A new comparison between overconvergent isocrystals and arithmetic $\mathcal{D}^!$-modules
joint with Tomoyuki Abe

Christopher Lazda
Warwick Mathematics Institute

Padova, 19th September 2019
1 Introduction

2 Constructible isocrystals

3 The trace map

4 Dual constructibility
\(\mathcal{V} = \) complete DVR
\(k = \) residue field, perfect, char \(p > 0 \)
\(K = \) fraction field \(K \), char 0

\(X/k \) variety (= separated scheme of finite type), \(\text{Isoc}^\dagger(X/K) = \) \(F \)-able
overconvergent isocrystals on \(X \)

If we have an embedding \(X \hookrightarrow \mathfrak{P} \) with \(\mathfrak{P} \) smooth and proper over \(\mathcal{V} \), then

\[
\text{Isoc}^\dagger(X/K) \hookrightarrow \text{MIC}(j_\mathfrak{X}_!\mathcal{O}_{Y[1]}),
\]

where \(Y \) is the closure of \(X \) inside \(\mathfrak{P}_k \), and

\[
H^i_{\text{rig}}(X/K, E) := H^i(Y[1], E \otimes \Omega^\bullet_{Y[1]})
\]

Good formal properties: finite dimensional, versions with support, excision exact
sequences, &c.
Beyond “smooth” coefficient objects: theory of arithmetic \mathcal{D}^\dagger-modules (Berthelot/Caro).

Locally: take étale co-ordinates x_1, \ldots, x_d on \mathcal{V} and set

$$\mathcal{D}_{\mathcal{V}Q}^\dagger = \left\{ \sum_k a_k \partial[k] \left| a_k \in \mathcal{O}_{\mathcal{V}Q}, \exists \lambda > 1 \text{ s.t. } \|a_k\| \lambda^{|k|} \to 0 \right. \right\}$$

where

$$\partial[k] = \frac{\partial_{x_1}^{k_1} \cdots \partial_{x_d}^{k_d}}{k_1! \cdots k_d!}.$$

Caro defines

$$D^b_{\text{hol}}(\mathcal{D}_{\mathcal{V}Q}^\dagger) \subset D^b_{\text{coh}}(\mathcal{D}_{\mathcal{V}Q}^\dagger)$$

“F-able overholonomic complexes”, stable under:

- $f^!$
- $D_{\mathcal{V}}$
- $\otimes_{\mathcal{V}Q}^\dagger$
- $R\Gamma^\dagger_Z$ for $Z \subset \mathcal{V}$ closed
- f_+ for f proper,
Given $X \hookrightarrow \mathcal{P}$, define

$$D_{\text{hol}}^b(X/K) := \{ \mathcal{M} \in D_{\text{hol}}^b(\mathcal{D}_{\mathbb{P}^1_{\mathbb{Q}}}) \text{ supported on } X \} ,$$

these are independent of the embedding, and support a formalism of the 6 functors $(f^+, f_+), (f_!, f^!), \otimes, \mathbb{D}$.

Comparison of coefficients: \exists fully faithful functor

$$\text{sp}_{X,+} : \text{Isoc}^\dagger(X/K) \to D_{\text{hol}}^b(X/K) \subset D_{\text{hol}}^b(\mathcal{D}_{\mathbb{P}^1_{\mathbb{Q}}})$$

and can describe the essential image. Defined by Caro when X is smooth, and extended to the non-smooth case by Abe.

Example

If X is a dense open inside $P = \mathbb{P}_k$, and $P \setminus X$ is a divisor, then $\text{sp}_+ = \text{sp}_*$ is just pushforward along $\text{sp} : \mathbb{P}_k \to \mathbb{P}$.

