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Time-varying control domains

Setting

@ (M, g) be a smooth d-dimensional Riemannian manifold
@ A4 Laplace-Beltrami operator on M, associated with the metric g

@ Q open bounded connected subset of M, with a smooth boundary if 9Q # 0

Consider the wave equation

Pu—NAgu=0 in RxQ

with Dirichlet or Neumann boundary conditions if Q # 0.

Results hereafter are valid for more general time-independent wave operators

82 — 3" a;i(x)x,Ox, + smooth lower-order terms
LY Y u~mcC
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Time-varying control domains

Observability with a time-varying domain

QE
@ Q open subset of R x Q
@ wit)={xeQ | (t,x) € Q},ie.,

Q={(t,x) eRXQ | teR, x ew(t)}

Q

We have observability on Q in time T if there exists C > 0 such that

.
CI(u(0), 2Oy .z < IxaPitlEeo ryuey = [, [ 00 B

 CIUO) 0O s < Ixatlizgomenl? = [ [ 1t 0R Bt foc

(Dirichlet case) for any solution u of the wave equation. MP
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Time-varying control domains

Usual (static) Geometric Control Condition

Trappefl rays

Theorem (Bardos Lebeau Rauch, SICON 1992)

Take w(t) = w open. Under the GCC on (w, T):

Every geometric ray propagating in 2, and reflecting on 02 according to
the optics laws, meets w within time T,

and if moreover there is no ray having a contact of infinite order with 9Q whenever
90 # 0, then we have observability on w in time T. nc

@ Fsmp

E. Trélat Observability and controllability properties for waves



Time-varying control domains

Time-dependent Geometric Control Condition

Now, w(t) moves.

Le Rousseau Lebeau Terpolilli Trélat, APDE 2017

Take Q open subset of R x Q. Under the t-GCC on (Q, T):

Every generalized bicharacteristic s — (t(s), X(s), 7(s),&(S)) is such that
there exists s € R such that t(s) € (0, T) and (t(s), x(s)) € Q,

and if moreover there is no generalized bicharacteristic having a contact of infinite
order with (0, T) x 9Q whenever 9Q # 0, then we have observability on Q in time T.

@ 1D case: Castro Miinch Cindea, SICON 2014.
@ Motivation of the study for the Total company.
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Time-varying control domains

Time-dependent Geometric Control Condition

Consequences:

1. Observability with few sensors

Take Q open with Lipschitz boundary, with (Q, T) satisfying t-GCC.

Then every open subset V of [0, T] x Q (for the topology induced by R x M) containing
1o} (O N ([0, T] x ﬁ)) is such that (V, T) satisfies {-GCC, and thus observability holds
for (V, T).

- = | >mC
@) (b) © SMP

(not true for the usual GCC!)
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Time-varying control domains

Time-dependent Geometric Control Condition

Consequences:

2. Controllability

Under the previous assumptions, by duality, the wave equation with (time-dependent)
internal control

2u— Agu = xof

is exactly controllable in Hj x L2.

uome
@ FsmP
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Time-varying control domains

Time-dependent Geometric Control Condition

Consequences:

3. Stabilization

There exist © > 0 and v > 0 such that any solution of

‘ Btzu — DgU+ Xu(t)0tu =0 ‘

satisfies

lu(@)l1Z, + 10eu(Z, < p (U012, + 10:u(0)1Z ) e~
0 0

uome

E. Trélat Observability and controllability properties for waves



Time-varying control domains

Sketch of proof

We follow the lines of the classical proof by Bardos Lebeau Rauch:

15t step: weak observability inequality

There exists C > 0 such that
C”(U(O)7 81“(0))”13 x 12 < HXQaquiZ((O’T)XQ) + II(U(O)v 81“(0))”E2><H—1

for any solution.

Proof by contradiction + propagation of singularities for defect measures.
t-GCC is used to prove that the QL vanishes identically.

uome
@ FsmP
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Time-varying control domains

Sketch of proof

2" step: no invisible solution

Set of invisible solutions:

Ny ={v e H'((0,T) x Q) | vwave solution
with v(0) € Hg, 8:v(0) € L2 and xqdv = 0},

equiped with the norm ||v||?VT = ||v(0)||,2_% 4 ||3rV(0)Hfz-

N7t is closed.
We have N1 = {0}. J
— The main simplification with respect to BLR 1992 is there. UPmC

@ Fsmp
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Time-varying control domains

Sketch of proof

Q @ Propagation of singularities + t-GCC
= any invisible solution is smooth on (0, T) x € up to the boundary

@ 92 — Ag time-independent
= Ny invariantunder 9;: v € Ny = ;v € Nt

@ weak observability
= ClIVI, = ClI(v(0), 0v(O))llpy 2 < II(V(0), V(O 21 WV € Nr

Since H} x L2 is compactly embedded into L2 x H~1, this implies that the unit
ball of Nt is compact and thus N7 is finite dimensional.

By contradiction: if Nt # {0}, then 8; : Nt — Nt has a (complex) eigenvalue \, with
eigenfunction v € N7 \ {0}: v(t,x) = eMw(x) = (A2 — Ag)w = 0.

