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V = complete DVR
k = residue field, perfect, char p > 0
K = fraction field K , char 0

X/k variety (= separated scheme of finite type), Isoc†(X/K) = F -able
overconvergent isocrystals on X

If we have an embedding X ↪→ P with P smooth and proper over V, then

Isoc†(X/K) ↪→ MIC(j†XO]Y [),

where Y is the closure of X inside Pk , and

H i
rig(X/K ,E) := H i (]Y [,E ⊗ Ω•]Y [)

Good formal properties: finite dimensional, versions with support, excision exact
sequences, &c.
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Beyond “smooth” coefficient objects: theory of arithmetic D†-modules
(Berthelot/Caro).

Locally: take étale co-ordinates x1, . . . , xd on P and set

D†
PQ =

∑
k

ak∂
[k]

∣∣∣∣∣∣ ak ∈ OPQ, ∃λ > 1 s.t.
∥∥ak
∥∥λ|k| → 0


where

∂[k] =
∂k1

x1 . . . ∂
kd
xd

k1! . . . kd !
.

Caro defines
Db

hol(D
†
PQ) ⊂ Db

coh(D†
PQ)

“F -able overholonomic complexes”, stable under:

f !

⊗†OP

DP

RΓ†Z for Z ⊂ P closed
f+ for f proper,

by work of Caro/Caro–Tsuzuki.
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Given X ↪→ P, define

Db
hol(X/K) :=

{
M∈ Db

hol(D
†
PQ) supported on X

}
,

these are independent of the embedding, and support a formalism of the 6 functors
(f +, f+), (f!, f !),⊗,D.

Comparison of coefficients: ∃ fully faithful functor

spX ,+ : Isoc†(X/K)→ Db
hol(X/K) ⊂ Db

hol(D
†
PQ)

and can describe the essential image. Defined by Caro when X is smooth, and
extended to the non-smooth case by Abe.

Example

If X is a dense open inside P = Pk , and P \ X is a divisor, then sp+ = sp∗ is just
pushforward along sp : PK → P.

Much more difficult to describe in general!

Christopher Lazda
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For E ∈ Isoc†(X/K), can define its “D-module cohomology”

H i
D(X/K ,E) := H i−dX (f+sp+E)

where f : X → Spec (k) is the structure morphism, inducing

f+ : Db
hol(X/K)→ Db

hol(Spec (k) /K) ∼= Db(K),

and dX = dim X . Concretely, if X ↪→ P then

H i
D(X/K ,E) = H i−dX +dP (P, sp+E ⊗OP

Ω•P/V ).

where dP = dimP.

Question
Do we always have

H i
rig(X/K ,E) ∼= H i

D(X/K ,E)?

This is not obvious!

Today: describe a new construction of sp+ which makes comparison theorems easier
to prove.

Christopher Lazda
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P = smooth, proper formal V-scheme, P = special fibre,

p1, p2 :]P[P2→ PK

the two projections.

Definition (Berthelot)

A convergent stratification on an OPK -module E is an isomorphism

p∗2 E ∼→ p∗1 E

satisfying the cocycle condition.

Definition (Le Stum)

E is called constructible if there exists a stratification P =
∐

i Pi such that E |]Pi [ is
coherent.

Isoc†cons(P/K) = (F -able) constructible OPK -modules with convergent stratification.

Christopher Lazda
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Example
X ↪→ P locally closed immersion, with closure α : Y ↪→ P, then we have
]α[:]Y [→ PK , and if E ∈ Isoc†(X/K) ⊂ MIC(j†XO]Y [), then

]α[!E ∈ Isoc†cons(P/K)

so we have a fully faithful functor

]α[!: Isoc†(X/K)→ Isoc†cons(P/K).

Conjecture (Le Stum)

Rsp∗ induces an equivalence of categories

Isoc†cons(P/K) ∼→ Perv(D†
PQ).

This is a theorem when dimP/V = 1.