Much more difficult to describe in general!
For $E \in \text{Isoc}^\dagger(X/K)$, can define its “$\mathcal{D}$-module cohomology”

$$H^i_{\mathcal{D}}(X/K, E) := H^{i-d_X}(f_+sp_+E)$$

where $f : X \to \text{Spec}(k)$ is the structure morphism, inducing

$$f_+ : D^b_{\text{hol}}(X/K) \to D^b_{\text{hol}}(\text{Spec}(k)/K) \cong D^b(K),$$

and $d_X = \dim X$. Concretely, if $X \xhookrightarrow{\mathfrak{p}}$ then

$$H^i_{\mathcal{D}}(X/K, E) = H^{i-d_X+d_{\mathfrak{p}}}(\mathfrak{p}, sp_+E \otimes_{\mathcal{O}_{\mathfrak{p}}} \Omega^\bullet_{\mathfrak{p}/\nu}).$$

where $d_{\mathfrak{p}} = \dim \mathfrak{p}$.

Question

Do we always have

$$H^i_{\text{rig}}(X/K, E) \cong H^i_{\mathcal{D}}(X/K, E)?$$

This is not obvious!

Today: describe a new construction of sp_+ which makes comparison theorems easier to prove.
1 Introduction

2 Constructible isocrystals

3 The trace map

4 Dual constructibility
\(\mathfrak{P} = \) smooth, proper formal \(\mathcal{V} \)-scheme, \(P = \) special fibre,

\[
p_1, p_2 :]P[_{\mathfrak{P}^2} \to \mathfrak{P}_K
\]

the two projections.

Definition (Berthelot)

A convergent stratification on an \(\mathcal{O}_{\mathfrak{P}_K} \)-module \(E \) is an isomorphism

\[
p_2^* E \sim p_1^* E
\]

satisfying the cocycle condition.

Definition (Le Stum)

\(E \) is called constructible if there exists a stratification \(P = \bigsqcup_i P_i \) such that \(E|_{P_i} \) is coherent.

\(\text{Isoc}^\dagger_{\text{cons}}(P/K) = (F\text{-able}) \) constructible \(\mathcal{O}_{\mathfrak{P}_K} \)-modules with convergent stratification.
Example

$X \hookrightarrow \mathcal{V}$ locally closed immersion, with closure $\alpha : Y \hookrightarrow \mathcal{V}$, then we have $\lfloor \alpha \rfloor ! Y \to \mathcal{V}_K$, and if $E \in \text{Isoc}^\dagger(X/K) \subset \text{MIC}(j_X^! \mathcal{O}_Y)$, then

$\lfloor \alpha \rfloor ! E \in \text{Isoc}^\dagger_{\text{cons}}(P/K)$

so we have a fully faithful functor

$\lfloor \alpha \rfloor ! : \text{Isoc}^\dagger(X/K) \to \text{Isoc}^\dagger_{\text{cons}}(P/K)$.

Conjecture (Le Stum)

Rsp_\ast induces an equivalence of categories

$\text{Isoc}^\dagger_{\text{cons}}(P/K) \sim \text{Perv}(\mathcal{D}^\dagger_{\mathcal{V}/\mathbb{Q}})$.

This is a theorem when $\dim \mathcal{V}/\mathcal{V} = 1$.
Not clear how to even define R_{sp_*} in general: want a lifting

$$\xymatrix{ D^b(\mathcal{D}_Q^\dagger) \ar[r] & D^b(\mathcal{D}_Q^\dagger) \\
\text{Isoc}^\dagger_{\text{cons}}(P/K) \ar[r]_{R_{sp_*}} \ar[d]^\text{forget} & D^b(\mathcal{D}_Q^\dagger) \\
\text{Isoc}^\dagger_{\text{cons}}(P/K) \ar[r]_{R_{sp_*}} \ar[u] & D^b(\mathcal{D}_Q^\dagger) \ar[u] }$$

but $sp^{-1}\mathcal{D}_Q^\dagger$ doesn’t act on constructible isocrystals (even if they are coherent on all of \mathfrak{B}_K). What we did: given $X \hookrightarrow Y \overset{\alpha}{\twoheadrightarrow} \mathfrak{B}$, construct

$$\xymatrix{ \text{Isoc}^\dagger(X/K) \ar[r]_-{[\alpha]} & \text{Isoc}^\dagger_{\text{cons}}(P/K) \ar[r]_{R_{sp_*}} \ar[d]^\text{forget} & D^b(\mathcal{D}_Q^\dagger) \\
\text{Isoc}^\dagger(X/K) \ar[r]_-{[\alpha]} & \text{Isoc}^\dagger_{\text{cons}}(P/K) \ar[r]_{R_{sp_*}} \ar[u] & D^b(\mathcal{D}_Q^\dagger) \ar[u] }$$

