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An Optimal Control Problem

t(t) = f(x(t),u(t)), u(t) e U, t €10,T],
Goal: Minimize J(x(-)) = g(x(T)) over solutions s.t. x(0) = z,
- The initial position z( is not exactly known but only
a probabilistic description is available. ( VA C RY, ;(A) is
the probability that the initial position lies in the set A.)
- At every point of supp(up) may correspond different controls-

hence different velocities.
- Possibility of “division of mass” from z( can start different

trajectories with total probability is equal to one.




Dynamical system on P(RY)

The conservation of mass along the trajectory p = {Mt}te[O,T]

(at:ut + diV(UtMt) =0, te [Oa T]
ple=0 = po,
\vt(z) € F(x) = f(x,U), for -almost every z € RY,

Minimize J(p) == G(ur) = [pa 9(x) dur(v).
Remark If v(-) is Lipschitz then yu; is the image measure

of 11y by the flow at time ¢ of the ODE 2(t) = v (x(2)).

/o




Objectives

Study the corresponding value function

V(s,p) = inf {Q () = Lt deps ) € Af;T] (u)} -

- Regularity

- Dynamic Programming Principle
- Hamilton Jacobi characterization
- Extension to differential games
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Assumptions and Preliminaries

The trajectories p = {u}icp ) can be represented as a

superposition of trajectories defined in |0, 7] of a given dif-
ferential inclusions

(t) € F(x(t))
weighted by a probability measure ;1 on the initial state

(F)F : RY = R? is a Lipschitz continuous set-valued map
with nonempty compact convex values;

(G) G Pg(]Rd) — R is bounded and Lipschitz continuous w.r.t.
Wo metric.



Transport plan and Wasserstein distance

Po(RY) = {u € PRY) : mp(RY) := [pa [l dpu() < +00}
For pq, uo € Pg(]Rd). We define the set of admaissible trans-
port plans between 111 and po by setting

My, p2) = {y € PR x RY) s mityy = 5, i = 1,2}

W5 (u1, o) = _inf / 21 — @o|” dy(z1, 22).
YE(p1,12) JRIXR2

If py,pu0 € Pg(]Rd) then the above infimum is actually a
minimum, and we define Il,(u1, o) the set of optimal ~.



Admissible trajectories

Let a < b, i € Po(RY). p = Lt Fieia ) © Po(R%) is an admis-
stble trajectory starting from p on |a,b| if there exists a
family of vector-valued measures U = {i/;},c[, ) C M(R% RY)
such that
® 0;y+ + div; = 0 in the sense of distributions, and u, = u,
o || <t for a.e. t € [a,b], i.e., the total variation || of 7
is absolutely continuous w.r.t. u; for a.e. t ;
o ﬁ(a:) c F(z) for a.e. t € [a,b] and pp-a.e. z € R
it
(we will say that p is driven by v) A[Z b (1) is the set of all

admissible trajectories.



Properties of Admissible Trajectories

- Superposition Principle: For any trajectory pu = {Nt}te[O,T] c

Ag there exists a probability measure 1 € P(Rd x I'r), with
I = %0, T); R%) endowed with the sup norm such that

1 is concentrated on the pairs (z,7v) such that v is a so-
Y| i i
lution to

1(t) € F(y(#), 7(0) = .
(ii) ¢ = estim for all t € |0, T,

where e (x,y) = y(t).



- Closedness Afg 7] (1) is closed for the distance d(u, ') =

supyeo,7) Walpe, 11f)
- Compactness If ;' € .A[lng] (1)) and sup,, ma(p) < +oo then

("), has a convergent subsequence for d.
- Concatenation
- Estimate If | y; = e;fin for all ¢ € |a, b, then for s;, s9 € |a, b

_ : 1/2
few = sl < € (14 iy () ) Iy = ol



Estimates for trajectories

Proposition 1 (Gronwall-like estimate in W) Assume that
F satisfies (F'). Let a,b € R with a < b. Then there exists
K >0 such that given 1, v € Py(RY), p = {1t ticia ) € Ajap()
it is possible to find v = {Vt}te[ajb] - A[a,b](y> satisfying

Wolue, vt) < K - Wo(u,v), for all t € |a,b.



Existence of trajectories with prescribed initial velocity

Proposition 2 Let a,b e R, a < b, u € PQ(Rd), Then for every
Vo € L/%(]Rd) such that v,(z) € F(z) for p-a.e. © € R? there

exist 1 € P(R? x Piap) such that p = {efn}ciay € A[];b](,u)
and

. Et\TL,7Y) — €alX, Y
lim / (poen(x,), (,7) al )> dn(z, )
t_>a‘|‘ RdXF[a,b] t — a

—/d<gp(x),va($)> dp(z).
R



Regularity of the Value

The value function V' : [0, 7] x PQ(Rd) — R given by
V(s,m) = inf { Glur) : {eheers) € AL gy(m) |

is bounded and for every K > 0, it is Lipschitz continuous
on the set

{(t, 1) €0, T] x Po(RY), mo(p) < K}



Dynamic Programming Principle

For all i € Po(R%) and 7 € [0,7] we have

Vir,u) = inf {V (s, jis) : {nehiery € AL (1), s € 17,71},

ie., V(r,ur) < V(s,us) for all 7 < s < T and {m}ic, 1) €
Afi T](,u), and V (7, ur) = V(s, ug) for all 7 < s < T if and only
if {Nt}te[T,T] is an optimal trajectory for .