Christopher Lazda
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Not clear how to even define Rsp∗ in general: want a lifting

Db(D†
PQ)

forget

��

Isoc†cons(P/K)
Rsp∗
//

88

Db(DPQ)

but sp−1D†
PQ doesn’t act on constructible isocrysals (even if they are coherent on all

of PK ). What we did: given X ↪→ Y
α
↪→ P, construct

Db(D†
PQ)

forget

��

Isoc†(X/K)

33

]α[!
// Isoc†cons(P/K)

Rsp∗
// Db(DPQ)

This immediately gives

H i
rig(P, ]α[!E) ∼= H i

D(P,Rsp∗]α[!E).

Christopher Lazda



Introduction
Constructible isocrystals

The trace map
Dual constructibility

Basic example: P = P̂2
V with co-ordinates x0, x1, x2, Y = P1

k = V (x2) ⊂ P, and
X = A1

k = D(x0) ⊂ Y , so we have

X
j
↪→ Y

α
↪→ P

and
]α[:]Y [→ PK .

We take E = j†XO]Y [P .

Set U = P \ Y , so for any sheaf F on PK we have the localisation exact sequence

0→ Γ†Y F → F → j†UF → 0,

note that Γ†Y =]α[!]α[−1. We apply this to F = R]α[∗j†XO]Y [ =]α[∗j†XO]Y [ to obtain

0→]α[!j†XO]Y [ →]α[∗j†XO]Y [ → j†U ]α[∗j†XO]Y [ → 0

which gives a 2-term resolution of ]α[!j†XO]Y [.

Christopher Lazda
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Lemma

The sheaves ]α[∗j†XO]Y [ and j†U ]α[∗j†XO]Y [ are sp∗-acyclic.

So we have

Rsp∗]α[!j†XO]Y [ ∼=
(

sp∗]α[∗j†XO]Y [ → sp∗j
†
U ]α[∗j†XO]Y [

)
.

If we set u = x1/x0 and v = x2/x0, and look at global sections, then the first term
consists of series

f (u, v) ∈ KJu, vK

such that:
∀η < 1 ∃λ > 1 s.t. f (u, v) converges for |v | ≤ η and |u| ≤ λ.

Can describe the second term similarly, as series

f (u, v) ∈ KJu, v , v−1K

such that:
there exists ρ < 1 such that ∀ρ < η < 1 ∃λ > 1 s.t. f (u, v) converges for
ρ ≤ |v | ≤ η and |u| ≤ λ.

Christopher Lazda
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Explicitly, the second is Kedlaya’s relative Robba ring Rv
K〈u〉† , and the first is it’s plus

part Rv,+
K〈u〉† consisting of series with terms in non-negative powers of v .

⇒ can see directly that

Rsp∗]α[!j†XO]Y [ ∼= v−1K〈u, v−1〉†[−1]

and the DPQ-module structure extends to a D†
PQ-module structure.

Want to generalise this to an arbitrary frame (X
j
↪→ Y

α
↪→ P) with P smooth and

proper over V, and E ∈ Isoc†(X/K).

Christopher Lazda
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Three complications:
1 The complement Y \ X might not be a divisor. So we take a suitable open cover

X = ∪aXa and replace E by

0→ ⊕aj†Xa
E → ⊕a1,a2 j†Xa1∩Xa2

E → . . .→ j†∩aXa
E → 0.

2 We don’t know in general that the j†Xa
E are ]α[∗-acyclic. So we take the

immersions αη : [Y ]η →]Y [ of quasi-compact tubes, and replace j†Xa
E by

lim−→
n0

(∏
n≥n0

αηn∗j
†
Xa

E |[Y ]ηn

res−id−→
∏
n≥n0

αηn∗j
†
Xa

E |[Y ]ηn

)
for ηn → 1−.