This immediately gives

$$H^i_{\text{rig}}(P, [\alpha][!E]) \cong H^i_{\mathcal{D}}(\mathfrak{B}, R_{sp_*}[\alpha][!E]).$$
Basic example: \(\mathcal{P} = \widehat{\mathbb{P}}^2 \) with co-ordinates \(x_0, x_1, x_2 \), \(Y = \mathbb{P}^1_k = \mathbb{V}(x_2) \subset P \), and
\(X = \mathbb{A}^1_k = D(x_0) \subset Y \), so we have

\[
X \xrightarrow{j} Y \xrightarrow{\alpha} \mathcal{P}
\]

and

\[
\alpha[\cdot]Y[\to \mathcal{P}_K.
\]

We take \(E = j^!_{\mathcal{X}} \mathcal{O}_Y[\mathcal{P}] \).

Set \(U = P \setminus Y \), so for any sheaf \(\mathcal{F} \) on \(\mathcal{P}_K \) we have the localisation exact sequence

\[
0 \to \Gamma_Y^! \mathcal{F} \to \mathcal{F} \to j^!_U \mathcal{F} \to 0,
\]

note that \(\Gamma_Y^! = \alpha[\cdot] \alpha^{-1} \). We apply this to \(\mathcal{F} = R\alpha[*j^!_{\mathcal{X}} \mathcal{O}_Y[\mathcal{P}] \) to obtain

\[
0 \to \alpha[i^!j^!_{\mathcal{X}} \mathcal{O}_Y[\to \alpha[*j^!_{\mathcal{X}} \mathcal{O}_Y[\to j^!_U \alpha[*j^!_{\mathcal{X}} \mathcal{O}_Y[\to 0
\]

which gives a 2-term resolution of \(\alpha[i^!j^!_{\mathcal{X}} \mathcal{O}_Y[. \)
Lemma

The sheaves $\alpha[\ast j_X^! O_X]_Y$ and $j_U^! \alpha[\ast j_X^! O_X]_Y$ are $\text{sp}_*\text{-acyclic}$.

So we have

$$R\text{sp}_* \alpha[j_X^! O_X]_Y \cong (\text{sp}_* \alpha[j_X^! O_X]_Y \to \text{sp}_* j_U^! \alpha[j_X^! O_X]_Y).$$

If we set $u = x_1/x_0$ and $v = x_2/x_0$, and look at global sections, then the first term consists of series

$$f(u, v) \in K[[u, v]]$$

such that:

- $\forall \eta < 1 \exists \lambda > 1$ s.t. $f(u, v)$ converges for $|v| \leq \eta$ and $|u| \leq \lambda$.

Can describe the second term similarly, as series

$$f(u, v) \in K[[u, v, v^{-1}]]$$

such that:

- there exists $\rho < 1$ such that $\forall \rho < \eta < 1 \exists \lambda > 1$ s.t. $f(u, v)$ converges for $\rho \leq |v| \leq \eta$ and $|u| \leq \lambda$.

Christopher Lazda
Explicitly, the second is Kedlaya’s relative Robba ring $\mathcal{R}^\nu_{K\langle u \rangle^\dagger}$, and the first is its plus part $\mathcal{R}^{\nu,+}_{K\langle u \rangle^\dagger}$ consisting of series with terms in non-negative powers of ν.

\Rightarrow can see directly that

$$\mathbf{Rsp}_* \alpha[i j^\dagger_X \mathcal{O}_Y \mathbb{Y}] \cong \nu^{-1} K\langle u, \nu^{-1} \rangle^\dagger[-1]$$

and the $\mathcal{D}_\mathbb{P}_\mathbb{Q}$-module structure extends to a $\mathcal{D}_\mathbb{P}_\mathbb{Q}$-module structure.