Representation of Optimal Plan

Lemma 3 Let u,v € Po(RY), v € ly(p,v). Then
e dlipty € L%(Rd) and g5 € L2(RY) such that for all o <
Lz(Rd,Rd) N L2(RYRY) we have

/Rded<90(a:),x —y)dy(z,y) = /Rd@f%]?% dp = /Rdw’q% du.

e we have p’é = Idps — Bari(7), ¢y = Idga — Bari(y~!) where

Bari (1) = [ v (u), for p-ace. oy € R

with v = 1 & Vg, -



On Viscosity Superdifferential

Let w: [0,T] x Po(RY) — R, (£, i) €]0, T[xPy(R%),
How to make a variation on pu variable ?

Naive Idea : (I + p)fu for ¢ € L%—L(]Rd)

e it works with p(x) = f(x,u)

But

e in general () = f(x, uy)

e division of mass ¢(z) is not ”single valued” at z



Viscosity o-Superdifferential

Definition 4 Let w [0 T] x Po(RY) — R, (£, ) €]0, T[xPy(RY),
0 > 0. (pr,pp) € R x LM(]R ) belongs to DjL (t, ) if

t.)3d v, v € 1l (,EL, _) Vo € LZ(Rd Rd) N LQ(Rd RY) we have
fetregalel(@),x —y) dy(z,y) = fpale(@). pule)) dulz).
i.) for all i € Po(RY) we have

w(t, p)—w(t, @) < pt(t—fﬂ/ (w9, x3—x1) dfi(x1, w2, 23)+
R xR xR

0/t = D2+ W3 (1) + ollt — T + Wa i, ),
Vi € P(RIXRIXRY) s.t. miotji = (Idga, pp)iift, mistii € (i, 1)




Viscosity o-Subdifferential




Transport Multi plan

Let v € PQ(RdXRd) be a transport plan, and let u3 € PQ(RCZ>.
We set 11 = m8y and

(7, ) ={ji € Po(R? x R? x RY) : mpaofifi = v, msfifi = g},
Moy, p3) ={fi € Pa(R? x R x RY) ¢ oty =, mygii € Mo, ) }-
Given [ € PQ(Rd x R% x Rd), 1,7 =1,2,3, we set u;, = m;in and

W3 (i 1) = /
SO TTE T Ry R xR
Clearly, W ;(u;, p15) > Waolpg, p1;) for all 4,5 =1,2,3.

’xi o $]|2 dla(xla L9, 373)‘



Lemma 5 Let 9,713 € P(Rd X Rd) be such that mfy]o =

Tty = € P(RY). Then there exists i € P(R? x RY x RY)

such that motin = v1o and w3t = v13. In particular, if
o X1 ~ ~

Y12 = p1 & %2, Y13 = 1 ® V3, and fi = p & jiy,, we have

[z, € H(ylg,fylg) for pi-a.e. w1 € R The measure ji is

unique if yio or 13 are induced by a transport map.



Remarks on subdifferential

Ifii.) of Definition to hold only for ;i € P5(R%) induced by a
transport map i = (Id+v)ii, Then 3l € Pg(]Rdedx]Rd) such
that w980 = (Id, pp)fip and w3 = (Id,Id + ¢)if, and we have
i= (1d, pg, Id+@)tpu. Then Wo 5(f, i) = ngHL%, and we recover

the same do-superdifferential of Cardaliaguet-Quincampoix
(cf o < LY.

More generally, in item ii.) of Definition we consider ab-
solutely continuous p = {us} s€[0,¢] curves /i to p, represented

by 1 € P(Rd x ') satisfying us = estin, then we can choose
i € Po(R%x R x RY) to be fi = (eo, pji © €p, €1)in, recovering the
same o-superdifferential of Cavagnari-Marigonda-Nguyen



Hamilton Jacobi Equation

(1) Opw(t, p) + H(p, Dw(t, p)) =0,
where 11 € P(R%) and p € L/%(Rd). w: [0,T] x Poy(RY) — R is
e a subsolution of () if w is u.s.c. and 3C > 0 s.t.
pt + Hip, pu) = —C0,
for all (¢, u) €]0, T[xPa2(RY), (pr,pu) € Diwl(ty, mo), and § > 0.
e a supersolution of () if w is l.s.c. and 3C > 0 s.t.
pt + H(p, pp) < C9,
for all (¢, 1) €]0, T[xPo(RY), (pt, pp) € Dy w(to, o), and § > 0.



