T L(\mu_t) dt$$

with

$$\begin{split} L(\mu) &= \int_{I\!R^d} h(x, \tfrac{\mu}{\lambda}(x)) d\lambda \, \, \text{if} \, \mu <<\lambda \\ \text{and} \, \, L(\mu) &= +\infty \, \, \text{else} \end{split}$$

Thank you for your attention