Want to generalise this to an arbitrary frame $(X \xrightarrow{j} Y \xrightarrow{\alpha} \mathbb{P})$ with \mathbb{P} smooth and proper over \mathcal{Y}, and $E \in \text{Isoc}^\dagger(X/K)$.
Three complications:

1. The complement \(Y \setminus X \) might not be a divisor. So we take a suitable open cover \(X = \bigcup_a X_a \) and replace \(E \) by

\[
0 \to \oplus a j^\dagger_{X_a} E \to \oplus a_1, a_2 j^\dagger_{X_{a_1} \cap X_{a_2}} E \to \ldots \to j^\dagger_{\bigcap_a X_a} E \to 0.
\]

2. We don’t know in general that the \(j^\dagger_{X_a} E \) are \(\alpha [\ast] \)-acyclic. So we take the immersions \(\alpha_\eta : [Y]_\eta \to [Y] \) of quasi-compact tubes, and replace \(j^\dagger_{X_a} E \) by

\[
\lim_{\rightarrow n_0} \left(\prod_{n \geq n_0} \alpha_{\eta_n \ast j^\dagger_{X_a} E│[Y]_{\eta_n}} \to \prod_{n \geq n_0} \alpha_{\eta_n \ast j^\dagger_{X_a} E│[Y]_{\eta_n}} \right)
\]

for \(\eta_n \to 1^- \).

3. \(Y \) might not be a divisor in \(P \), so we need to pick divisors \(D_b \) such that \(Y = \bigcap_b D_b \) and replace the short exact sequence

\[
0 \to \Gamma^\dagger_Y \mathcal{F} \to \mathcal{F} \to j^\dagger_{U} \mathcal{F} \to 0
\]

by the long exact sequence

\[
0 \to \Gamma^\dagger_Y \mathcal{F} \to \mathcal{F} \to \oplus b j^\dagger_{U \setminus D_b} \mathcal{F} \to \ldots \to j^\dagger_{U \setminus \bigcup_b D_b} \mathcal{F} \to 0.
\]
Proposition

Given suitable choices $X = \bigcup_a X_a$ and $Y = \bigcap_b D_b$ as above there exists a resolution $RC^\dagger(E)$ of $]\alpha[! E$ such that the $\mathcal{D}_{\mathcal{P}\mathcal{Q}}$-module structure on $sp_*RC^\dagger(E)$ extends canonically to a $\mathcal{D}_{\mathcal{P}\mathcal{Q}}^\dagger$-module structure.

Changing the X_a or the D_b results in canonically quasi-isomorphic complexes of $\mathcal{D}_{\mathcal{P}\mathcal{Q}}^\dagger$-modules.

Corollary

There exists a canonical lifting of $(\text{R}sp_* \circ]\alpha[!) [d_{\mathcal{P}}]$ to a functor

$$\text{R}sp_{\mathcal{P}^\dagger, !} : \text{Isoc}^\dagger (X/K) \to D^b(\mathcal{D}_{\mathcal{P}\mathcal{Q}}^\dagger)$$

such that

$$H_{\text{rig}}^i (P,]\alpha[! E) = H^{i-2d_{\mathcal{P}}} (u_+ \text{R}sp_{\mathcal{P}, !} E).$$

Example

If $Y = P$ and $Y \setminus X$ is a divisor, then $\text{R}sp_{\mathcal{P}, !} E = sp_* E[d_{\mathcal{P}}] = sp_+ E[d_{\mathcal{P}}].$
Introduction

Constructible isocrystals

The trace map

Dual constructibility
Suppose we want to interpret

\[H^i_{\text{rig}}(P, \alpha[!E]) = H^i(\mathfrak{M}_K, \alpha[!((E \otimes \Omega^\bullet_{\mathcal{Y}[]})]. \]

Morally, the RHS should be

\["H^i_{\text{c}}(\mathcal{Y}[, E \otimes \Omega^\bullet_{\mathcal{Y}[]})" \]

for some suitable definition of \(H^i_{\text{c}} \).

