A new comparison between overconvergent isocrystals and arithmetic $\mathscr{D}^\dagger\text{-modules}_{\text{joint with Tomoyuki Abe}}$

Christopher Lazda Warwick Mathematics Institue

Padova, 19th September 2019

Onstructible isocrystals

3 The trace map

Dual constructibility

 $\mathcal{V} = \text{complete DVR}$ k = residue field, perfect, char p > 0K = fraction field K, char 0

X/k variety (= separated scheme of finite type), Isoc[†](X/K) = *F*-able overconvergent isocrystals on *X*

If we have an embedding $X \hookrightarrow \mathfrak{P}$ with \mathfrak{P} smooth and proper over \mathcal{V} , then

$$\operatorname{Isoc}^{\dagger}(X/K) \hookrightarrow \operatorname{MIC}(j_X^{\dagger}\mathcal{O}_{]Y[}),$$

where Y is the closure of X inside \mathfrak{P}_k , and

$$H^{i}_{\operatorname{rig}}(X/K,E) := H^{i}(]Y[,E\otimes\Omega^{ullet}_{]Y[})$$

Good formal properties: finite dimensional, versions with support, excision exact sequences, &c.

Beyond "smooth" coefficient objects: theory of arithmetic \mathscr{D}^{\dagger} -modules (Berthelot/Caro).

Locally: take étale co-ordinates x_1, \ldots, x_d on $\mathfrak P$ and set

$$\mathscr{D}_{\mathfrak{PQ}}^{\dagger} = \left\{ \left. \sum_{\underline{k}} a_{\underline{k}} \partial^{[\underline{k}]} \right| a_{\underline{k}} \in \mathcal{O}_{\mathfrak{PQ}}, \ \exists \lambda > 1 \text{ s.t. } \left\| a_{\underline{k}} \right\| \lambda^{|\underline{k}|} \to 0 \right\}$$

where

$$\partial^{[\underline{k}]} = \frac{\partial_{x_1}^{k_1} \dots \partial_{x_d}^{k_d}}{k_1! \dots k_d!}.$$

Caro defines

$$D^b_{\mathsf{hol}}(\mathscr{D}^\dagger_{\mathfrak{P}\mathbb{Q}})\subset D^b_{\mathsf{coh}}(\mathscr{D}^\dagger_{\mathfrak{P}\mathbb{Q}})$$

"F-able overholonomic complexes", stable under:

•
$$f^!$$
 • $D_{\mathfrak{P}}$
• $\otimes_{\mathcal{O}_{\mathfrak{P}}}^{\dagger}$ • $\mathbf{R}\underline{\Gamma}_{Z}^{\dagger}$ for $Z \subset \mathfrak{P}$ closed
by work of Caro/Caro–Tsuzuki.

• f_+ for f proper,

Given $X \hookrightarrow \mathfrak{P}$, define

$$D^b_{\mathsf{hol}}(X/\mathcal{K}) := \left\{ \mathcal{M} \in D^b_{\mathsf{hol}}(\mathscr{D}^\dagger_{\mathfrak{PQ}}) ext{ supported on } X
ight\},$$

these are independent of the embedding, and support a formalism of the 6 functors $(f^+, f_+), (f_1, f^1), \otimes, \mathbf{D}.$

Comparison of coefficients: \exists fully faithful functor

$$\operatorname{sp}_{X,+}:\operatorname{Isoc}^{\dagger}(X/K) o D^b_{\operatorname{hol}}(X/K) \subset D^b_{\operatorname{hol}}(\mathscr{D}^{\dagger}_{\mathfrak{PQ}})$$

and can describe the essential image. Defined by Caro when X is smooth, and extended to the non-smooth case by Abe.

Example

If X is a dense open inside $P = \mathfrak{P}_k$, and $P \setminus X$ is a divisor, then $sp_+ = sp_*$ is just pushforward along $sp : \mathfrak{P}_K \to \mathfrak{P}$.

Much more difficult to describe in general!

