Skip to main content

GDMSeminar: Abstracts of the Talks

  • George Haller (ETH Zurich)
    Objective material barriers to the transport of momentum and vorticity
    Tuesday, June 30, 2020, 15:00 GMT

    Abstract: I discuss a recent theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active (i.e., velocity-dependent) vector field, such as the linear momentum, the angular momentum or the vorticity, in three-dimensional unsteady flows. These diffusion barriers provide physics-based, observer-independent boundaries of dynamically active coherent structures. Instantaneous limits of these Lagrangian diffusion barriers mark objective Eulerian barriers to short-term active transport. I show how  active diffusion barriers can be identified with active versions of Lagrangian coherent structure (LCS) diagnostics. In comparison to their passive counterparts, however, active LCS diagnostics require no significant fluid particle separation and hence provide substantially higher-resolved Lagrangian and Eulerian coherent structure boundaries from shorter velocity data sets. I illustrate these results on two-dimensional turbulence and three-dimensional wall-bounded turbulence.