So we want to:

1. make sense of \(H^i_{\text{c}} \) for rigid analytic varieties (following Huber);
2. use a suitable formalism of the trace map to understand \(H^i_{\text{c}}(\mathcal{Y}[, E \otimes \Omega^\bullet_{\mathcal{Y}[]}) \) via \textit{duality} (following the approaches of Chiarellotto/van der Put to Serre duality for rigid analytic varieties).
Proposition

For every paracompact (taut) morphism $f : V \to W$ of rigid analytic varieties there exists a unique functor

$$R_f! : D^b(Ab(V)) \to D^b(Ab(W))$$

such that:

- when f is partially proper, $R_f!$ is the total derived functor of the functor $f_!$ of sections whose support is quasi-compact over W (in particular, when f is proper, $R_f! = Rf_*$);
- when f is an open immersion, $R_f! = f_!$ is extension by zero;
- $R(g \circ f)_! = Rg_! \circ Rf_!$.

Moreover, for any $w \in W$ there is a canonical isomorphism

$$(Rf_! -)_w \xrightarrow{\sim} R\Gamma_c(f^{-1}(w), -).$$

Remark

When f is partially proper, we recover the definition given by van der Put.
By considering more general adic spaces, we can define $Rf_!$ by these properties: by a theorem of Huber every such $f : V \to W$ has a canonical compactification

![Diagram](attachment:image.png)

where j is an open immersion and \bar{f} is partially proper. Then define $Rf_! := R\bar{f}_! \circ j_!$ where $R\bar{f}_!$ is the total derived functor of sections with quasi-compact support.
Key new input:

Theorem (Proper base change theorem)

Let $f : V \to W$ be a proper morphism of finite dimensional adic spaces, and $\mathcal{F} \in \text{Ab}(V)$. Then for every $w \in W$ the base change map

$$(Rf_* \mathcal{F})_w \to R\Gamma(f^{-1}(w), \mathcal{F})$$

is an isomorphism.

Proof.

Reduce to $W = \text{Spa}(L, L^+)$ for some affinoid field (L, L^+), $V = \mathbb{P}^1_{(L,L^+)}$, $w =$ closed point of W, and $\mathcal{F} =$ constant sheaf A_T supported on some closed subset $T \subset \mathbb{P}^1_{(L,L^+)$. Then use an explicit topological description of $\mathbb{P}^1_{(L,L^+)}. \hfill \square$
Theorem

There exists a unique way to associate a trace morphism

\[\text{Tr}_f : Rf_!\Omega^\bullet_{V/W}[2d] \to \mathcal{O}_W \]

to every smooth, paracompact morphism \(f : V \to W \) of rigid analytic varieties, of relative dimension \(d \), such that:

1. \(\text{Tr}_f \) is compatible with composition;
2. when \(f \) is étale, then \(\text{Tr}_f \) is the canonical map
 \[f_!\mathcal{O}_V \to \mathcal{O}_W; \]
3. when \(W = \text{Sp}(R) \) is affinoid, and \(f : \mathbb{D}_W(0; 1^-) \to W \) is the canonical projection, then \(\text{Tr}_f \) is induced by the map
 \[H^1_c(\mathbb{D}_W(0; 1^-), \Omega^1_{\mathbb{D}_W(0; 1^-)/W}) \cong R\langle z^{-1}\rangle^\dagger d \log z \to R \]
 \[\sum_{i \geq 0} r_i z^{-i} d \log z \mapsto r_0 \]

where \(z \) is any co-ordinate on \(\mathbb{D}_W(0; 1^-) \).

If \(f \) is either a \(\mathbb{D}^n(0; 1^-) \) or \(\mathbb{A}^{n,\text{an}} \)-bundle, then \(\text{Tr}_f \) is an isomorphism.
To construct Tr_f:

- Properties (1) and (3) give a trace map for $f : \mathbb{D}_W^n(0; 1^-) \rightarrow W$, at least given a choice of co-ordinates z_1, \ldots, z_d.