For $E \in \operatorname{Isoc}^{\dagger}(X/K)$, can define its " \mathscr{D} -module cohomology"

$$H^i_{\mathscr{D}}(X/K,E) := H^{i-d_X}(f_+ \operatorname{sp}_+ E)$$

where $f: X \rightarrow \text{Spec}(k)$ is the structure morphism, inducing

$$f_+: D^b_{\mathsf{hol}}(X/K) o D^b_{\mathsf{hol}}(\mathsf{Spec}\,(k)\,/K) \cong D^b(K),$$

and $d_X = \dim X$. Concretely, if $X \hookrightarrow \mathfrak{P}$ then

$$H^i_{\mathscr{D}}(X/K,E) = H^{i-d_X+d_{\mathfrak{P}}}(\mathfrak{P}, \operatorname{sp}_+E\otimes_{\mathcal{O}_{\mathfrak{P}}}\Omega^{ullet}_{\mathfrak{P}/\mathcal{V}}).$$

where $d_{\mathfrak{P}} = \dim \mathfrak{P}$.

Question

Do we always have

$$H^{i}_{\mathrm{rig}}(X/K, E) \cong H^{i}_{\mathscr{D}}(X/K, E)$$
?

This is not obvious!

Today: describe a new construction of sp_+ which makes comparison theorems easier to prove.

2 Constructible isocrystals

The trace map

Oual constructibility

 $\mathfrak{P} = \mathsf{smooth}, \mathsf{ proper formal } \mathcal{V} \mathsf{-scheme}, P = \mathsf{special fibre},$

$$p_1, p_2 :]P[_{\mathfrak{P}^2} \to \mathfrak{P}_K]$$

the two projections.

Definition (Berthelot)

A convergent stratification on an $\mathcal{O}_{\mathfrak{P}_{K}}$ -module E is an isomorphism

$$p_2^* E \stackrel{\sim}{
ightarrow} p_1^* E$$

satisfying the cocycle condition.

Definition (Le Stum)

E is called constructible if there exists a stratification $P = \coprod_i P_i$ such that $E|_{]P_i[}$ is coherent.

 $\mathsf{Isoc}_{\mathsf{cons}}^{\dagger}(P/K) = (F-\mathsf{able})$ constructible $\mathcal{O}_{\mathfrak{P}_K}$ -modules with convergent stratification.

Example

 $X \hookrightarrow \mathfrak{P}$ locally closed immersion, with closure $\alpha : Y \hookrightarrow \mathfrak{P}$, then we have $]\alpha[:]Y[\to \mathfrak{P}_{\mathcal{K}}$, and if $E \in \mathsf{Isoc}^{\dagger}(X/\mathcal{K}) \subset \mathsf{MIC}(j_X^{\dagger}\mathcal{O}_{|Y|})$, then

 $]\alpha[_!E \in \mathsf{Isoc}_{\mathsf{cons}}^{\dagger}(P/K)$

so we have a fully faithful functor

 $]\alpha[!: \operatorname{Isoc}^{\dagger}(X/K) \to \operatorname{Isoc}_{\operatorname{cons}}^{\dagger}(P/K).$

Conjecture (Le Stum)

Rsp* induces an equivalence of categories

$$\mathsf{lsoc}^\dagger_{\mathsf{cons}}(\mathsf{P}/\mathsf{K}) \stackrel{\sim}{ o} \mathsf{Perv}(\mathscr{D}^\dagger_{\mathfrak{PO}}).$$

This is a theorem when dim $\mathfrak{P}/\mathcal{V} = 1$.

Not clear how to even define Rsp_* in general: want a lifting

but sp⁻¹ $\mathscr{D}_{\mathfrak{PQ}}^{\dagger}$ doesn't act on constructible isocrysals (even if they are coherent on all of $\mathfrak{P}_{\mathcal{K}}$). What we did: given $X \hookrightarrow Y \stackrel{\alpha}{\hookrightarrow} \mathfrak{P}$, construct

This immediately gives

$$H^i_{\mathrm{rig}}(P,]\alpha[_!E)\cong H^i_{\mathscr{D}}(\mathfrak{P},\mathbf{Rsp}_*]\alpha[_!E).$$

Basic example: $\mathfrak{P} = \widehat{\mathbb{P}}^2_{\mathcal{V}}$ with co-ordinates $x_0, x_1, x_2, Y = \mathbb{P}^1_k = V(x_2) \subset P$, and $X = \mathbb{A}^1_k = D(x_0) \subset Y$, so we have

$$X \stackrel{j}{\hookrightarrow} Y \stackrel{\alpha}{\hookrightarrow} \mathfrak{P}$$

and

$$]\alpha[:]Y[\rightarrow \mathfrak{P}_{K}.$$

We take $E = j_X^{\dagger} \mathcal{O}_{]Y[_{\mathfrak{P}}}$.

