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Stokes system

Here: T > 0 and Q C R¥(WNV > 2) is a bounded domain with a regular boundary 952.

The Stokes system

z—Az+Vg=0 in Q= (0,7),
divz =0 in 0=Qx(0,7),
z=0 on YL =00x(0,T),
z(-,0) =z in Q

The usual spaces in the context of fluid mechanics:
H={ycL*(Q)"; divy =0, y- v =0o0nd0}
and

V = {y € Hy()"; divy = 0}.

The Stokes operator A : D(A) — H is defined by A = —PA, where
DA)={yeV: Aye H} =H*(Q)NVand P: L*(?) = H&H" — His the
Leray projection.



Some previous results

L?-observability inequality for the Stokes system:

For any open subset w C 2, there exists a positive constant
C = C(N,Q, M, T) such that the observability estimate

12
12T, Yl < C // a(x, ) dxdt|  Va € H
wx(0,T)

holds.
Remark: L?-observability inequality = L>-null controllability.

e A. V. Fursikov, O. Yu. Imanuvilov. Controllability of Evolution Equations.
Lecture Notes Series 34, Research Institute of Mathematics, Seoul National
University, Seoul, 1996.

e F. W. Chaves-Silva, G. Lebeau. Spectral inequality and optimal cost of
controllability for the Stokes system. ESAIM: COCYV, 22 (2016) 1137-1162.



Observability inequality on measurable sets

L'-observability inequality for Stokes system:

Theorem (Chaves-Silva, D. A. Souza and C. Zhang)

For any measurable subset M C 2 x (0, T) with positive measure, i.e. |M| > 0,
there exists a positive constant C = C(N,Q), M, T) such that the observability
estimate

12(T, )|lu < C// |z(x,1)| dxdt V2o € H
M
holds.
Consequences:

e L°°- null controllability on measurable sets of positive measure;

e Bang-bang property for the time optimal control problem.



Strategy

o The propagation of smallness for real-analytic functions on measurable sets ';
o Spectral inequality for Stokes system ;

e Telescoping series method®;

1S. Vessella. A continuous dependence result in the analytic continuation problem. Forum
Math., 11 (1999), 695-703.

2F. W. Chaves-Silva, G. Lebeau. Spectral inequality and optimal cost of controllability for
the Stokes system. ESAIM: COCYV, 22 (2016) 1137-1162.

3 Apraiz, L. Escauriaza, G. Wang, C. Zhang. Observability inequalities and measurable sets.
J. Eur. Math. Soc., 16 (2014), 2433-2475.



Spectral inequality on open sets

Let {e;};>1 be the sequence of eigenfunctions of the Stokes system
—Aej + ij = )\je,- in Q,
dive; =0 in  Q,
e =0 on 0%,

with the eigenvalues {);};> satisfying0 < A\; < A, < ... and lim ); = +o0.

j—oo
The following inequality holds:

Theorem (Chaves-Silva and Lebeau ’16)
YO C Q non-empty open set, there exists a constant C = C(N, Q, O) > 0 such that

2 2

S = [ ao| axz e |15 aetw)]
2 1x<A

o
A <A A<A

for any sequence of real numbers {a;};>1 € ¢* and any positive number A.



Spectral inequality on measurable sets

Our second main result is an extension of the spectral inequality from open sets to
measurable sets of positive measure:

Theorem (Chaves-Silva, D. A. Souza and C. Zhang)

Let w C ) be a measurable set with positive measure. Then, there exists a constant
C = C(N,Q,|w|) > 0 such that

1/2 2 1/2

>4 = /Q > aje(x)| dx < Cecﬁ/w > ae(x)|dx,

A <A <A A <A

for all A > 0 and any sequence of real numbers {a;}j>1 € £*.

Two main difficulties:
e presence of the pressure;

e the equation satisfied by the “curl” is an equation without pressure but with no
boundary conditions.



ldea of the proof

A key point is the following inequality:

Lemma (estimate of the propagation of smallness for real-analytic functions®)
Assume that £ : Bar(Xo) C RY — RV js real-analytic and verifies

M|a|!
(pR)!el”

forsome M > 0and0 < p < 1.
For any measurable set w C Bg (Xo) with positive measure, there are positive
constants C = C(R,N, p, |w|) and 0 = 6(R, N, p, |w|), with 0 € (0, 1), such that

0
HfHL"O(BR(Xo)) <C (/ |f(X)|dX) M1—0.

Remark: we need to quantify the interior real-analytic estimates!

|0 E(x)| < forx € Bar(xo), a € NV,

4S. Vessella. A continuous dependence result in the analytic continuation problem. Forum
Math., 11 (1999), 695-703.



e Assume that Bsz(xo) C 2 and w C Bg(xo)
For each real number A > 0 and each sequence {a;};>1 € £2, we define
u(x) = Y ae(x), x€Q,
A<A

and
a(xs) = S aeVVde(x),  (x,s) € Qx (~1,1),

A <A

where d denotes the curl operator.’
Because v (+,0) = dup and divx up = 0, we have that

AXuA(X) = d*VA(X7 0)7 X € Q7
where d* is the adjoint of d.

Goal: to estimate the propagation of smallness for us on measurable sets with
positive measure.

According to Vessella’s result, it is sufficient to quantify the analytic estimates of
higher-order derivatives of ux.

51n fact, d is the differential which maps 1-forms into 2-forms. When a vector field w is
identified with a 1-form, then dw can be identified with a %N(N — 1)-dimensional vector.



