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The Linear-Quadratic Optimal Control Problem

• Let x(·;x0, u) = x(·) : [0, T ]→ Rn be the AC solution of{
ẋ(s) = A(s)x(s) +B(s)u(s) s ∈ [0, T ]

x(0) = x0.

• U = [−1, 1]m is the control set,
• u : [0, T ]→ U is any Lebesgue measurable function

• A(s), B(s), Q, q, W (s), S(s) and T ∈ R are given.
• Bolza’s Problem: for x0 ∈ Rn, over all controls u : [0, T ]→ U ,

min
1

2
x(T )>Qx(T ) + q>x(T ) +

∫ T

0

(
1

2
x>Wx+ x>Su

)
dt︸ ︷︷ ︸

J(x,u)

.
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Linear-control systems with B-B solutions

• Affine-control systems in Milyutin-Osmolovskii (1998),
Mauer-Osmolovskii (2003), Agrechev-Stefani-Zezza (2002), etc
(sufficient conditions for optimality)

• Affine-control systems, Felgenhauer, Poggiolini, Stefani
(2003-2015) (structural stability)

• Linear systems, Quinquampoix-Veliov (2013) and
Seydenschwanz (2015), etc (stability analysis)

• Motivations: linear-control systems appear in several
applications such as biology and medicine (see
Ledzewick-Schättler), study of switched/hybrid systems, etc...

−1.

1.

0
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Minimum Principle and B-B Optimal Controls
Let (x̂, û) be an optimal solution. Then, there exists p̂ ∈W 1,∞ such
that (x̂, û, p̂) solves: for a.e. t ∈ [0, T ],

0 = ẋ(t)−A(t)x(t)−B(t)u(t), x(0) = x0,

0 = ṗ(t) +A(t)>p(t) +W (t)x(t) + S(t)u(t),

0 ∈ B(t)>p(t) + S(t)>x(t)︸ ︷︷ ︸
σ(t)

+NU (u(t)), (PMP)

0 = p(T )−Qx(T )− q,

By defining σ̂ = B>p̂+ S>x̂, for all
j = 1, . . . ,m,

ûj(t) =

{
− sgn(σ̂j(t)) if σ̂j(t) 6= 0,

undet, if σ̂j(t) = 0.

1

-1
σj
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Stability Analysis under Perturbation

F : X ⇒ Y , where X :=W 1,1
x0
×W 1,1 × U , Y := L1 × L1 × L∞ × Rn,

F (x, p, u) :=


ẋ−Ax−Bu

ṗ+A>p+Wx+ Su
B>p+ S>x+NU (u)
p(T )−Qx(T )− q

 , (PMP)⇔ 0 ∈ F (x, p, u).

F : solution mapping. Stability analysis: study of the continuity of the
solutions of y ∈ F (x, u, p) with respect to perturbation y.

Stability analysis and discretizations, some references
Dontchev-Hager (1993), Dontchev-Malanowski (1998), more recently
Bonnans-Festa (2015), etc. They generally require

a smoothness of the optimal control
b strictly coercive cost functional/ strong second order optimality

conditions
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Stability Analysis and Metric Regularity-type
Properties
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Bang-Bang Structure and Assumptions

Let (x̂, p̂, û) be an optimal solution.
(R) The matrix-valued functions A, B, W, S have Lipschitz first

derivatives; Q and W (t) are symmetric ∀ t ∈ [0, T ].
(C)

1

2
z(T )>Qz(T ) +

∫ T

0

1

2
z>Wz + z>Sv dt ≥ 0

for all (z, v) ∈ F \ F , F is the set of admissible processes.
(BB) There exist κ ≥ 1 and α, τ > 0 such that for each j ∈ {1, . . . ,m}

and s ∈ [0, T ] with σ̂j(s) = 0 it holds that

|σ̂j(t)| ≥ α|t− s|κ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ].

κ = controllability index.
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Strong Subregularity of the Mapping F
• (x, p, u) ∈ X :=W 1,1

x0
×W 1,1 × U , U := {u ∈ L1 : u(t) ∈ [−1, 1]},

• y ∈ Y := L1 × L1 × L∞ × Rn.