Set $U = P \setminus Y$, so for any sheaf \mathscr{F} on $\mathfrak{P}_{\mathcal{K}}$ we have the localisation exact sequence

$$0 \to \underline{\Gamma}_{Y}^{\dagger} \mathscr{F} \to \mathscr{F} \to j_{U}^{\dagger} \mathscr{F} \to 0,$$

note that $\underline{\Gamma}_{Y}^{\dagger} =]\alpha[_{!}]\alpha[^{-1}$. We apply this to $\mathscr{F} = \mathbf{R}]\alpha[_{*}j_{X}^{\dagger}\mathcal{O}_{]Y[} =]\alpha[_{*}j_{X}^{\dagger}\mathcal{O}_{]Y[}$ to obtain

$$0 \to]\alpha[_!j_X^{\dagger}\mathcal{O}_{]Y[} \to]\alpha[_*j_X^{\dagger}\mathcal{O}_{]Y[} \to j_U^{\dagger}]\alpha[_*j_X^{\dagger}\mathcal{O}_{]Y[} \to 0$$

which gives a 2-term resolution of $]\alpha[_!j_X^{\dagger}\mathcal{O}_{]Y[}$.

Lemma

The sheaves $]\alpha[_*j^{\dagger}_X\mathcal{O}_{]Y[}$ and $j^{\dagger}_U]\alpha[_*j^{\dagger}_X\mathcal{O}_{]Y[}$ are sp_{*}-acyclic.

So we have

$$\mathbf{R}\mathrm{sp}_*]\alpha[_!j_X^\dagger\mathcal{O}_{]Y[}\cong \left(\mathrm{sp}_*]\alpha[_*j_X^\dagger\mathcal{O}_{]Y[}\to \mathrm{sp}_*j_U^\dagger]\alpha[_*j_X^\dagger\mathcal{O}_{]Y[}\right).$$

If we set $u = x_1/x_0$ and $v = x_2/x_0$, and look at global sections, then the first term consists of series

$$f(u, v) \in K[[u, v]]$$

such that:

• $\forall \eta < 1 \ \exists \lambda > 1 \ \text{s.t.} \ f(u, v) \text{ converges for } |v| \leq \eta \text{ and } |u| \leq \lambda.$

Can describe the second term similarly, as series

$$f(u,v) \in K[\![u,v,v^{-1}]\!]$$

such that:

• there exists $\rho < 1$ such that $\forall \rho < \eta < 1 \exists \lambda > 1$ s.t. f(u, v) converges for $\rho \leq |v| \leq \eta$ and $|u| \leq \lambda$.

Explicitly, the second is Kedlaya's relative Robba ring $\mathcal{R}^{v}_{K\langle u\rangle^{\dagger}}$, and the first is it's plus part $\mathcal{R}^{v,+}_{K\langle u\rangle^{\dagger}}$ consisting of series with terms in non-negative powers of v. \Rightarrow can see directly that

$$\mathsf{Rsp}_*]\alpha[_{J}j_X^{\dagger}\mathcal{O}]_{Y[}\cong v^{-1}K\langle u, v^{-1}\rangle^{\dagger}[-1]$$

and the $\mathscr{D}_{\mathfrak{PQ}}$ -module structure extends to a $\mathscr{D}_{\mathfrak{NQ}}^{\dagger}$ -module structure.

Want to generalise this to an arbitrary frame $(X \stackrel{j}{\hookrightarrow} Y \stackrel{\alpha}{\to} \mathfrak{P})$ with \mathfrak{P} smooth and proper over \mathcal{V} , and $E \in \operatorname{Isoc}^{\dagger}(X/K)$.