Take t s.t. w(t) # (. Since xqd:v = 0 and thus xqVv = 0, it follows that w = 0 on w(t).

By elliptic unique continuation: w = 0 on €, and hence v = 0. Contradiction. UemcC

@ FsSMp
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Time-varying control domains
Examples

In what follows:
To(Q,Q) =inf{T >0 | (Q, T) satisfies {-GCC}

— minimal -GCC time

uome
@ FsmP
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Time-varying control domains

Example: 1D

M = R (Euclidean), 2 = (0, 1)

w(t) = (vt,vt+a)whent e (0,(1 —a)/v)

Then:

0 a

Oia

(c) Case v>1and § =0.

21 —a)/(1+v)

1—a
(1—a)@v+1)/(v(1 +v))
(2(1 —a)+ vs)(1 +v)

(a) Case v < 1and > 0.

®
0 a 1z
(b) Case v=1and & > 0.

i =z

ty

14
1—a)(3v+1
= e g~
w(t) 4= 2i-a)vs
- 14+
t=1a i SLE = 10
1z 0 a 1 =z
(d) Case v > 1 and 6 > 0.
if0<v<itandéd >0,
ifv=1ands >0, nc
ifv>1andd =0, MP

ifv>1andd > 0.
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Time-varying control domains

Example: moving domain on the sphere

M = Q = S? (Euclidean)

ae (0,2m),e € (0,7/2),v>0

w)={(0,¢) | ol <e, vi<O<vt+a}

Then:

To(v, a,€) < +oo except for a finite number of critical speeds v > 0. Moreover:
@ Ty(v,a,e) ~ 2asv—0.

@ Ifv> (2r — a+2¢)/(2¢) then To(v, a, ) < oo.
If v — +oo then To(v, a,e) = 7 — 2e.

Besides, if v € Q, then there exist ag > 0 and ¢ > 0 such that Ty(v, a,&) = +oo for
every a € (0,ap) and every € € (0, &9).

nc
MP
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Time-varying control domains

Example: moving domain near the boundary of the

disk

4
M = R? (Euclidean), @ = {(x,y) € R? | x2 +y2? < 1} y &
ae (0,27), ¢ € (0,1)
w(t) ={(r,0) € [0,1]xR | 1—e<r<1, vi<0 < vi+a}

N

uomc
@ Fsmp
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Time-varying control domains

Example: moving domain near the boundary of the

disk

To(v, a,e) < +oo, forevery v > (27 + 2e — a)/(2¢) ‘o
To(v,a,e) ~2 -2z as v — +oo. J ‘

uomc
@ Fsmp
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Time-varying control domains

Example: moving domain near the boundary of the

disk

2sing
e ’/ﬂ%ii\l
e T
/ o= \
If there exists n € N \ {0, 1} such that vsin Z € =Q, // P \
then there exist ag € (0,27) and € € (0, 1) such that / i )
To(v,a,e) = +oo Vace (0,a) Ve € (0,z0). ‘{\\ /|
/
A\ /
. 7
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Time-varying control domains

Example: moving domain near the boundary of the

disk

Vv>1 Vae (0,2r) Jep > 0s.t. To(v,a,e) =+oo Ve € (0,gp) J

“secular effect” UPmC
@ FsmpP
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Time-varying control domains

Example: moving domain near the boundary of the

disk

Yv>0 Vae (0,7) Fe € (0,1)s.t.
To(v,a,e) = +oo Ve € (0,¢0)

— 9 )
‘, - T/
(@n=2,r<a<n+d (b) n=3,4n/3 <a<dn/3+5 (&) n=4,37/2<a<3n/2+5
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Time-varying control domains
Example: moving domain near the boundary of the
disk

(a) t=0. (b) t = 2sin(a/2). (¢) t = 4sin(a/2).

Even if a ~ 27, there exist v > 1 and ¢ > 0 small s.t. t-GCC fails, whereas GCC would
be satisfied in the static case!
u=mc

@ FsmpP
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Time-varying control domains

Other considerations

@ Example of the square... (arithmetic considerations)

@ Arbitrary domain: Do there exist T > 0 and an admissible C' path t — x(t) in Q,
with speed < v, such that (Q, T) satisfies --GCC?

@ observation domain or control domain on the boundary: similar results

@ J. Le Rousseau, G. Lebeau, P. Terpolilli, E. Trélat,
Geometric control condition for the wave equation with a time-dependent domain,

Anal. PDE (2017).

uome
@ FsmP
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Observability constant in large time

Turn back to static control or observation domains.

Geometric quantity

go(w) = liminf inf lT/OTxW(v(t))dt,

T—+oco0 7

a7 (w)

where ~ runs over all rays.