Comparison Theorem

Consider an Hamiltonian function H satisfying
e positive homogeneity: for every A > 0, u € Po(R%), p
L2 (R?) we have H(u, A\p) = AH(u, p);

e dissipativity: dk > 0, Vu,v € Pg(Rd), v € Iy(p,v), defined
pﬁyt = Idpq — Bary(v), ¢5 = Idga — Bari (v~ 1), we have

Hp(p,pp) — HE (v, qu) < kW5 (p,v).

Let w; and wy be a bounded and Lipschitz continuous sub
and super solution respectively. Then

inf w2<37 :LL) o ”UJl(S, :LL) — inf UJ2<T, M) o ’UJl(T, :u)
(5,1)€[0,T] < Po(RY) pEPy(RY)



HJB Equation and Mayer’s problem

HF(Mvp,u) =

UV, . d d orel Mnma
inf{/Rd@M(x),vu(x)}du(:v): p - RE— R Borel map }

vy(z) € F(x) for p-a.e. o € R4
Proposition The Hamiltonian satisfies regularity proper-
ties need for the Comparison Theorem




Main result

Theorem 6 Let T" > 0, F' R? = R? be a Lipschitz contin-
uous set-valued map with nonempty compact convex val-
ues, G PQ(Rd) — R be a bounded and Lipschitz continuous
map. Then for any K > 0, the value function V(-) is the
unique Lipschitz continuous solution of the equation

) {@tw@,m + Hp(p, Dwl(t, 1)) = 0,
w(T, p) = G(p),

stated on the set {(t,p) € [0,T] x Po(RY), ma(p) < K }.



Differential Games

First player acts on the system

Oypy + div(vgy) = 0, vy(z) € F(z), for py a.e. z € R ¢ € 0,7,
while the second player controls the system

Oevy + div(fpy) = 0, O(z) € G(x), for vy a.e. z € R ¢ €[0,T).

Associated to both above dynamics, the following cost is
defined

J = G(ur,vr),

that the first and the second player wish to minimize and
maximize, respectively.



Strategies and Values

A strategy for the first player o : A%,T] o Ag 77 is

nonantzczpatzve with delay 7 if 37 > 0 such that glven
0 <s<T, v = {Vt}te t0,T] € A[to, VAL i =1,2, Satlsfymg vl = v}
for all t) <t <s, and set a(v') = {Mt}te 1,775 ¢ = 1,2, we have
= pz Vg <t <min{s+7,7T}.

Al(to, 1p) is a set of strategies for the initial measure

Lemma 7 (Normal form) Let t) < 7 < T. For any (a,f) €
A-(tg) X Br(ty) there is a unique pair (u,v) € A[];) b A[(t;o b

such that a(v) =p and S(u) =



Strategies and Values

J(to, po, v, o, B) = G (up, vr) |

VT (to, po, vp) = inf sup  J(tg, 1o, Vo, @, 5)
acAlto.p0) BeB(ty,w)
V= (to, po,vp) = sup inf  J(tg, 1o, v, v, B).

BeB(ty,vy) @EA(L0,10)

Proposition Vi(-) are bounded and locally Lipschitz con-
tinuous.




A nonanticipative Lemma

T >0, tg € [0,7], ﬁ e 7>2( RY). g [toT] — A{;OT]W)
1K > 0 s.t. given u {:“t } e[ 7] € A[]Z()’T], i = 1,2, and set
= (i henr) = 60" WD), 1Y = (e = €57 (),
i.) W2<u§1)7u§3>) < KWz(ugé),u§§)> for all ¢ € [ty, T';
ii.) if there exists {j; < s < T such that ,u§2> — ,ugn for all
t € [ty s] then 1Y = 1\¥ for all ¢ € [t, 5].

Notice that,ug? = 115 moreover,Va € A (), &t Fllog Aﬁ) T

A[];O, ]( 1) is a nonanticipative strategy with delay 7.



Dynamic Programming Principle

Vg, 1,0V =

p = {wte,n = o) }

inf sup {V+(tlaﬂt1v Vi) : v = {Vt}te[to T]— B(m)

aEA(tO,,LL()) 6€B(t07yo>



Hamiltonian

<3> H(:u? v, p,uapy> —
ey KOCRC LS
v(x)eF(x) p-a.e.x

.o | ovla), w@) dvla)

w()el?
w(zr)eG(x) v-a.e.x



Second Main Result

Theorem 8 (Existence of a value and its characterization) The
game has a value, i.e., VT =V~ =V and V is the unique
Lipschitz continuous viscosity solution of the Hamailton-
Jacobi-Bellman equation O;\V+Hpp(p,v,D,V,D,V) =0, V(T, i, v)
G(p,v).



Extensions

e Bolza Problem
e Cost with congestion

T
T(w) = Glur) + /O L(ue)dt
with

L(p) = [rpa h(z, 5(x)dX if << A
and L(u) = +oo else
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