Three complications:

() The complement $Y \setminus X$ might not be a divisor. So we take a suitable open cover $X = \bigcup_a X_a$ and replace E by

$$0 \to \oplus_a j_{X_a}^{\dagger} E \to \oplus_{a_1, a_2} j_{X_{a_1} \cap X_{a_2}}^{\dagger} E \to \ldots \to j_{\cap_a X_a}^{\dagger} E \to 0.$$

② We don't know in general that the $j_{X_a}^{\dagger} E$ are $]\alpha[_*$ -acyclic. So we take the immersions $\alpha_{\eta} : [Y]_{\eta} \rightarrow]Y[$ of quasi-compact tubes, and replace $j_{X_a}^{\dagger} E$ by

$$\varinjlim_{n_0} \left(\prod_{n \ge n_0} \alpha_{\eta_n *} j_{X_a}^{\dagger} E|_{[Y]_{\eta_n}} \xrightarrow{\mathsf{res}-\mathsf{id}} \prod_{n \ge n_0} \alpha_{\eta_n *} j_{X_a}^{\dagger} E|_{[Y]_{\eta_n}} \right)$$

for $\eta_n \to 1^-$.

(a) Y might not be a divisor in P, so we need to pick divisors D_b such that $Y = \bigcap_b D_b$ and replace the short exact sequence

$$0 \to \underline{\Gamma}_Y^{\dagger} \mathscr{F} \to \mathscr{F} \to j_U^{\dagger} \mathscr{F} \to 0$$

by the long exact sequence

$$0 \to \underline{\Gamma}^{\dagger}_{Y} \mathscr{F} \to \mathscr{F} \to \oplus_{b} j^{\dagger}_{U \setminus D_{b}} \mathscr{F} \to \ldots \to j^{\dagger}_{U \setminus \cup_{b} D_{b}} \mathscr{F} \to 0.$$

Proposition

Given suitable choices $X = \bigcup_a X_a$ and $Y = \bigcap_b D_b$ as above there exists a resolution $\mathcal{RC}^{\dagger}(E)$ of $]\alpha[_!E$ such that the $\mathscr{D}_{\mathfrak{PQ}}$ -module structure on $\mathrm{sp}_*\mathcal{RC}^{\dagger}(E)$ extends canonically to a $\mathscr{D}_{\mathfrak{RP}}^{\dagger}$ -module structure.

Changing the X_a or the D_b results in canonically quasi-isomorphic complexes of $\mathscr{D}_{\mathfrak{BO}}^{\dagger}$ -modules.

Corollary

There exists a canonical lifting of $(\mathsf{Rsp}_* \circ] \alpha[!)[d_{\mathfrak{P}}]$ to a functor

$$\mathsf{Rsp}_{\mathfrak{P},!}: \mathsf{Isoc}^{\dagger}(X/K) o D^b(\mathscr{D}_{\mathfrak{PO}}^{\dagger})$$

such that

$$H^{i}_{\mathrm{rig}}(P,]\alpha[_{!}E) = H^{i-2d_{\mathfrak{P}}}(u_{+}\mathrm{Rsp}_{\mathfrak{P},!}E).$$

Example

If Y = P and $Y \setminus X$ is a divisor, then $\operatorname{\mathsf{Rsp}}_{\mathfrak{P},!}E = \operatorname{sp}_*E[d_{\mathfrak{P}}] = \operatorname{sp}_+E[d_{\mathfrak{P}}].$

2 Constructible isocrystals

Oual constructibility

Suppose we want to interpret

$$H^{i}_{\mathrm{rig}}(P,]\alpha[!E) = H^{i}(\mathfrak{P}_{K},]\alpha[!(E \otimes \Omega^{\bullet}_{|Y|})).$$

Morally, the RHS should be

$$"H_c^i(]Y[, E \otimes \Omega^{ullet}_{]Y[})"$$

for some suitable definition of H_c^i .

