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Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank m in M is given by a pair
(∆, g) where:

∆ is a totally nonholonomic distribution of rank
m ≤ n on M which is defined locally by

∆(x) = Span
{
X 1(x), . . . ,Xm(x)

}
⊂ TxM ,

where X 1, . . . ,Xm is a family of m linearly independent
smooth vector fields satisfying the Hörmander
condition.

gx is a scalar product over ∆(x).
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The Hörmander condition

We say that a family of smooth vector fields X 1, . . . ,Xm,
satisfies the Hörmander condition if

Lie
{
X 1, . . . ,Xm

}
(x) = TxM ∀x ,

where Lie{X 1, . . . ,Xm} denotes the Lie algebra generated by
X 1, . . . ,Xm, i.e. the smallest subspace of smooth vector fields
that contains all the X 1, . . . ,Xm and which is stable under Lie
brackets.

Reminder

Given smooth vector fields X ,Y in Rn, the Lie bracket [X ,Y ]
at x ∈ Rn is defined by

[X ,Y ](x) = DY (x)X (x)− DX (x)Y (x).
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Lie Bracket: Dynamic Viewpoint

Exercise

There holds

[X ,Y ](x) = lim
t↓0

(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x)− x

t2
.
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The Chow-Rashevsky Theorem

Definition

We call horizontal path any γ ∈ W 1,2([0, 1];M) such that

γ̇(t) ∈ ∆(γ(t)) a.e. t ∈ [0, 1].

The following result is the cornerstone of the sub-Riemannian
geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let ∆ be a totally nonholonomic distribution on M , then every
pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can
measure the lengths of horizontal paths and consequently we
can associate a metric with the sub-Riemannian structure.
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Examples of sub-Riemannian structures

Example (Riemannian case)

Every Riemannian manifold (M , g) gives rise to a
sub-Riemannian structure with ∆ = TM .

Example (Heisenberg)

In R3, ∆ = Span{X 1,X 2} with

X 1 = ∂x , X 2 = ∂y + x∂z et g = dx2 + dy 2.

Ludovic Rifford The Sard Conjecture on Martinet Surfaces



Examples of sub-Riemannian structures

Example (Martinet)

In R3, ∆ = Span{X 1,X 2} with

X 1 = ∂x , X 2 = ∂y + x2∂z .

Since [X 1,X 2] = 2x∂z and [X 1, [X 1,X 2]] = 2∂z , only one
bracket is sufficient to generate R3 if x 6= 0, however we needs
two brackets if x = 0.

Example (Rank 2 distribution in dimension 4)

In R4, ∆ = Span{X 1,X 2} with

X 1 = ∂x , X 2 = ∂y + x∂z + z∂w

satisfies Vect{X 1,X 2, [X 1,X 2], [[X 1,X 2],X 2]} = R4.

Ludovic Rifford The Sard Conjecture on Martinet Surfaces



Sub-Riemannian geodesics

The length and energy of an horizontal path γ are defined by

lengthg (γ) :=

∫ T

0

|γ̇(t)|gγ(t) dt, energ (γ) :=

∫ 1

0

(
|γ̇(t)|gγ(t)

)2

dt.

Definition

Given x , y ∈ M , the sub-Riemannian distance between x
and y is defined by

dSR(x , y) := inf
{

lengthg (γ) | γ hor., γ(0) = x , γ(1) = y
}
.

Definition

We call minimizing geodesic between x and y any horizontal
path γ : [0, 1]→ M joining x to y such that

dSR(x , y)2 = energ (γ).
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Study of minimizing geodesics

Let x , y ∈ M and γ̄ be a minimizing geodesic between x
and y be fixed. The SR structure admits an orthonormal
parametrization along γ̄, which means that there exists a
neighborhood V of γ̄([0, 1]) and an orthonomal family of m
vector fields X 1, . . . ,Xm such that

∆(z) = Span
{
X 1(z), . . . ,Xm(z)

}
∀z ∈ V .
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Study of minimizing geodesics

There exists a control ū ∈ L2
(
[0, 1];Rm

)
such that

˙̄γ(t) =
m∑
i=1

ūi(t)X i
(
γ̄(t)

)
a.e. t ∈ [0, 1].

Moreover, any control u ∈ U ⊂ L2
(
[0, 1];Rm

)
(u sufficiently

close to ū) gives rise to a trajectory γu solution of

γ̇u =
m∑
i=1

ui X i
(
γu
)

sur [0,T ], γu(0) = x .

Furthermore, for every horizontal path γ : [0, 1]→ V there
exists a unique control u ∈ L2

(
[0, 1];Rm

)
for which the above

equation is satisfied.
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Study of minimizing geodesics

Consider the End-Point mapping

E x ,1 : L2
(
[0, 1];Rm

)
−→ M

defined by
E x ,1(u) := γu(1),

and set C (u) = ‖u‖2
L2 , then ū is a solution to the following

optimization problem with constraints:

ū minimize C (u) among all u ∈ U s.t. E x ,1(u) = y .

(Since the family X 1, . . . ,Xm is orthonormal, we have

energ (γu) = C (u) ∀u ∈ U .)
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Study of minimizing geodesics

Proposition (Lagrange Multipliers)

There exist p ∈ T ∗yM ' (Rn)∗ and λ0 ∈ {0, 1} with
(λ0, p) 6= (0, 0) such that

p · dūE x ,1 = λ0dūC .

First case : λ0 = 1

This is the good case, the Riemannian-like case.