Theorem (Preininger-S.-Veliov)

Let (x̂, p̂, û) be a solution of PMP such that (BB) is fulfilled with index
κ. Then for any b > 0 there exists c > 0 such that for any y ∈ Y with
‖y‖Y ≤ b, any (x, p, u) ∈ X solving y ∈ F (x, p, u) satisfies

‖x− x̂‖1,1 + ‖p− p̂‖1,1 + ‖u− û‖1 ≤ c‖y‖
1
κ

Y .

• Hölder metric sub-regularity of F : X ⇒ Y

• b can be any, and c = c(b) depends in an explicit way on b (linear
if κ = 1).

• Applications to the analysis of error estimates
• This property of F is not robust! ⇒ ...
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Strongly Bi-Metric Regularity
Introducing Ỹ := L∞ × L∞ ×W 1,∞ × Rn, endowed with d̃Y .

Theorem ((Preininger-S.-Veliov))

Let ẑ = (x̂, p̂, û) be a solution to the PMP such that (BB) is fulfilled
with κ = 1 and suppose that S>B is symmetric matrices-valued.
Then there exist β > 0, ζ > 0, and a > 0 such that
• for any y1, y2 ∈ Bd̃Y (0;β), there exists unique z1, z2 ∈ BX(ẑ; a)

such that y1 ∈ F (z1) and y2 ∈ F (z2),
• for such z1 and z2 it holds that dX(z1, z2) ≤ ζdY (y1, y2).

• Recall Y := L1 × L1 × L∞ × Rn endowed with dY , so Ỹ ⊂ Y .
• Lyusternik-Graves type theorems can be extended to bi-metric

regular maps.
• If the norm were W 1,1 or L∞ in u, sufficient conditions for the MR

of F are known: Dontchev-Hager (1993), Dontchev-Malanowski
(1998). They require essentially Huu to be positive definite.
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such that y1 ∈ F (z1) and y2 ∈ F (z2),
• for such z1 and z2 it holds that dX(z1, z2) ≤ ζdY (y1, y2).

• Recall Y := L1 × L1 × L∞ × Rn endowed with dY , so Ỹ ⊂ Y .
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A High-Order Time Discretization Scheme

• Goal: introducing a new time-discretization scheme of high-order
of convergence and computing approximations of the optimal
control with same bang-bang structure.

• Recall that for Runge-Kutta Methods (Hager-Dontchev-Veliov
2000, etc.) second-order optimality conditions and smoothness
of the optimal control are required.
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Idea: Volterra-Fliess Series

• u: any admissible control. x: solution of ẋ = Ax+Bu.
• Volterra-Fliess expansion. Given N ∈ N, h = T/N , ti = ih,

x(ti+1) =[I + hA+
h2

2
(A2 +A′)︸ ︷︷ ︸
Ai

]x(ti) + (B + hAB)︸ ︷︷ ︸
Bi

∫ ti+1

ti

u(s)ds︸ ︷︷ ︸
hz1

+ (−AB +B′)︸ ︷︷ ︸
Ci

∫ ti+1

ti

(s− ti)u(s)ds︸ ︷︷ ︸
h2z2

+O(h3),

(all data evaluated at ti).
•

z1 :=

∫ 1

0

u(t)dt, z2 :=

∫ 1

0

tu(t)dt.

References. Approximations in control theory using Volterra-Fliess
expansions, Veliov (1989), Ferretti (1997).

Teresa Scarinci July 3rd-7th, 2017 13 / 20



The Problem and Some Motivations Stability Analysis and Metric Regularity-type Properties A High-Order Time Discretization Scheme Conclusions

Idea: Volterra-Fliess Series
By varying u(·) in the set of all admissible controls on [0, 1], the
couple (z1, z2) ∈ R2m generates the set R2m ⊃ Zm =

∏m
1 Z, where

Z :=

∫ 1

0

(
1
s

)
[−1, 1]ds :=

{∫ 1

0

(
1
s

)
f(s)ds : f selection of [−1, 1]

}
.