So we want to:

- make sense of H_c^i for rigid analytic varieties (following Huber);
- use a suitable formalism of the trace map to understand $H_c^i(]Y[, E \otimes \Omega_{]Y[}^{\bullet})$ via *duality* (following the approaches of Chiarellotto/van der Put to Serre duality for rigid analytic varieties).

Proposition

For every paracompact (taut) morphism $f:V\to W$ of rigid analytic varieties there exists a unique functor

$$\mathbf{R}f_{!}: D^{b}(\mathbf{Ab}(V)) \to D^{b}(\mathbf{Ab}(W))$$

such that:

- when f is partially proper, Rf₁ is the total derived functor of the functor f₁ of sections whose support is quasi-compact over W (in particular, when f is proper, Rf₁ = Rf_{*});
- when f is an open immersion, $\mathbf{R}f_{l} = f_{l}$ is extension by zero;
- $\mathbf{R}(g \circ f)_{!} = \mathbf{R}g_{!} \circ \mathbf{R}f_{!}$.

Moreover, for any $w \in W$ there is a canonical isomorphism

$$(\mathbf{R}f_{!}-)_{w} \xrightarrow{\sim} \mathbf{R}\Gamma_{c}(f^{-1}(w),-).$$

Remark

When f is partially proper, we recover the definition given by van der Put.

By considering more general adic spaces, we can *define* $\mathbf{R}f_i$ by these properties: by a theorem of Huber every such $f: V \to W$ has a canonical compactification

where *j* is an open immersion and \overline{f} is partially proper. Then define $\mathbf{R}f_{!} := \mathbf{R}\overline{f}_{!} \circ j_{!}$ where $\mathbf{R}\overline{f}_{!}$ is the total derived functor of sections with quasi-compact support.

Key new input:

Theorem (Proper base change theorem) Let $f: V \to W$ be a proper morphism of finite dimensional adic spaces, and $\mathscr{F} \in \mathbf{Ab}(V)$. Then for every $w \in W$ the base change map

$$(\mathsf{R}f_*\mathscr{F})_w \to \mathsf{R}\Gamma(f^{-1}(w),\mathscr{F})$$

is an isomorphism.

Proof.

Reduce to $W = \text{Spa}(L, L^+)$ for some affinoid field (L, L^+) , $V = \mathbb{P}^1_{(L, L^+)}$, w = closedpoint of W, and $\mathscr{F} = \text{constant sheaf } \underline{A}_T$ supported on some closed subset $T \subset \mathbb{P}^1_{(L, L^+)}$. Then use an explicit topological description of $\mathbb{P}^1_{(L, L^+)}$.

Theorem

There exists a unique way to associate a trace morphism

$$\operatorname{Fr}_f: \mathbf{R}f_!\Omega^{ullet}_{V/W}[2d] \to \mathcal{O}_W$$

to every smooth, paracompact morphism $f:V\to W$ of rigid analytic varieties, of relative dimension d, such that:

- **1** Tr_f is compatible with composition;
- 2 when f is étale, then Tr_f is the canonical map

$$f_!\mathcal{O}_V \to \mathcal{O}_W;$$

(a) when W = Sp(R) is affinoid, and $f : \mathbb{D}_W(0; 1^-) \to W$ is the canonical projection, then Tr_f is induced by the map

$$\begin{aligned} H^{1}_{c}(\mathbb{D}_{W}(0;1^{-}),\Omega^{1}_{\mathbb{D}_{W}(0;1^{-})/W}) &\cong R\langle z^{-1}\rangle^{\dagger} d\log z \to R\\ &\sum_{i\geq 0} r_{i}z^{-i}d\log z \mapsto r_{0} \end{aligned}$$

where z is any co-ordinate on $\mathbb{D}_W(0; 1^-)$.

If f is either a $\mathbb{D}^n(0; 1^-)$ or $\mathbb{A}^{n,an}$ -bundle, then Tr_f is an isomorphism.