3 Y might not be a divisor in P, so we need to pick divisors Db such that
Y = ∩bDb and replace the short exact sequence

0→ Γ†Y F → F → j†UF → 0

by the long exact sequence

0→ Γ†Y F → F → ⊕b j†U\Db
F → . . .→ j†U\∪b Db

F → 0.

Christopher Lazda
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Proposition
Given suitable choices X = ∪aXa and Y = ∩bDb as above there exists a resolution
RC†(E) of ]α[!E such that the DPQ-module structure on sp∗RC†(E) extends
canonically to a D†

PQ-module structure.

Changing the Xa or the Db results in canonically quasi-isomorphic complexes of
D†

PQ-modules.

Corollary

There exists a canonical lifting of (Rsp∗◦]α[!)[dP] to a functor

RspP,! : Isoc†(X/K)→ Db(D†
PQ)

such that
H i

rig(P, ]α[!E) = H i−2dP (u+RspP,!E).

Example

If Y = P and Y \ X is a divisor, then RspP,!E = sp∗E [dP] = sp+E [dP].

Christopher Lazda
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Suppose we want to interpret

H i
rig(P, ]α[!E) = H i (PK , ]α[!(E ⊗ Ω•]Y [)).

Morally, the RHS should be
“H i

c (]Y [,E ⊗ Ω•]Y [)”

for some suitable definition of H i
c .

So we want to:
1 make sense of H i

c for rigid analytic varieties (following Huber);
2 use a suitable formalism of the trace map to understand H i

c (]Y [,E ⊗ Ω•]Y [) via
duality (following the approaches of Chiarellotto/van der Put to Serre duality for
rigid analytic varieties).

Christopher Lazda
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Proposition

For every paracompact (taut) morphism f : V →W of rigid analytic varieties there
exists a unique functor

Rf! : Db(Ab(V ))→ Db(Ab(W ))

such that:
when f is partially proper, Rf! is the total derived functor of the functor f! of
sections whose support is quasi-compact over W (in particular, when f is proper,
Rf! = Rf∗);
when f is an open immersion, Rf! = f! is extension by zero;
R(g ◦ f )! = Rg! ◦ Rf!.

Moreover, for any w ∈W there is a canonical isomorphism

(Rf!−)w
∼→ RΓc (f −1(w),−).

Remark
When f is partially proper, we recover the definition given by van der Put.

Christopher Lazda
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By considering more general adic spaces, we can define Rf! by these properties: by a
theorem of Huber every such f : V →W has a canonical compactification

V
j
//

f
  

V

f̄
��

W

where j is an open immersion and f̄ is partially proper. Then define Rf! := Rf̄! ◦ j!
where Rf̄! is the total derived functor of sections with quasi-compact support.

Christopher Lazda
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Key new input:

Theorem (Proper base change theorem)

Let f : V →W be a proper morphism of finite dimensional adic spaces, and
F ∈ Ab(V ). Then for every w ∈W the base change map

(Rf∗F )w → RΓ(f −1(w),F )

is an isomorphism.

Proof.

Reduce to W = Spa
(

L, L+
)

for some affinoid field (L, L+), V = P1
(L,L+), w = closed

point of W , and F = constant sheaf AT supported on some closed subset
T ⊂ P1

(L,L+). Then use an explicit topological description of P1
(L,L+).

Christopher Lazda
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Theorem
There exists a unique way to associate a trace morphism

Trf : Rf!Ω•V/W [2d]→ OW

to every smooth, paracompact morphism f : V →W of rigid analytic varieties, of
relative dimension d, such that:

1 Trf is compatible with composition;
2 when f is étale, then Trf is the canonical map

f!OV → OW ;

3 when W = Sp(R) is affinoid, and f : DW (0; 1−)→W is the canonical
projection, then Trf is induced by the map

H1
c (DW (0; 1−),Ω1

DW (0;1−)/W ) ∼= R〈z−1〉†d log z → R∑
i≥0

ri z−i d log z 7→ r0

where z is any co-ordinate on DW (0; 1−).
If f is either a Dn(0; 1−) or An,an-bundle, then Trf is an isomorphism.