Spectral quantity

g1(w) = jnf /w ¢ dx,

where £ = set of normalized Laplacian eigenfunctions.

uome
@ FsmP
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Observability constant in large time

Generalized GCC

For every w measurable, we have

9 (&) >0 = Cr(®) > Cr(w) > Cr(?d) >0  (usual GCC)
Cr(@) >0 = gJ(@) >0

In particular, if w has no grazing ray then g7 (&) = gJ (@) = gJ (w), and then we have
the equivalence

9 (w) >0 Cr(w)>0

Time asymptotic observability constant

Given any w measurable with no grazing ray, we have

im  CTw)
T—+oo T

= %min (91(w), 92(w))

(compare with Lebeau’s result for damped wave equations)
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Observability constant in large time

Main new idea here:

@ Define C?N(w), “high-frequency observability constant”

1 1

A T . N N

@ Define o' (w) = NiToo 7C? (w) = sxp ?C? (w)

® Provethat _lim X&) _ i <1g1 (w), lim Supar(w))
To+oo T 2 T 400

@ Provethat Cr(w) >0« a(w) >0 Vw measurable
(elementary proof by considering invisible solutions).

@ E. Humbert, Y. Privat, E. Trélat,
Observability properties of the homogeneous wave equation on a closed manifold, preprint (2016).

Still ongoing works using this “quantum observability constant” a7 (w). UemcC
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Observability constant in large time

Characterization of Zoll manifolds

ZOLL
G
Known results: DOUANE
@ X Hamiltonian vector field (on S*M) of \/A
@ s=1Lx

@ Y =closure of {\ — u | A, p € Specy/A}

Helton, Guillemin, 1977

@ Spec(S) C X
@ If there exists a nonperiodic geodesic, then Spec(S) = R, and thus ¥ = R.

@ Mis Zoll if and only if ¥ # R.
In this case, we have X~ = 2%2, where T is the smallest common period.

Uemce
@ Fsmp
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Observability constant in large time

Characterization of Zoll manifolds

New results:

Geometric quantities

)
minf /0 Xo(r(D)

li
T—+c0

T ) .
0o(w) = Imint inf £ [ et ga) = nf

9] (w)

where v runs over all rays. Note that g» < gé.

Spectral quantities

o) = ot [ Fax gi(w)= nf u(w)

inf
MGOLM
where £ = set of normalized Laplacian eigenfunctions, and QL = quantum limits. Note
that gy (w) < g4 (w) for any closed w.

1

nc

For v T-periodic ray on M: Dirac measure d,(f) = + fOT f(y(t)) dt Vfe CO(M). @ ESMP
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Observability constant in large time

Characterization of Zoll manifolds

New results:

Humbert Privat Trélat, ongoing

M Zoll and 6, € QL V7 periodic geod. < g1(w) < go(w) Vw closed
M Zoll & go(w) = g5(w) Vw closed — “Zoll defect” Z(w) = gh(w) — go(w)
M Zoll, two-point homogeneous and §, € QL V-~ periodic geod. = QL = Z.

Spectral gap = M Zoll, 4§, € QL V-~ periodic geod. (cf also Macia)
(91(w) <) 9] (w) < g2(®) Vw measurable

Uniformly locally finite spectrum (i.e., 3¢ > 0 and m € N* s.t. the intersection of the
spectrum with any interval of length ¢ has at most m distinct elements)
= M Zoll, and V~ geodesic Ju € QL s.t. u(v(-)) > 0.

“Zollditch” conjecture: QL = Z = M Zoll
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Observability constant in large time

Sufficient condition for Schrodinger internal

observability

New results:

95(w) > 0 = C5Mod(w) > OJ

DEAD anp ALIVE

@ More general than the usual GCC condition go(w) > 0
@ Not a necessary condition: M = T2

@ actually, C$"d(w) >0« alShd(w) >0, and ol Sd(w) > gh(w) > go(w)
As a corollary:

If M is not Zoll, then VT >0 Zwopenst Cy¥(w)=0 and C3Md(w) >0 J nc

@ E. Humbert, Y. Privat, E. Trélat, ongoing. @& FsSMP
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Time-varying control domains Observability constant in large time
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Observability constant in large time

Microlocal interpretation

i 1 T i = 00 [ Q*
g{(a):zelgzM?/o aop(z)dt=_inf ar(z) VaeLl™(S'M.uw)

T
| f f a
o)=L ) eeelei = Lol [, e

al(a)

1 T
4 = i imi —
gh(a)= _inf, tmint = [ aca@)ar= i imint ar(z)

uome
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Observability constant in large time

Microlocal interpretation

a=aopr=op(A) with A =e VEAME A= 0p(a) € WO(M)
ar = op(Ar) with Ar = 1 [T Acdt = 1 [ e V2 AelV2 gt

Set fr(t) = ie'™/sinc(Tt/2), we have fr(t) = 1 x(o 71(t). Then

1 /7 2 "
@ gl(a)= inf — X(Z)dt= | / its _
g5 (@) ZelgiM T/o aoe”(z)dt ZelgIM . fr(t)e"™adt (z) = inffr(S)a

@ gi(a) = SIQL TIIT_*I_r;fo fr(S)a=infQya (Qp = eigenprojection onto ker S)

@ Cr(a) = ”}jwf:1(;\7-(a)y,y> = ”}iwf:1<Afy, y) (half-waves)

uome
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