Explicitly,

Z = {(α, β) : α ∈ [−1, 1], β ∈ (φ1(α), φ2(α))} ,

where φ1,2(α) := 1
4

(
∓1 + 2α± α2

)
.

−1. 1.
−0.5

0.5

0
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Finite-Dimensional Optimization Problem

Given N ∈ N, h = T/N , ti := hi,

min 1
2
x>N (Q+ q)xN + h

2

∑N−1
i=0 linear-quadratic-affine form of (ui, vi, xi)

subj to xi+1 = xi + h(Aixi +Biui + hCivi)i = 0, . . . , N − 1
x0 given
(ui, vi) ∈ Zm i = 0, . . . , N − 1.

(Ph)
where, for i = 0, . . . , N − 1,

Ai := A(ti) +
h

2
(A(ti)

2 +A′(ti)),

Bi := B(ti) + hA(ti)B(ti), Ci := −A(ti)B(ti) +B′(ti).

Zm is strictly convex – and bounded by quadratic curves in any
control dimension.
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Idea of the Proof of the rate of convergence

Combination of

1. Stability of the problem under perturbations

2. Consistency of the problem and its approximation

Let {(xi, ui, vi, pi)}N−1i=0 be the solution of the Karush-Kuhn-Tucker
conditions of problem Ph.
We embed {(xi, ui, vi, pi)}N−1i=0 ↪→ (xN , pN , uN ) ∈W 1,1 ×W 1,1 ×L1 in
such a way that the residual yN , (yN ∈ F (xN , pN , uN )), satisfies
‖ yN ‖≤ ch2. Thus,

‖ xN−x̂ ‖1,1 + ‖ pN−p̂ ‖1,1 + ‖ uN−û ‖1 ≤︸︷︷︸
sub-reg of F

c ‖ yN ‖1/k≤ c̃h2/k.
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Main Result
Assumptions
• (C)- convexity and (R)- regularity of the data
• (BB)- pure bang-bang controls with controllability index κ
• (S)- symmetricity of the values of S>B(·)

Theorem (S.-Veliov)

Let (x̂, p̂, û) be the optimal triple for (P). Then ∀N ∈ N Problem (Ph) -
h = 1/N - has a solution {(xi, ui, vi, pi)}. Moreover, if the continuous
embedding of (ui, vi) is uN , it holds that

max
k=0,...,N

(|xk − x̂(tk)|+ |pk − p̂(tk)|) + d#(uN , û) ≤ c h2/κ.

• d#(u, û) := meas(t ∈ [0, T ] : u(t) 6= û(t)).
• If u is the result of an Euler method, then d#(u, û) ≤ c h1/κ.
• For Runge-Kutta scheme method, the error is O(h).
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Numerical experiments

Example (Control of the double integrator)

min −0.1y(1) +
∫ 1

0
1
2 (x(t))

2dt
subj to ẋ = y, x(0) = 1,

ẏ = u, y(0) = 0.1,
u ∈ [−1, 1].

N 10 20 30 40 60

eN 1.50 · 10−3 3.64 · 10−4 1.54 · 10−4 9.35 · 10−5 3.97 · 10−5

eN/h
2 0.150 0.146 0.139 0.150 0.143
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Conclusions

Some themes of today
• Stability analysis for some LQ problems with bang-bang controls
• High-order time-discretizations for discontinuous optimal controls

Present and future work
Extension to the case of
• concatenations of singular and bang-bang arcs, and
• control-affine systems ẋ = f(x, t) +B(x, t)u(t)

The numerical schemes is capable; the stability analysis is not
understood yet!

Some related works: Poggiolini-Stefani (sufficient opt conditions and
structural stability) and Felgenhauer (time-discretization) (2003-15),
Aronna-Bonnans-al (second order opt conditions) (2012-16).
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Thanks for your attention ...

e auguri Prof!

Teresa Scarinci July 3rd-7th, 2017 20 / 20


	The Problem and Some Motivations
	Stability Analysis and Metric Regularity-type Properties
	A High-Order Time Discretization Scheme
	Conclusions