To construct Tr_f :

- Properties (1) and (3) give a trace map for $f : \mathbb{D}^n_W(0; 1^-) \to W$, at least given a choice of co-ordinates z_1, \ldots, z_d .
- Properties (1) and (2) then give a trace map for $f : \mathbb{D}_{W}^{n}(0; 1) \to W$, at least given a choice of z_{1}, \ldots, z_{d} and a choice of uniformiser $\pi \in \mathcal{V}$ inducing

$$\mathbb{D}^n_W(0;1) \xrightarrow{j_\pi} \mathbb{D}^n_W(0;1^-).$$

• Properties (1) and (2) then give a trace map whenever W and V are affinoids, at least given a choice of factorisation

$$V \stackrel{g}{\rightarrow} \mathbb{D}^n_W(0;1) \rightarrow W$$

with g étale.

• Can construct Tr_f in general by using descent.

The hard work is in proving independence of all of these choices!

Corollary

Let

be a diagram of frames, with g proper and u smooth in a neighbourhood of X, and $E \in lsoc^{\dagger}(X/K)$. Then $Tr_{|g|}$ induces an isomorphism

$$\mathsf{R}]g[_!\mathcal{E}_{]Y'[_{\mathfrak{P}'}}\otimes\Omega^{\bullet}_{]Y'[_{\mathfrak{P}'}/]Y[_{\mathfrak{P}}}[2d_u]\stackrel{\sim}{\to}\mathcal{E}_{]Y[_{\mathfrak{P}}}$$

where d_u is the relative dimension.

Corollary

Let $(X, Y \stackrel{\alpha}{\to} \mathfrak{P})$ be a smooth and proper frame over \mathcal{V} , and $E \in \mathsf{lsoc}^{\dagger}(X/K)$. Then

$$H^{2d_{\mathfrak{P}}-i}(\mathfrak{P}_{K},]\alpha[!E\otimes\Omega^{\bullet}_{\mathfrak{P}_{K}})$$

only depends on X and not on Y or \mathfrak{P} .

Now, if we take a smooth and proper frame (X, Y, \mathfrak{P}) and $E \in \text{Isoc}^{\dagger}(X/K)$, then we have Berthelot's "Poincaré" pairing

$$E \times \mathbf{R}\underline{\Gamma}_{]X[\mathfrak{P}} E^{\vee} \to \mathbf{R}\underline{\Gamma}_{]X[\mathfrak{P}} \mathcal{O}_{]Y[\mathfrak{P}]}$$

which via the trace map induces a pairing

$$\begin{aligned} & H_c^{2d_{\mathfrak{P}}-i}(]Y[_{\mathfrak{P}}, E\otimes\Omega^{\bullet}_{]Y[_{\mathfrak{P}}})\times H^i(]Y[_{\mathfrak{P}}, \mathsf{R}\underline{\Gamma}_{]X[_{\mathfrak{P}}}(E^{\vee}\otimes\Omega^{\bullet}_{]Y[_{\mathfrak{P}}})) \\ & \to H_c^{2d_{\mathfrak{P}}}(]Y[_{\mathfrak{P}},\Omega^{\bullet}_{]Y[_{\mathfrak{P}}})\overset{\mathsf{Tr}}{\to} K. \end{aligned}$$

Theorem

This pairing is perfect.

Proof.

Both sides sit in excision exact sequences, which are compatible with the pairing, so we may assume that X is smooth and affine. We can therefore choose a Monsky–Washnitzer frame (X, Y, \mathfrak{P}) in which case the claim reduces to Poincaré duality with coefficients, as proved by Kedlaya.

So $H_{rig}^{2d_p-i}(P,]\alpha[_!E)$ is canonically isomorphic to rigid Borel–Moore homology $H_{i,rig}^{BM}(X, E)$.

2 Constructible isocrystals

3 The trace map

4 Dual constructibility

- V =complex variety $\rightsquigarrow 2$ well-known *t*-structures of $D_c^b(V, \mathbb{C})$.
 - **()** The usual (constructible) *t*-structure $(D^{\geq 0}, D^{\leq 0})$ with heart Con (V, \mathbb{C}) .
 - **2** The perverse *t*-structure $({}^{p}D^{\geq 0}, {}^{p}D^{\leq 0})$ with heart Perv (V, \mathbb{C}) .

Second is self-dual under D_V , first is not.