Second case : λ0 = 0

In this case, we have

p · DūE
x ,1 = 0 with p 6= 0,

which means that ū is singular as a critical point of the
mapping E x ,1.
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Singular horizontal paths and Examples

Definition

An horizontal path is called singular if it is, through the
correspondence γ ↔ u, a critical point of the End-Point
mapping E x ,1 : L2 → M .

Example 1: Riemannian case
Let ∆(x) = TxM , any path in W 1,2 is horizontal. There are
no singular curves.
Example 2: Heisenberg, fat distributions
In R3, ∆ given by X 1 = ∂x ,X

2 = ∂y + x∂z does not admin
nontrivial singular horizontal paths.
Example 3: Martinet-like distributions
In R3, let ∆ = Vect{X 1,X 2} with X 1,X 2 of the form

X 1 = ∂x1 and X 2 =
(
1 + x1φ(x)

)
∂x2 + x2

1∂x3 ,

where φ is a smooth function.
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The Sard Conjectures

Let (∆, g) be a SR structure on M and x ∈ M be fixed.

Sx
∆,ming =

{γ(1)|γ : [0, 1]→ M , γ(0) = x , γ hor., sing., min.} .

Conjecture (SR or minimizing Sard Conjecture)

The set Sx
∆,ming has Lebesgue measure zero.

Sx
∆ = {γ(1)|γ : [0, 1]→ M , γ(0) = x , γ hor., sing.} .

Conjecture (Sard Conjecture)

The set Sx
∆ has Lebesgue measure zero.
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The Brown-Morse-Sard Theorem

Let f : Rn → Rm be a function of class C k .

Definition

We call critical point of f any x ∈ Rn such that
dx f : Rn → Rm is not surjective and we denote by Cf the
set of critical points of f .

We call critical value any element of f (Cf ). The
elements of Rm \ f (Cf ) are called regular values.

H.C. Marston Morse

(1892-1977)

Arthur B. Brown

(1905-1999)

Anthony P. Morse

(1911-1984)

Arthur Sard

(1909-1980)
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The Brown-Morse-Sard Theorem

Theorem (Arthur B. Brown, 1935)

Let f : Rn → Rm be of class C k . If k =∞ (or large enough)
then f (Cf ) has empty interior.

Theorem (Anthony P. Morse, 1939)

Assume that m = 1 and k ≥ m, then f (Cf ) has Lebesgue
measure zero.

Theorem (Arthur Sard, 1942)

If k ≥ max{1, n −m + 1}, Lm(f (Cf )) = 0.

Remark

Thanks to a construction by Hassler Whitney (1935), the
assumption in Sard’s theorem is sharp.
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Infinite dimension (Bates-Moreira, 2001)

The Sard Theorem is false in infinite dimension. Let
f : `2 → R be defined by

f

(
∞∑
n=1

xn en

)
=
∞∑
n=1

(
3 · 2−n/3x2

n − 2x3
n

)
.

The function f is polynomial (f (4) ≡ 0) with critical set

C (f ) =

{
∞∑
n=1

xn en | xn ∈
{

0, 2−n/3
}}

,

and critical values

f (C (f )) =

{
∞∑
n=1

δn 2−n | δn ∈ {0, 1}

}
= [0, 1].
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Back to the Sard Conjecture

Let (∆, g) be a SR structure on M . Set

∆⊥ :=
{

(x , p) ∈ T ∗M | p ⊥ ∆(x)
}
⊂ T ∗M

and (we assume here that ∆ is generated by m vector fields
X 1, . . . ,Xm) define

~∆(x , p) := Span
{
~h1(x , p), . . . , ~hm(x , p)

}
∀(x , p) ∈ T ∗M ,

where hi(x , p) = p · X i(x) and ~hi is the associated
Hamiltonian vector field in T ∗M .

Proposition

An horizontal path γ : [0, 1]→ M is singular if and only if it is
the projection of a path ψ : [0, 1]→ ∆⊥ \ {0} which is

horizontal w.r.t. ~∆.
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The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and ∆ be a
totally nonholonomic distribution of rank 2 on M . We define
the Martinet surface by

Σ∆ = {x ∈ M |∆(x) + [∆,∆](x) 6= TxM}

If ∆ is generic, Σ∆ is a surface in M . If ∆ is analytic then
Σ∆ is analytic of dimension ≤ 2.

Proposition

The singular horizontal paths are the orbits of the trace of ∆
on Σ∆.

 Let us fix x on Σ∆ and see how its orbit look like.
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The Sard Conjecture on Martinet surfaces

Transverse case
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The Sard Conjecture on Martinet surfaces

Generic tangent case
(Zelenko-Zhitomirskii, 1995)
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The Sard Conjecture on Martinet surfaces

Let M be of dimension 3 and ∆ of rank 2.

Sx
∆ = {γ(1)|γ : [0, 1]→ M , γ(0) = x , γ hor., sing.} .

Conjecture (Sard Conjecture)

The set Sx
∆ has vanishing H2-measure.

Theorem (Belotto-R, 2016)

The above conjecture holds true under one of the following
assumptions:

The Martinet surface is smooth.

All datas are analytic and

∆(x) ∩ TxSing (Σ∆) = TxSing (Σ∆) ∀x ∈ Sing (Σ∆) .
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Proof

Ingredients of the proof

Control of the divergence of vector fields which generates
the trace of ∆ over ΣΣ of the form

|divZ| ≤ C |Z| .

Resolution of singularities.
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An example

In R3,

X = ∂y and Y = ∂x +

[
y 3

3
− x2y(x + z)

]
∂z .

Martinet Surface: Σ∆ =
{
y 2 − x2(x + z) = 0

}
.
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An example
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Thank you for your attention !!
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