- Properties (1) and (2) then give a trace map for $f : \mathbb{D}_W^n(0; 1) \rightarrow W$, at least given a choice of z_1, \ldots, z_d and a choice of uniformiser $\pi \in \mathcal{V}$ inducing

$$\mathbb{D}_W^n(0; 1) \xrightarrow{j_\pi} \mathbb{D}_W^n(0; 1^-).$$

- Properties (1) and (2) then give a trace map whenever W and V are affinoids, at least given a choice of factorisation

$$V \xrightarrow{g} \mathbb{D}_W^n(0; 1) \rightarrow W$$

with g étale.

- Can construct Tr_f in general by using descent.

The hard work is in proving independence of all of these choices!
Corollary

Let

\[
\begin{array}{ccc}
Y' & \rightarrow & Y' \\
\downarrow & & \downarrow \\
g & \rightarrow & u \\
\downarrow & & \downarrow \\
X & \rightarrow & Y & \rightarrow & Y \\
\end{array}
\]

be a diagram of frames, with \(g \) proper and \(u \) smooth in a neighbourhood of \(X \), and \(E \in \text{Isoc}^+(X/K) \). Then \(\text{Tr}_g[\] induces an isomorphism

\[
\mathbb{R}g_! [E]_{Y'[\mathfrak{P}']} \otimes \Omega^\bullet_{Y'[\mathfrak{P}']/\mathfrak{P}} [2d_u] \sim E_{\mathfrak{Y}'[\mathfrak{P}]}
\]

where \(d_u \) is the relative dimension.

Corollary

Let \((X, Y \overset{\alpha}{\rightarrow} \mathfrak{P})\) be a smooth and proper frame over \(\mathcal{V} \), and \(E \in \text{Isoc}^+(X/K) \). Then

\[
H^{2d_{\mathfrak{P}}-i}(\mathfrak{P}_K, \alpha[1] E \otimes \Omega^\bullet_{\mathfrak{P}_K})
\]

only depends on \(X \) and not on \(Y \) or \(\mathfrak{P} \).
Now, if we take a smooth and proper frame \((X, Y, \mathfrak{P})\) and \(E \in \text{Isoc}^\dagger(X/K)\), then we have Berthelot’s “Poincaré” pairing

\[
E \times R\Gamma_{\mathcal{X}[\mathfrak{p}]} E^\vee \to R\Gamma_{\mathcal{X}[\mathfrak{p}]} \mathcal{O}_Y[\mathfrak{p}]
\]

which via the trace map induces a pairing

\[
H^{2d\mathfrak{p} - i}_{c}(\mathcal{Y}[\mathfrak{p}], E \otimes \Omega^\bullet_{\mathcal{Y}[\mathfrak{p}]}) \times H^{i}(\mathcal{Y}[\mathfrak{p}], R\Gamma_{\mathcal{X}[\mathfrak{p}]} (E^\vee \otimes \Omega^\bullet_{\mathcal{Y}[\mathfrak{p}]}))
\]

\[
\to H^{2d\mathfrak{p}}_{c}(\mathcal{Y}[\mathfrak{p}], \Omega^\bullet_{\mathcal{Y}[\mathfrak{p}]}) \stackrel{\text{Tr}}{\to} K.
\]

Theorem

This pairing is perfect.

Proof.

Both sides sit in excision exact sequences, which are compatible with the pairing, so we may assume that \(X\) is smooth and affine. We can therefore choose a Monsky–Washnitzer frame \((X, Y, \mathfrak{P})\) in which case the claim reduces to Poincaré duality with coefficients, as proved by Kedlaya.