Definition

The dual constructible *t*-structure $({}^{d}D^{\geq 0}, {}^{d}D^{\leq 0})$ on $D_{c}^{b}(V, \mathbb{C})$ is defined by

$$\mathscr{K}^{\bullet} \in {}^{d}D^{\geq 0} \Leftrightarrow \mathbf{D}_{V}(\mathscr{K}^{\bullet}) \in D^{\leq 0}$$

$$\mathscr{K}^{\bullet} \in {}^{d}D^{\leq 0} \Leftrightarrow \mathbf{D}_{V}(\mathscr{K}^{\bullet}) \in D^{\geq 0}.$$

Deduce properties of $({}^{d}D^{\geq 0}, {}^{d}D^{\leq 0})$ from those of $(D^{\geq 0}, D^{\leq 0})$.

Example

If $f: V \to W$ then $f^!$ is exact for the dual constructible *t*-structure. If f is an immersion, then so is $\mathbf{R}f_*$.

Back to char $p: \rightsquigarrow D^b_{hol}(\mathscr{D}^{\dagger}_{\mathfrak{PQ}}), D^b_{hol}(X/K)$ also have 3 *t*-structures:

- holonomic *t*-structure on $D^b_{hol}(\mathscr{D}^{\dagger}_{\mathfrak{PQ}})$ this is just the obvious one coming from $D^b_{coh}(\mathscr{D}^{\dagger}_{\mathfrak{PQ}})$, slightly more subtle on $D^b_{hol}(X/K)$;
- constructible (perverse) t-structure;
- logical constructible *t*-structure.

Same exactness properties as before, in particular the dual constructible *t*-structure on $D_{hol}^b(X/K)$ is the restriction of that on $D_{hol}^b(\mathscr{D}_{\mathfrak{WO}}^+)$ - this is false for the other two!

Remark

When \mathfrak{P} is a smooth and proper curve, Le Stum's perverse *t*-structure on $D^b_{\mathfrak{p} \mathbb{O}}(\mathscr{D}^{\dagger}_{\mathfrak{P} \mathbb{O}})$ coincides with our dual constructible *t*-structure, up to a shift by $1 = \dim \mathfrak{P}$.

Hearts are denoted

```
Hol(\mathfrak{P}), Con(\mathfrak{P}), DCon(\mathfrak{P})
```

and

```
Hol(X/K), Con(X/K), DCon(X/K)
```

respectively.

Theorem

Let $X \hookrightarrow \mathfrak{P}$ with \mathfrak{P} smooth and proper over \mathcal{V} , and $E \in \mathsf{Isoc}^{\dagger}(X/K)$. Then

$$\mathsf{Rsp}_{\mathfrak{P}, !} E \in \mathsf{DCon}(X/K) \subset D^b(\mathscr{D}_{\mathfrak{PO}}^\dagger)$$

is overholonomic, supported on X, and is in the heart of the dual constructible t-structure.

Proof.

- Show that formation of Rsp_{p,!} E is compatible with localisation exact sequences and taking finite étale covers of X (this uses a suitable D[†]-lifting of the trace morphism).
- **(a)** Use alterations to reduce to the case where X and $Y := \overline{X}$ are smooth and $Y \setminus X$ is a divisor.
- **(a)** Now locally lift $Y \hookrightarrow \mathfrak{P}$ to a closed embedding $u : \mathfrak{Y} \hookrightarrow \mathfrak{P}$ of smooth formal \mathcal{V} -schemes, and show that $u_+ \operatorname{Rsp}_{\mathfrak{Y},!} E \cong \operatorname{Rsp}_{\mathfrak{P},!} E$, thus reducing to the case when $Y = \mathfrak{P}_k$.
- In this case we have $\operatorname{Rsp}_{\mathfrak{P},!} = \operatorname{sp}_{+}[d_{\mathfrak{P}}]$ and can appeal to Caro–Tsuzuki.

Proposition

Consider

with $\mathfrak{P}, \mathfrak{Q}$ proper smooth over \mathcal{V} , and $E \in Isoc^{\dagger}(Y/K)$. Then there is a canonical isomorphism

$$\mathbf{R}\underline{\Gamma}_{X}u^{!}\mathbf{R}\mathrm{sp}_{\mathfrak{Q},!}E \xrightarrow{\sim} \mathbf{R}\mathrm{sp}_{\mathfrak{P},!}f^{*}E$$

in $D^b_{hol}(\mathscr{D}^{\dagger}_{\mathfrak{PQ}})$.