Christopher Lazda
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To construct Trf :
Properties (1) and (3) give a trace map for f : Dn

W (0; 1−)→W , at least given a
choice of co-ordinates z1, . . . , zd .
Properties (1) and (2) then give a trace map for f : Dn

W (0; 1)→W , at least
given a choice of z1, . . . , zd and a choice of uniformiser π ∈ V inducing

Dn
W (0; 1) jπ→ Dn

W (0; 1−).

Properties (1) and (2) then give a trace map whenever W and V are affinoids, at
least given a choice of factorisation

V g→ Dn
W (0; 1)→W

with g étale.
Can construct Trf in general by using descent.

The hard work is in proving independence of all of these choices!

Christopher Lazda
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Corollary
Let

Y ′

g

��

// P′

u

��

X

??

// Y // P

be a diagram of frames, with g proper and u smooth in a neighbourhood of X, and
E ∈ Isoc†(X/K). Then Tr]g [ induces an isomorphism

R]g [!E]Y ′[P′ ⊗ Ω•]Y ′[P′/]Y [P
[2du] ∼→ E]Y [P

where du is the relative dimension.

Corollary

Let (X ,Y α→ P) be a smooth and proper frame over V, and E ∈ Isoc†(X/K). Then

H2dP−i (PK , ]α[!E ⊗ Ω•PK
)

only depends on X and not on Y or P.

Christopher Lazda
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Now, if we take a smooth and proper frame (X ,Y ,P) and E ∈ Isoc†(X/K), then we
have Berthelot’s “Poincaré” pairing

E × RΓ]X [PE∨ → RΓ]X [PO]Y [P

which via the trace map induces a pairing

H2dP−i
c (]Y [P,E ⊗ Ω•]Y [P

)× H i (]Y [P,RΓ]X [P (E∨ ⊗ Ω•]Y [P
))

→ H2dP
c (]Y [P,Ω•]Y [P

) Tr→ K .

Theorem
This pairing is perfect.

Proof.
Both sides sit in excision exact sequences, which are compatible with the pairing, so
we may assume that X is smooth and affine. We can therefore choose a
Monsky–Washnitzer frame (X ,Y ,P) in which case the claim reduces to Poincaré
duality with coefficients, as proved by Kedlaya.

So H2dP−i
rig (P, ]α[!E) is canonically isomorphic to rigid Borel–Moore homology

HBM
i,rig(X ,E).

Christopher Lazda
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V = complex variety ; 2 well-known t-structures of Db
c (V ,C).

1 The usual (constructible) t-structure (D≥0,D≤0) with heart Con(V ,C).
2 The perverse t-structure (pD≥0, pD≤0) with heart Perv(V ,C).

Second is self-dual under DV , first is not.

Definition

The dual constructible t-structure (d D≥0, d D≤0) on Db
c (V ,C) is defined by

K • ∈ d D≥0 ⇔ DV (K •) ∈ D≤0

K • ∈ d D≤0 ⇔ DV (K •) ∈ D≥0.

Deduce properties of (d D≥0, d D≤0) from those of (D≥0,D≤0).

Example

If f : V →W then f ! is exact for the dual constructible t-structure. If f is an
immersion, then so is Rf∗.

Christopher Lazda
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Back to char p: ; Db
hol(D

†
PQ), Db

hol(X/K) also have 3 t-structures:

1 holonomic t-structure - on Db
hol(D

†
PQ) this is just the obvious one coming from

Db
coh(D†

PQ), slightly more subtle on Db
hol(X/K);

2 constructible (perverse) t-structure;
3 dual constructible t-structure.

Same exactness properties as before, in particular the dual constructible t-structure on
Db

hol(X/K) is the restriction of that on Db
hol(D

†
PQ) - this is false for the other two!

Remark

When P is a smooth and proper curve, Le Stum’s perverse t-structure on Db
hol(D

†
PQ)

coincides with our dual constructible t-structure, up to a shift by 1 = dimP.