So \(H_{\text{rig}}^{2d-\mathfrak{p} - i}(P, \alpha[!E])\) is canonically isomorphic to rigid Borel–Moore homology \(H_{i,\text{rig}}^{BM}(X, E)\).
1 Introduction

2 Constructible isocrystals

3 The trace map

4 Dual constructibility
Constructible isocrystals

The trace map

Dual constructibility

\[V = \text{complex variety} \sim 2 \text{ well-known } t\text{-structures of } D^b_c(V, \mathbb{C}). \]

1. The usual (constructible) \(t\)-structure \((D^{\geq 0}, D^{\leq 0})\) with heart \(\text{Con}(V, \mathbb{C})\).
2. The perverse \(t\)-structure \((^pD^{\geq 0}, ^pD^{\leq 0})\) with heart \(\text{Perv}(V, \mathbb{C})\).

Second is self-dual under \(D_V \), first is not.

Definition

The dual constructible \(t\)-structure \((^dD^{\geq 0}, ^dD^{\leq 0})\) on \(D^b_c(V, \mathbb{C})\) is defined by

\[
\mathcal{K}^\bullet \in ^dD^{\geq 0} \iff D_V(\mathcal{K}^\bullet) \in D^{\leq 0} \\
\mathcal{K}^\bullet \in ^dD^{\leq 0} \iff D_V(\mathcal{K}^\bullet) \in D^{\geq 0}.
\]

Deduce properties of \((^dD^{\geq 0}, ^dD^{\leq 0})\) from those of \((D^{\geq 0}, D^{\leq 0})\).

Example

If \(f : V \to W \) then \(f^! \) is exact for the dual constructible \(t\)-structure. If \(f \) is an immersion, then so is \(Rf_* \).
Back to char p: $\sim D^b_{\text{hol}}(\mathcal{D}^\dagger_{\mathcal{P}Q})$, $D^b_{\text{hol}}(X/K)$ also have 3 t-structures:

1. holonomic t-structure - on $D^b_{\text{hol}}(\mathcal{D}^\dagger_{\mathcal{P}Q})$ this is just the obvious one coming from $D^b_{\text{coh}}(\mathcal{D}^\dagger_{\mathcal{P}Q})$, slightly more subtle on $D^b_{\text{hol}}(X/K)$;
2. constructible (perverse) t-structure;
3. dual constructible t-structure.

Same exactness properties as before, in particular the dual constructible t-structure on $D^b_{\text{hol}}(X/K)$ is the restriction of that on $D^b_{\text{hol}}(\mathcal{D}^\dagger_{\mathcal{P}Q})$ - this is false for the other two!

Remark

When \mathcal{P} is a smooth and proper curve, Le Stum's perverse t-structure on $D^b_{\text{hol}}(\mathcal{D}^\dagger_{\mathcal{P}Q})$ coincides with our dual constructible t-structure, up to a shift by $1 = \dim \mathcal{P}$.

Hearts are denoted

$$\text{Hol}(\mathcal{P}), \text{Con}(\mathcal{P}), \text{DCon}(\mathcal{P})$$

and

$$\text{Hol}(X/K), \text{Con}(X/K), \text{DCon}(X/K)$$

respectively.
Theorem

Let $X \hookrightarrow \mathcal{Y}$ with \mathcal{Y} smooth and proper over \mathcal{V}, and $E \in \text{Isoc}^\dagger(X/K)$. Then

$$R\text{sp}_{\mathcal{Y},!}E \in D\text{Con}(X/K) \subset D^b(\mathcal{D}^\dagger_{\mathcal{Y} \mathcal{Q}})$$

is overholonomic, supported on X, and is in the heart of the dual constructible t-structure.

Proof.

1. Show that formation of $R\text{sp}_{\mathcal{Y},!}E$ is compatible with localisation exact sequences and taking finite étale covers of X (this uses a suitable \mathcal{D}^\dagger-lifting of the trace morphism).

2. Use alterations to reduce to the case where X and $Y := \overline{X}$ are smooth and $Y \setminus X$ is a divisor.

3. Now locally lift $Y \hookrightarrow \mathcal{Y}$ to a closed embedding $u : \mathcal{Z} \hookrightarrow \mathcal{Y}$ of smooth formal \mathcal{V}-schemes, and show that $u_+ R\text{sp}_{\mathcal{Z},!}E \cong R\text{sp}_{\mathcal{Y},!}E$, thus reducing to the case when $Y = \mathcal{Y}_k$.