Notice that va (-, -) satisfies

—Oava(X,5) — Aga(X,5) =0, (x,5) € Qx (—1,1).

Since d* v verifies
—0hd*VA(X,5) — Axd VA (X,5) =0, (x,5) € Qx (—1,1),

the analyticity estimate for harmonic functions in R¥! implies
1/2
o nB % (laf + B)! * 2 N+1
1020 d* VA || (Byp(x0,0)) < C i |d*va(x,5)[*dxds |, V(a, B) € NVT',
(P2 (x0.0) (pR)\C¥|+/3 Byg(x9,0)

Taking S = 0 in the previous estimate, we readily obtain

1/2

o ! .

1054 ¥ O) e s < Comi ([l vas)Pasds |, va e .
('OR) Byr (X0,0)



To bound the right-hand side, we set

walx,s) = > aeVVe(x), (x,5)€Qx (~1,1)

AjSA

and then the following estimate holds

* 2 2 2 [VIN 2
lld VAHLZ(B4R(XO,0)) < C||WA||L2((—1,1);H2<Q)) < GCHAWAHLZ((—I,I);H) < Ce Z aj,
A <A

for some C > 0.

Therefore, we have

* al!
||8;1d VA('yo)HLOO(BZR(Xo)) < C%ecﬂ( Z a]g)l/z7 Va € I\IN7
P A <A

where C = C(N, Q).

6Tt is well-known that there exists C = C(N, £2) > 0 such that

1
IVl ) < 14¥l < Cllyle gy ¥y € D(A).



Since u, solves the Poisson equation (Ayuy = d*va (-, 0)), we have that uy is
real-analytic whenever the exterior force d*va (-, 0) is real-analytic. Moreover, the
following estimate holds

1/2
a ‘Oél! VA 2
105 A [[Loe (B (xg)) < W HuAHLZ(BZR(xO)) + Ce Z a;
P A<A
1/2
|Oé|! KA 2 N
< ——¢ Z a; Va € N
> o] i ) )
(pR) AEA

where p, p and K are positive constants independent of A.



Using Vessella’s result, applied to the real-analytic function us, we obtain the
estimate

172\ 1-9

7
st <€ ([ lma@lax) | S a

A<A
for some constants C = C(N, R, €, |w|) > 0and § = O(N, R, Q,|w|) € (0,1).
Finally, the spectral inequality obtained by Chaves-Silva and Lebeau give us the
desired observability inequality

1/2

Sa| <cevr / lua (x)] dx.

Ai<A ¢



Time optimal control problem for the Stokes system

For r € [1, 00] and M > 0, consider the set of admissible controls
U = {ve L®(w x [0,00)); [v(x,1)|, <M ae. in w x [0,00)}
and define the set of reachable states starting from uy:
R(uo, UM™Y = {u(-, 7); 7 > 0 and u solves the controlled Stokes system with v € U ¢ |

where the controlled Stokes system is:

u—Au+Vp=vx, in Q,

diva=0 in Q,
u=20 on X,
u(-,0) =ug in Q.

Remark: 0 € R(uo, ") Vuy € H.

7|+ | : RN — [0, 00) is the r-euclidean norm in RY



Time optimal control problem

Time optimal control problem (TOCP):
givenuy € Hand u; € R(uo,UN"), find vi € U such that the
corresponding solution u* of Stokes system satisfies
u’ (77 (o, uy)) = uy,
where

77 (wo, up) = m1n {7- u(-,7) =us}.
veM

e v} is the optimal control;

e 77 (o, uy) is the optimal time.



Existence for time optimal control problem

Theorem
Let M > 0 and r € [1,00] be given. For everyuy € H and any us € R(uo,U"), the
time optimal problem has at least one solution. Moreover, any optimal control v}
satisfies the bang-bang property: |vy (x,t)|, = M for a.e. (x,1) € w X [0, 7/ (o, uy)].
Proof.
® (74, Va)n>1 minimizing sequence such that:
o — 77 (wo,ur) and v, — v° weakly-x in L (w x (0,7 (uo, uy)))
n— 00
with (v,),>1 C UM having the property that the associated solution u,, to
Stokes system satisfies w, (-, 7,,) = uy foralln > 1;

e v* is a solution of the time optimal problem;
e v* ¢ U is bang-bang (by contradiction);

e Assume that there exist € > 0 and a measurable set of positive measure
v C w x (0,77 (uo, uy)) such that |v*(x, )|, < M — ¢ for (x,1) € .

e Then, thanks to the L°°-null controllability for Stokes system on
measurable sets of positive measure, we can construct V € Z/l{g" which is a
control steering o to uy at time (7, (uo, uy) — ) for some & > 0.

O



Uniqueness for time optimal control problem

Theorem
For everyuy € H and uy € R(ao,U"") and for r € (1, 00), the time optimal
problem has a unique solution v; which is of bang-bang.

Proof.
e assume that v and h are two time optimal controls in Z/l[?z";
o w— %(v + h) is also an optimal control and satisfies the bang-bang property;

e use the fact that the norms | - |, for r € (1,00) are uniformly convex in RY;



Final comments

L°°- null controllability on measurable sets of positive measure;
Boundary spectral inequality for Stokes?
r1 # ra: are the optimal controls v;, and vfz related?

r = oo: uniqueness for the TOCP?



Thank you for your attention
and

Happy birthday Piermarco!!!