Hearts are denoted
Hol(P), Con(P), DCon(P)

and
Hol(X/K), Con(X/K), DCon(X/K)

respectively.

Christopher Lazda



Introduction
Constructible isocrystals

The trace map
Dual constructibility

Theorem

Let X ↪→ P with P smooth and proper over V, and E ∈ Isoc†(X/K). Then

RspP,!E ∈ DCon(X/K) ⊂ Db(D†
PQ)

is overholonomic, supported on X, and is in the heart of the dual constructible
t-structure.

Proof.
1 Show that formation of RspP,!E is compatible with localisation exact sequences

and taking finite étale covers of X (this uses a suitable D†-lifting of the trace
morphism).

2 Use alterations to reduce to the case where X and Y := X are smooth and Y \ X
is a divisor.

3 Now locally lift Y ↪→ P to a closed embedding u : Y ↪→ P of smooth formal
V-schemes, and show that u+RspY,!E ∼= RspP,!E , thus reducing to the case
when Y = Pk .

4 In this case we have RspP,! = sp+[dP] and can appeal to Caro–Tsuzuki.

Christopher Lazda
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Proposition
Consider

X

f
��

// P

u
��

Y // Q

with P, Q proper smooth over V, and E ∈ Isoc†(Y /K). Then there is a canonical
isomorphism

RΓX u!RspQ,!E
∼→ RspP,!f ∗E

in Db
hol(D

†
PQ).

Proof.
We can treat separately the cases when u = id and the square is Cartesian. The first
follows from compatibility with localisation already mentioned, and the second from
direct calculation.

Christopher Lazda
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Corollary

For any variety X/k there exists a canonical functor

spX ,! : Isoc†(X/K)→ DCon(X/K)

such that for any embedding X ↪→ P,

(spX ,!E)P = RspP,!E ∈ Db
hol(D

†
PQ).

It is compatible with pullback: for any f : X → Y , and any E ∈ Isoc†(Y /K), we have

spX ,!f ∗E ∼= f !spY ,!E .

Christopher Lazda
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Theorem

For any X/k, and any E ∈ Isoc†(X/K) there exists a canonical isomorphism

spX ,+E [−dX ] ∼→ DX (spX ,!E∨)

in Db
hol(D

†
PQ).

Proof.

We can show that both sides lie in the abelian category Con(X/K), which satisfies
h-descent. Hence, we may assume that X is smooth, with a smooth compactification
Y , and that Y \ X is a divisor. Then the isomorphism follows from compatibility of
Caro’s functor spX ,+ with duality.

Remark

We only have spX ,+E ∈ Hol(X/K) if X is smooth, in general we have
spX ,+E ∈ Con(X/K)[dX ]. The formulation of the theorem is slightly neater if we
replace spX ,+E by

s̃pX ,+E := spX ,+E [−dX ] ∈ Con(X).

Christopher Lazda
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Corollary

For any variety X/k, and any E ∈ Isoc†(X/K) we have a canonical isomorphism

H i
c,rig(X/K ,E) ∼= H i

c,D(X/K ,E) := H i (f! s̃pX ,+E)

of K-vector spaces.

Proof.
If X ↪→ P with P smooth and proper over V, and α : Y ↪→ P is its closure, then we
have

H i
c,rig(X/K ,E) ∼→ H2dP−i (PK , ]α[!E∨ ⊗ Ω•PK

)∨

∼→ HdP−i (P,RspP,!E∨ ⊗ Ω•P)∨

∼→ H−i (f+ s̃pX ,!E∨)∨

∼→ H i (f! s̃pX ,+E).

The general case can be handled by descent.

For comparison of ‘usual’ cohomologies, see Tomoyuki’s talk.

Christopher Lazda



Introduction
Constructible isocrystals

The trace map
Dual constructibility

Thank-you!

Christopher Lazda
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