4. In this case we have $R\text{sp}_{\mathcal{Y},!} = \text{sp}_+[d_{\mathcal{Y}}]$ and can appeal to Caro–Tsuzuki.
Proposition

Consider

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
\Psi & \xrightarrow{u} & \Omega
\end{array}
\]

with Ψ, Ω proper smooth over \mathcal{V}, and $E \in \text{Isoc}^\dagger(Y/K)$. Then there is a canonical isomorphism

\[
\mathbf{R}\Gamma_X u^! \mathbf{Rsp}_\Omega E \sim \mathbf{Rsp}_\Psi f^* E
\]

in $\mathbf{D}^b_{\text{hol}}(\mathcal{O}_\mathcal{P}/\mathcal{Q})$.

Proof.

We can treat separately the cases when $u = \text{id}$ and the square is Cartesian. The first follows from compatibility with localisation already mentioned, and the second from direct calculation.
Corollary

For any variety X/k there exists a canonical functor

$$\text{sp}_{X,!} : \text{Isoc}^\dagger(X/K) \to \text{DCon}(X/K)$$

such that for any embedding $X \hookrightarrow \mathcal{P}$,

$$(\text{sp}_{X,!}E)_{\mathcal{P}} = \mathbb{R}\text{sp}_{\mathcal{P},!}E \in D^b_{\text{hol}}(\mathcal{D}_{\mathcal{P},\mathbb{Q}}).$$

It is compatible with pullback: for any $f : X \to Y$, and any $E \in \text{Isoc}^\dagger(Y/K)$, we have

$$\text{sp}_{X,!}f^*E \cong f^!\text{sp}_{Y,!}E.$$
Theorem

For any X/k, and any $E \in \text{Isoc}^\dagger(X/K)$ there exists a canonical isomorphism

$$\text{sp}_{X,+} E[-d_X] \sim \mathcal{D}_X(\text{sp}_{X,+} E^\vee)$$

in $D^b_{\text{hol}}(\mathcal{D}^\dagger_{\mathbb{Q} \bar{\mathbb{Q}}})$.

Proof.

We can show that both sides lie in the abelian category $\text{Con}(X/K)$, which satisfies h-descent. Hence, we may assume that X is smooth, with a smooth compactification Y, and that $Y \setminus X$ is a divisor. Then the isomorphism follows from compatibility of Caro’s functor $\text{sp}_{X,+}$ with duality.

Remark

We only have $\text{sp}_{X,+} E \in \text{Hol}(X/K)$ if X is smooth, in general we have $\text{sp}_{X,+} E \in \text{Con}(X/K)[d_X]$. The formulation of the theorem is slightly neater if we replace $\text{sp}_{X,+} E$ by

$$\tilde{\text{sp}}_{X,+} E := \text{sp}_{X,+} E[-d_X] \in \text{Con}(X).$$
Corollary

For any variety X/k, and any $E \in \text{Isoc}^\dagger(X/K)$ we have a canonical isomorphism

$$H^i_{c, \text{rig}}(X/K, E) \cong H^i_{c, \varnothing}(X/K, E) := H^i(f_! \tilde{sp}_X, + E)$$

of K-vector spaces.

Proof.

If $X \hookrightarrow Y$ with Y smooth and proper over V, and $\alpha : Y \hookrightarrow Y$ is its closure, then we have

$$H^i_{c, \text{rig}}(X/K, E) \cong H^{2d_Y-i}(Y, \alpha[1]E^\vee \otimes \Omega^{\bullet}_{X/K})^\vee$$

$$\cong H^{d_Y-i}(Y, R\text{sp}_Y, !E^\vee \otimes \Omega^{\bullet}_{Y})^\vee$$

$$\cong \text{H}^{-i}(f_+ \tilde{sp}_X, !E^\vee)^\vee$$

$$\cong H^i(f_! \tilde{sp}_X, + E).$$

The general case can be handled by descent.

For comparison of ‘usual’ cohomologies, see Tomoyuki’s talk.
Thank-you!