Spectral estimates of nonlinear elliptic operators in non-convex domains

Alexander UKHLOV

Department of Mathematics, Ben-Gurion University of the Negev, Israel, ukhlov@math.bgu.ac.il

We study the Neumann eigenvalue problem for the nonlinear p-Laplace operator:

$$- \text{div}(\nabla |u|^{p-2} \nabla u) = \mu_p |u|^{p-2} u \text{ in } \Omega, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega,$$

in bounded domains $\Omega \subset \mathbb{R}^2$ that satisfy the quasihyperbolic boundary condition. On the base of the geometric theory of composition operators on Sobolev spaces we give spectral estimates of the first non-trivial Neumann eigenvalue $\mu_p(\Omega)$ in the terms of the (quasi)conformal geometry of domains.

Based on joint work with [Vladimir Gol’dshtein and Valerii Pchelintsev].

Keywords: Elliptic operators, Sobolev spaces, quasiconformal mappings.