Proof.

We can treat separately the cases when u = id and the square is Cartesian. The first follows from compatibility with localisation already mentioned, and the second from direct calculation.

Corollary

For any variety X/k there exists a canonical functor

$$\operatorname{sp}_{X,!}:\operatorname{Isoc}^{\dagger}(X/K) o\operatorname{\mathsf{DCon}}(X/K)$$

such that for any embedding $X \hookrightarrow \mathfrak{P}$,

$$(\mathsf{sp}_{X,!}E)_\mathfrak{P} = \mathsf{Rsp}_{\mathfrak{P},!}E \in D^b_{\mathsf{hol}}(\mathscr{D}^\dagger_{\mathfrak{PQ}}).$$

It is compatible with pullback: for any $f: X \to Y$, and any $E \in Isoc^{\dagger}(Y/K)$, we have

$$\operatorname{sp}_{X,!} f^* E \cong f^! \operatorname{sp}_{Y,!} E.$$

Theorem

For any X/k, and any $E \in \operatorname{Isoc}^{\dagger}(X/K)$ there exists a canonical isomorphism

$$\operatorname{sp}_{X,+}E[-d_X] \xrightarrow{\sim} \mathbf{D}_X(\operatorname{sp}_{X,!}E^{\vee})$$

in $D^b_{hol}(\mathscr{D}^{\dagger}_{\mathfrak{PQ}})$.

Proof.

We can show that both sides lie in the abelian category Con(X/K), which satisfies h-descent. Hence, we may assume that X is smooth, with a smooth compactification Y, and that $Y \setminus X$ is a divisor. Then the isomorphism follows from compatibility of Caro's functor $sp_{X,+}$ with duality.

Remark

We only have $\operatorname{sp}_{X,+} E \in \operatorname{Hol}(X/K)$ if X is smooth, in general we have $\operatorname{sp}_{X,+} E \in \operatorname{Con}(X/K)[d_X]$. The formulation of the theorem is slightly neater if we replace $\operatorname{sp}_{X,+} E$ by

$$\widetilde{\operatorname{sp}}_{X,+}E := \operatorname{sp}_{X,+}E[-d_X] \in \operatorname{Con}(X).$$

Corollary

For any variety X/k, and any $E \in Isoc^{\dagger}(X/K)$ we have a canonical isomorphism

$$H^{i}_{c,\mathrm{rig}}(X/K,E)\cong H^{i}_{c,\mathscr{D}}(X/K,E):=H^{i}(f_{!}\widetilde{\mathrm{sp}}_{X,+}E)$$

of K-vector spaces.

Proof.

If $X \hookrightarrow \mathfrak{P}$ with \mathfrak{P} smooth and proper over \mathcal{V} , and $\alpha : Y \hookrightarrow \mathfrak{P}$ is its closure, then we have

$$\begin{split} H^{i}_{c,\mathrm{rig}}(X/K,E) &\stackrel{\sim}{\to} H^{2d_{\mathfrak{P}}-i}(\mathfrak{P}_{K},]\alpha[_{!}E^{\vee}\otimes\Omega_{\mathfrak{P}_{K}}^{\bullet})^{\vee} \\ &\stackrel{\sim}{\to} H^{d_{\mathfrak{P}}-i}(\mathfrak{P},\mathsf{Rsp}_{\mathfrak{P},!}E^{\vee}\otimes\Omega_{\mathfrak{P}}^{\bullet})^{\vee} \\ &\stackrel{\sim}{\to} H^{-i}(f_{+}\widetilde{\mathsf{sp}}_{X,!}E^{\vee})^{\vee} \\ &\stackrel{\sim}{\to} H^{i}(f_{i}\widetilde{\mathsf{sp}}_{X,+}E). \end{split}$$

The general case can be handled by descent.

For comparison of 'usual' cohomologies, see Tomoyuki's talk.

Thank-you!